首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
An attempt to synthesize a complex between copper(I) cyanide and thioacetamide (ta) by a direct combination in aqueous solution, surprisingly, produced instead Cu(4)(S(2)O(3))(2)(ta)(10).ta (1), a complex lacking cyanide but including thiosulfate. We know of no precedent for the production of thiosulfate from an aqueous solution of ta. Using a new synthetic approach, a complex of CuCN and ta was subsequently prepared-(CuCN)(ta), 2. In the new method, which has been found to be widely applicable to water-soluble ligands, CuCN is made "available" for coordination by dissolving it in aqueous sodium thiosulfate. Complex 1 crystallizes in the triclinic space group P&onemacr; (No. 2) with unit cell dimensions a = 10.139(3) ?, b = 12.230(4) ?, c = 12.665(4) ?, alpha = 85.20(2) degrees, beta = 67.32(2) degrees, gamma = 68.47(2) degrees, V = 1345(2) ?(3), and Z = 2. Complex 2 crystallizes in the orthorhombic space group Pna2(1) (No. 33) with unit cell dimensions a = 6.993(9) ?, b = 8.744(3) ?, c = 9.372(6) ?, V = 573(1) ?(3), and Z = 4. Some possible pathways for the production of thiosulfate are discussed.  相似文献   

2.
The syntheses and crystal structures of a family of silver cyanide complexes of thiourea and substituted thioureas are reported. The sulfur ligands include thiourea (tu), 1-methyl-2-thiourea (mtu), 1,3-dimethyl-2-thiourea (dmtu), 1,1,3,3-tetramethyl-2-thiourea (tmtu), and 2-imidazolidinethione (N,N'-ethylenethiourea, etu). Synthesis was effected by dissolving AgCN in an aqueous solution of ligand. Two different complexes were obtained by the reaction of AgCN with tu. Complex 1a: (AgCN)(tu), monoclinic, P2(1)/c, a = 9.3851 (6) A, b = 8.2782 (5) A, c = 7.1178 (5) A, beta = 94.591 (1) degree, and Z = 4. Complex 1b: (AgCN)(tu)2, triclinic, P1, a = 7.9485 (14) A, b = 9.431 (2) A, c = 12.771 (2) A, alpha = 85.695 (3) degrees, beta = 81.210 (4) degrees, gamma = 77.987 (2) degrees, and Z = 4. Complex 2: (AgCN)(mtu), triclinic, P1, a = 4.113 (2) A, b = 9.472 (4) A, c = 9.679 (4) A, alpha = 113.918 (5) degrees, beta = 98.188 (6) degrees, gamma = 97.725 (6) degrees, and Z = 2. Complex 3 (AgCN)2(dmtu)2, monoclinic, P2(1)/m, a = 7.1482 (7) A, b = 14.776 (2) A, c = 7.3366 (7) A, beta = 92.418 (2) degrees, and Z = 2. Complex 4: (AgCN)(tmtu), orthorhombic, P2(1)2(1)2(1), a = 8.823(6) A, b = 10.209 (2) A, c = 10.362 (2) A, and Z = 4. Complex 5: (AgCN)2(etu)2, triclinic, P1, a = 6.8001 (2) A, b = 8.6154 (1) A, c = 13.4747 (3) A, alpha = 71.720 (1) degree, beta = 79.906 (1) degree, gamma = 75.885 (2) degrees, and Z = 2. All of the structures involve either one- or two-dimensional polymeric arrays held together by bridging S and CN groups. There is, however, no similarity between any two of the arrays. Four of the five ligands used also form similar complexes with CuCN. For one ligand, tmtu, the structures are isomorphous. For the other three, not only are the structures not isomorphous, the m/n ratio in (MCN)mLn when M is Ag is different from that when M is Cu.  相似文献   

3.
The reactions of K(2)PtCl(4) with N,N'-diphenylformamidine (HDPhF) and N,N'-di-p-tolylformamidine (HDTolF) produce the trans square-planar compounds PtCl(2)(HDPhF)(2), 1a, and PtCl(2)(HDTolF)(2), 1b. Compound 1a crystallizes as yellow parallelepipeds in the space group P2(1)/c with two independent molecules in the asymmetric unit and unit cell dimensions a = 23.427(7) ?, b = 16.677(6) ?, c = 12.980(4) ?, and beta = 96.10(2) degrees. These compounds are soluble in common organic solvents and have been used as starting materials for the preparation of diplatinum compounds. Treatment of 1a and 1b with NaOMe and the halide abstraction reagent TlPF(6) produces the compounds Pt(2)(&mgr;-DArF)(2)(eta(2)-DArF)(2), Ar = Ph (2a) and Tol (2b), respectively. Compound 2a crystallizes as yellow rods in the space group P&onemacr; with unit cell dimensions a = 12.296(3) ?, b = 12.310(4) ?, c = 15.374(4) ?, alpha = 90.75(2) degrees, beta = 91.02(2) degrees, and gamma = 110.20(2) degrees. Compound 2b crystallizes with a molecule of THF, as yellow rods in the space group P2(1)/c with a = 17.883(3) ?, b = 14.517(3) ?, c = 22.581(3) ?, and beta = 98.17(1) degrees. These compounds contain two cis bridging formamidinato ligands and two formamidinato ligands that are chelated to separate Pt centers. Upon heating, they further react to give the tetrabridged compounds Pt(2)(&mgr;-DArF)(4), Ar = Ph (3a), Tol (3b). Compound 3a crystallizes as orange cubes in the cubic space group I432 with a = 19.671(1) ?. On going from the bis-bridged, bis-chelate structure in 2a to the tetrabridged structure in 3a, the metal-metal separation decreases from 2.910(1) to 2.649(1) ?. Both 2band 3b have been oxidized to give the Pt(II)-Pt(III) compound Pt(2)(&mgr;-DTolF)(4)(PF(6)), 4. Compound 4 crystallizes as cubes in the tetragonal space group P4/ncc with a = 14.392(1) ? and c = 14.436(1) ?. The Pt-Pt distance in 4 is 2.5304(6) ?.  相似文献   

4.
Reaction of LRu(III)Cl(3) (L = 1,4,7-trimethyl-1,4,7-triazacyclononane) with 1,2-phenylenediamine (opdaH(2)) in H(2)O in the presence of air affords [LRu(II)(bqdi)(OH(2))](PF(6)) (1), where (bqdi) represents the neutral ligand o-benzoquinone diimine. From an alkaline methanol/water mixture of 1 was obtained the dinuclear species [{LRu(II)(bqdi)}(2)(&mgr;-H(3)O(2))](PF(6))(3) (1a). The coordinated water molecule in 1 is labile and can be readily substituted under appropriate reaction conditions by acetonitrile, yielding [LRu(II)(bqdi)(CH(3)CN)](PF(6))(2) (2), and by iodide and azide anions, affording [LRu(II)(bqdi)I](PF(6)).0.5H(2)O (3) and [LRu(bqdi)(N(3))](PF(6)).H(2)O (4), respectively. Heating of solid 4 in vacuum at 160 degrees C generates N(2) and the dinuclear, nitrido-bridged complex [{LRu(o-C(6)H(4)(NH)(2))}(2)(&mgr;-N)](PF(6))(2) (5). Complex 5 is a mixed-valent, paramagnetic species containing one unpaired electron per dinuclear unit whereas complexes 1-4 are diamagnetic. The crystal structures of 1, 1a.3CH(3)CN, 3, 4.H(2)O, and 5.3CH(3)CN.0.5(toluene) have been determined by X-ray crystallography: 1 crystallizes in the monoclinic space group P2(1)/m, Z = 2, with a = 8.412(2) ?, b = 15.562(3) ?, c = 10.025 ?, and beta = 109.89(2) degrees; 1a.3CH(3)CN, in the monoclinic space group C2/c, Z = 4, with a = 19.858(3) ?, b = 15.483(2) ?, c = 18.192(3) ?, and beta = 95.95(2) degrees; 3, in the orthorhombic space group Pnma, Z = 4, with a = 18.399(4) ?, b = 9.287(2) ?, and c = 12.052(2) ?, 4.H(2)O, in the monoclinic space group P2(1)/c, Z = 4, with a = 8.586(1) ?, b = 15.617(3) ?, c = 16.388(5) ?, and beta = 90.84(2) degrees; and 5.3CH(3)CN.0.5(toluene), in the monoclinic space group P2(1)/c, Z = 4, with a = 15.003(3) ?, b = 16.253(3) ?, c = 21.196(4) ?, and beta = 96.78(3) degrees. The structural data indicate that in complexes 1-4 the neutral o-benzoquinone diimine ligand prevails. In contrast, in 5 this ligand has predominantly o-phenylenediamide character, which would render 5 formally a mixed-valent Ru(IV)Ru(V) species. On the other hand, the Ru-N bond lengths of the Ru-N-Ru moiety at 1.805(5) and 1.767(5) ? are significantly longer than those in other crystallographically characterized Ru(IV)=N=Ru(IV) units (1.72-1.74 ?). It appears that the C(6)H(4)(NH)(2) ligand in 5 is noninnocent and that formal oxidation state assignments to the ligands or metal centers are not possible.  相似文献   

5.
Electrophilic attack of 1 equiv of I(2) on a PC(sp)2 carbon of the Pt(II) complex (1) afforded (2) in 90% yield. Complex 2 was subsequently deprotonated by NaOEt in ethanol to give the bis(enolato) complex (3). This alpha-phosphino, alpha-iodo enolato complex was obtained directly and quantitatively by the reaction of 1 with 1 equiv of N-iodosuccinimide (NIS). When 2 equiv of NIS was used, the symmetrical complex (4) was formed selectively. In contrast to I(2), NIS was also able to functionalize the phosphino enolate ligand of complexes to give the corresponding iodo derivatives (C N = dmba (5) or 8-mq (6)). These represent the first examples in which a phosphino enolate C-H bond has been directly functionalized, i.e. replaced by a C-X bond. Attempts to use this procedure with or with were unsuccessful. Reaction of 5 with Pd(dba)(2) in the presence of tetramethylenediamine (tmeda) or 2,2'-bipyridine (bipy) afforded (7) and (8), respectively. The solid state structures of complexes 5 and 7.CH(2)Cl(2) have been determined by single-crystal X-ray diffraction: 5 crystallizes in the monoclinic space group P2(1)/n with Z = 4 in a unit cell of dimensions a = 12.867(3) ?, b = 10.625(3) ?, c = 19.509(6) ?, and beta = 102.23(2) degrees; 7.CH(2)Cl(2) crystallizes in the monoclinic space group C2/c with Z = 8 in a unit cell of dimensions a = 35.906(3) ?, b = 13.565(3) ?, c = 15.775(2) ?, and beta = 95.099(10) degrees. Complex 7 contains two palladium(II) centers, in a square-planar environment, connected by the P-C unit of a phosphino enolate ligand which adopts an unprecedented &mgr;-eta(2)(P,C):eta(2)(P,O) bonding mode. The two coordination planes are almost orthogonal and make a dihedral angle of 88.0(2) degrees, which minimizes the steric hindrance between the ligands.  相似文献   

6.
NMR spectroscopic studies reveal that binding of Na(+) by tris(2-methoxyphenyl)amine (3) brings two of these tripod ethers together about the metal ion; the related double-tripod-ether ionophore 1,2-bis[2-(bis(2-methoxyphenyl)amino)phenoxy]ethane (4), in which two triarylamines are covalently attached, binds LiI, LiBPh(4), NaI, NaBPh(4), and KB(4-ClPh)(4). Dynamic NMR puts lower limits on binding free energies of 4 for Na(+) (71.8 kJ mol(-)(1)) and K(+) (66.8 kJ mol(-)(1)) ions. X-ray studies of 3(2).NaBPh(4), 4.NaBPh(4), 4.NaB(4-ClPh)(4), and 4.KB(4-ClPh)(4).CH(3)NO(2) show eight-coordinate M(+) ions bound between crystallographically independent, homochiral triarylamine tripod ethers in structures reminiscent of alkali metal [2.2.2] cryptates. Complexes crystallize as follows: 3(2).NaBPh(4), monoclinic, P2(1)/c, Z = 4, a = 10.701(3) ?, b = 37.593(3) ?, c = 13.774(2) ?, and beta = 98.24(2) degrees; 4.NaBPh(4), triclinic, P&onemacr;, Z = 2, a = 12.157(1) ?, b = 14.811(1) ?, c = 15.860(2) ?, alpha = 105.400(8) degrees, beta = 91.594(9) degrees, and gamma = 95.354(8) degrees; 4.NaB(4-ClPh)(4), monoclinic, P2(1)/n, Z = 4, a = 13.652(5) ?, b = 18.75(1) ?, c = 22.805(5) ?, and beta = 92.21(5) degrees; 4.KB(4-ClPh)(4).CH(3)NO(2), monoclinic, Pn, Z = 2, a = 13.663(4) ?, b = 12.228(3) ?, c = 18.712(8) ?, and beta = 91.45(3) degrees. They show variable N-M-N angles; 3(2).NaBPh(4) is surprisingly bent ( angleN-Na-N = 154.5 degrees ), while the 4.M(+) complexes are normal: nearly linear for Na(+) ( angleN-Na-N = 178.6, 178.1 degrees ) and again bent with the larger K(+) ( angleN-K-N = 164.5 degrees ). Finally, free 4 is structurally similar to 3; it crystallizes in the triclinic space group P&onemacr;, with Z = 2, a = 8.068(1) ?, b = 14.599(2) ?, c = 16.475(3) ?, alpha = 115.43(1) degrees, beta = 92.51(1) degrees, and gamma = 90.40(1) degrees.  相似文献   

7.
The reaction of lanthanide triflates with 2 equiv of potassium hydrotris(dimethylpyrazolyl)borate (Tp(Me)()2) gives good yields of complexes of composition Ln(Tp(Me)()2)(2)OTf. For La (2), Ce (3), Pr (4), and Nd (5) the complexes are seven-coordinate in the solid state with the triflate group coordinated to the metal in unidentate fashion. Complex 5 crystallizes in the monoclinic space group P2(1)/c with a = 17.629(3) ?, b = 12.740(2) ?, c = 18.163(3) ?, beta = 107.35(1) degrees, V = 3893(1) ?(3), Z = 4, and R(w) = 0.0458. For the complexes of Y (1), Sm (6), Eu (7), Gd (8), Dy (9), Ho (10), and Yb (11), the smaller size of the metal ion leads to ejection of the triflate from the coordination sphere and the complexes are ionic in the solid state with a six-coordinate metal center. Complex 11 crystallizes in the monoclinic space group C2/m with a = 16.593(7) ?, b = 13.671(5) ?, c = 8.746(2) ?, beta = 91.66(3) degrees, V = 1983(1) ?(3), Z = 2, and R(w) = 0.0416. In solution, however, complex 6 adopts a seven-coordinate molecular structure with the triflate ion within the first coordination sphere.  相似文献   

8.
The tetraphenylimidodiphosphinate [N-(P,P-diphenylphosphinoyl)-P,P-diphenylphosphinimidate] ion forms stable tris-chelates with the Bi(III), In(III), and Ga(III) cations. The crystal and molecular structures of [M{(OPPh(2))(2)N}(3)] (M = Ga, In, Bi) were determined by X-ray diffractometry. The geometry around the bismuth atom in compound 3 displays an approximately C(3)(v)() symmetry. This arrangement suggests the presence of a stereoactive lone pair of electrons, which is located in one of the triangular octahedral faces. Derivative 3 crystallizes in the triclinic space group P&onemacr; with Z = 2, a = 14.006(6) ?, b = 14.185(4) ?, c = 17.609(8) ?, alpha = 88.45(2) degrees, beta = 79.34(2) degrees, and gamma = 78.23(2) degrees. The structures of the gallium(III) and indium(III) tris-chelate oxygen-based complexes (1 and 2, respectively) were compared with the bismuth analogue in order to determine the ligand steric bulk influence on the coordination sphere in the absence of the electron lone pair. Complex 1 crystallizes as the [Ga{(OPPh(2))(2)N}(3)].CH(2)Cl(2) solvate in the triclinic space group P&onemacr;; Z = 2, a = 13.534(4) ?, b = 13.855(4) ?, c = 18.732(7) ?, alpha = 95.48(2) degrees, beta = 98.26(2) degrees, and gamma = 97.84(2) degrees. Crystal data for the benzene solvate of 2, [In{(OPPh(2))(2)N}(3)].C(6)H(6): triclinic space group P&onemacr;, Z = 2, a = 13.542(9) ?, b = 15.622(3) ?, c = 18.063(5) ?, alpha = 98.21(1) degrees, beta = 104.77(0) degrees, and gamma = 92.260(0) degrees.  相似文献   

9.
The goal of this work was to synthesize new molecular bricks which could be used as precursors of heterobimetallic low-dimensional compounds. Along this line, four compounds have been synthesized and structurally characterized, namely (NBu(4))(2)[Ni(Cl(2)opba)] (1), (NBu(4))(2)[Cu(Cl(2)opba)] (2), (NBu(4))(5)[Mn(Cl(2)opba)(DMSO)(2)](4) (3), and Cu(en)(2)[Mn(Cl(2)opba)(H(2)O)(2)](2).2DMSO (4), with Cl(2)opba = (4,5-dichloro-o-phenylene)bis(oxamato), NBu(4) = tetra-n-butylammonium, en = ethylenediamine, and DMSO = dimethyl sulfoxide. Compounds 1 and 2 are isostructural; they crystallize in the monoclinic system, space group C2/c, Z = 4, with a = 18.708(2) ?, b = 17.525(2) ?, c = 14.763(9) ?, and beta = 92.03(4) degrees for 1 and a = 18.928(2) ?, b = 17.634(2) ?, c = 14.704(9) ?, and beta = 92.38(3) degrees for 2. 3 crystallizes in the tetragonal system, space group P&fourmacr;2(1)c, Z = 2, with a = 26.295(10) ? and c = 12.342(7) ?. The structure shows a random occupation of the metal site by Mn(III) and Mn(II) ions in 3/4 and 1/4 ratios, respectively. 4 crystallizes in the triclinic system, space group P&onemacr;, Z = 1, with a = 7.066(7) ?, b = 11.844(1) ?, c = 14.292(5) ?, alpha = 105.64(2) degrees, beta = 97.67(5) degrees, and gamma = 102.13(3) degrees. The structure consists of Mn(III)Cu(II)Mn(III) trinuclear species, with Cu-O-Mn bridges involving oxygen atoms of the oxamato groups already linked to the metal atom. The magnetic properties of compounds 1-4 have been investigated and quantitatively interpreted. For 3, this magnetic investigation has been performed on a single crystal, which allows us to determine unambiguously the sign of the axial zero-field splitting parameter for the Mn(III) ion. The potentialities of these new molecular bricks have been discussed.  相似文献   

10.
Photolysis of a series of octahedral monoazido complexes of the type [LM(III)(didentate ligand)(N(3))](n)(+)X(n) of vanadium(III), chromium(III), and manganese(III) in the solid state or in solution yields quantitatively the corresponding six-coordinate nitrido complexes [LM(V)(didentate ligand)(N)](n)(+)X(n) and 1 equiv of dinitrogen. L represents the macrocycle 1,4,7-triazacyclononane or its N-methylated derivative (L'), the didentate ligands are pentane-2,4-dionate (acac), 2,2,6,6-tetramethylheptane-3,5-dionate (tacac), picolinate (pic), phenanthroline (phen), and oxalate (ox), and X(-) represents perchlorate or hexafluorophosphate. The following nitrido complexes were prepared: [LV(V)(N)(acac)](ClO(4)) (6), [LCr(V)(N)(acac)](ClO(4)) (13), [LCr(V)(N)(tacac)](ClO(4)) (14), [LCr(V)(N)(pic)](ClO(4)) (15), [LCr(V)(N)(phen)](ClO(4))(2) (16), [LCr(V)(N)(ox)] (19), [L'Mn(V)(N)(acac)]PF(6) (21). Photolysis of [LCr(III)(N(3))(ox)] (17) in the solid state produces the &mgr;-nitrido-bridged mixed-valent species [L(2)Cr(2)(ox)(2)(&mgr;-N)](N(3)) (18). The structures of the precursor complex [L'Mn(acac)(N(3))]BPh(4) (20), of 13, and of [L'Mn(V)(N)(acac)]BPh(4) (21) have been determined by X-ray crystallography. Complex 13 crystallizes in the orthorhombic space group Pnma, with cell constants a = 27.187(5) ?, b = 9.228(2) ?, c = 7.070(1) ?, V = 1773.7(6) ?(3), and Z = 4; complex 20 crystallizes in the triclinic space group P&onemacr; with a = 14.769(5) ?, b = 16.83(1) ?, c = 16.96(1) ?, alpha = 108.19(5) degrees, beta = 105.06(4) degrees, gamma = 99.78(4) degrees, V = 3719(2) ?(3), and Z = 4; and complex 21 crystallizes in the monoclinic space group P2(1)/n with a = 10.443(3) ?, b = 16.035(4) ?, c = 21.463(5) ?, beta = 95.76(1) degrees, V = 3575.9(14) ?(3), and Z = 4. The Cr(V)&tbd1;N and Mn(V)&tbd1;N distances are short at 1.575(9) and 1.518(4) ?, respectively, and indicate a metal-to-nitrogen triple bond.  相似文献   

11.
The oxidative addition of the salt [{SC(NMe(2))(2)}(2)]Cl(2).2H(2)O (1), the disulfide-like dimerized form of 1,1,3,3-tetramethylthiourea (tmtu), to Pt(II) chloro am(m)ine compounds is described. Oxidation of the [PtCl(3)(NH(3))](-) anion with 1 in methanol yields cis-[PtCl(4)(NH(3))L] (2; L = tmtu) as the result of the trans addition of one tmtu and one chloro ligand. The same mode of oxidation is found in reactions of 1 with [PtCl(dien)](+) (dien = diethylenetriamine) and trans-[PtCl(2)(NH(3))(2)]. In these cases, however, the oxidation is followed by (light-independent) cis,trans isomerizations, giving trans,mer-[PtCl(2)(dien)L]Cl(2) (4) and fac-[PtCl(3)(NH(3))(2)L]Cl.0.5MeOH (6), respectively. The single-crystal X-ray structures of 2 and trans,mer-[PtCl(2)(dien)L](BF(4))(2) (4a) have been determined. 2: monoclinic, space group P2(1)/n, a = 6.280(1) ?, b = 13.221(3) ?, c = 16.575(2) ?, beta = 96.45(1) degrees, Z = 4. 4a: monoclinic, space group C2/m, a = 21.093(5) ?, b = 8.9411(9) ?, c = 14.208(2) ?, beta = 124.65(2) degrees, Z = 4. The tmtu ligands are S-bound. In 2 a pronounced trans influence of the S-donor ligand on the Pt-Cl bond (2.370(1) ?) trans to sulfur is observed. The unusual acidity of the Pt(IV) complexes exhibiting tmtu coordination trans to chloride is attributed to hydrolysis of the labilized Pt-Cl(trans) bond, which is supported by ion sensitive electrode measurements. An upfield shift of the (195)Pt resonances is found on changing the ligand combination from NCl(4)S (2) to N(3)Cl(2)S (4). This order correlates with the trans influences of the ligands: tmtu > am(m)ine > chloride. The cytotoxicity of 2 and 6 in L1210 cell lines is reported and discussed in terms of a possible mechanism of action of the compounds invivo. It is suggested that tmtu may act as a lipophilic carrier ligand and therefore enhance the cellular uptake of the new potential Pt(IV) drugs.  相似文献   

12.
The syntheses of macrocyclic species composed of carborane derivatives joined via their carbon vertices by electrophilic mercury atoms are described. The reaction of closo-1,2-Li(2)[C(2)B(10)H(10)(-)(x)()R(x)()] with HgI(2) gives Li(2)[(1,2-C(2)B(10)H(10)(-)(x)()R(x)()Hg)(4)I(2)] [R = Et, x = 2 (5.I(2)Li(2)); R = Me, x = 2 (6.I(2)Li(2)); R = Me, x = 4 (7.I(2)Li(2))]. 6.I(2)(K.[18]dibenzocrown-6)(2) crystallizes in the monoclinic space group C2/m [a = 28.99(2) ?, b = 18.19(1) ?, c = 13.61(1) ?, beta = 113.74(2) degrees, V = 6568 ?(3), Z = 4, R = 0.060, R(w) = 0.070]; 7.I(2)(NBu(4))(2) crystallizes in the monoclinic space group P2(1)/c [a = 12.77(1) ?, b = 21.12(2) ?, c = 20.96(2) ?, beta = 97.87(2) degrees, V = 5600 ?(3), Z = 2, R = 0.072, R(w) = 0.082]. The precursor to 7, closo-8,9,10,12-Me(4)-1,2-C(2)B(10)H(8) (4), is made in a single step by reaction of closo-1,2-C(2)B(10)H(12) with MeI in trifluoromethanesulfonic acid. The free hosts 5, 6, and 7 are obtained by reaction of the iodide complexes with stoichiometric quantities of AgOAc. A (199)Hg NMR study indicates that sequential removal of iodide from 5.I(2)Li(2) and 6.I(2)Li(2) with aliquots of AgOAc solution leads to formation of two intermediate host-guest complexes in solution, presumed to be 5(6)ILi and 5(2)(6)(2).ILi. Crystals grown from a solution of 6.I(2)Li(2) to which 1 equiv of AgOAc solution had been added proved to be an unusual stack structure with the formula 6(3).I(4)Li(4) [tetragonal, I4/m, a = 21.589(2) ?, c = 21.666(2) ?, V = 10098 ?(3), Z = 2, R = 0.058, R(w) = 0.084]. Addition of 2 equiv of NBu(4)Br ion to 5 or 6 gives 5.Br(2)(NBu(4))(2) and 6.Br(2)(NBu(4))(2), respectively, while addition of 1 equiv of KBr to 6 forms 6.BrK. 5.Br(2)(NBu(4))(2) crystallizes in the triclinic space group P&onemacr;, [a = 10.433(1) ?, b = 13.013(1) ?, c = 15.867(2) ?, alpha = 91.638(2) degrees, beta = 97.186(3) degrees, gamma = 114.202(2) degrees, V = 1492 ?(3), Z = 1, R = 0.078, R(w) = 0.104]. The hosts 5 and 6 form 1:1 supramolecular adducts with the polyhedral anions B(10)I(10)(2)(-) and B(12)I(12)(2)(-) in solution.  相似文献   

13.
Chen L  Cotton FA 《Inorganic chemistry》1996,35(25):7364-7369
Reaction of [Zr(6)Cl(18)H(5)](3)(-) (1) with 1 equiv of TiCl(4) yields a new cluster anion, [Zr(6)Cl(18)H(5)](2)(-) (2), which can be converted back into [Zr(6)Cl(18)H(5)](3)(-) (1) upon addition of 1 equiv of Na/Hg. Cluster 2 is paramagnetic and unstable in the presence of donor molecules. It undergoes a disproportionation reaction to form 1, some Zr(IV) compounds, and H(2). It also reacts with TiCl(4) to form [Zr(2)Cl(9)](-) (4) and a tetranuclear mixed-metal species, [Zr(2)Ti(2)Cl(16)](2)(-) (3). The oxidation reaction of 1 with TiCl(4) is unique. Oxidation of 1 with H(+) in CH(2)Cl(2) solution results in the formation of [ZrCl(6)](2)(-) (5) and H(2), while in py solution the oxidation product is [ZrCl(5)(py)](-) (6). There is no reaction between 1 and TiI(4), ZrCl(4), [TiCl(6)](2)(-), [ZrCl(6)](2)(-), or CrCl(3). Compounds [Ph(4)P](2)[Zr(6)Cl(18)H(5)] (2a), [Ph(4)P](2)[Zr(2)Ti(2)Cl(16)] (3a), [Ph(4)P](2)[Zr(2)Cl(9)] (4a), [Ph(4)P](2)[ZrCl(6)].4MeCN (5a.4MeCN), and [Ph(4)P][ZrCl(5)(py)] (6a) were characterized by X-ray crystallography. Compound 2a crystallized in the trigonal space group R&thremacr; with cell dimensions (20 degrees C) of a = 28.546(3) ?, b = 28.546(3) ?, c = 27.679(2) ?, V = 19533(3) ?(3), and Z = 12. Compound 3a crystallized in the triclinic space group P&onemacr; with cell dimensions (-60 degrees C) of a = 11.375(3) ?, b = 13.357(3) ?, c = 11.336(3) ?, alpha = 106.07(1) degrees, beta = 114.77(1) degrees, gamma = 88.50(1) degrees, V = 1494.8(7) ?(3), and Z = 1. Compound 4a crystallized in the triclinic space group P&onemacr; with cell dimensions (-60 degrees C) of a = 12.380(5) ?, b = 12.883(5) ?, c = 11.000(4) ?, alpha = 110.39(7) degrees, beta = 98.29(7) degrees, gamma = 73.12(4) degrees, V = 1572(1) ?(3), and Z = 2. Compound 5a.4MeCN crystallized in the monoclinic space group P2(1)/c with cell dimensions (-60 degrees C) of a = 9.595(1) ?, b = 19.566(3) ?, c = 15.049(1) ?, beta = 98.50(1) degrees, V = 2794.2(6) ?(3), and Z = 2. Compound 6a crystallized in the monoclinic space group P2(1)/c with cell dimensions (20 degrees C) of a = 10.3390(7) ?, b = 16.491(2) ?, c = 17.654(2) ?, beta = 91.542(6) degrees, V = 3026.4(5) ?(3), and Z = 4.  相似文献   

14.
Cao R  Sun D  Liang Y  Hong M  Tatsumi K  Shi Q 《Inorganic chemistry》2002,41(8):2087-2094
The hydrothermal reaction of YbCl(3) small middle dot6H(2)O with 1,2,4,5-benzenetetracarboxylic dianhydride resulted in [[Yb((b)btec)(1/4)((d)btec)(3/6)(H(2)O)(2)](4).6H(2)O](n)() (1) (H(4)btec = 1,2,4,5-benzenetetracarboxylic acid), and the solvothermal reaction of Er(NO(3))(3) small middle dot6H(2)O or TbCl(3).6H(2)O with 1,2,4,5-benzenetetracarboxylic dianhydride in H(2)O/acetic acid gave rise to [[Er(2)((c)btec)(2/4)((e)btec)(2/4)((f)btec)(2/4)(H(2)O)(4)].4H(2)O](n)() (2) and [[Tb(H(2)btec)(2/4)((f)btec)(3/6)(H(2)O)].2H(2)O](n)() (3), respectively. Complex 1 crystallizes in monoclinic space group C2/m with a = 20.8119(5) A, b = 17.6174(1) A, c = 5.7252(2) A, beta = 92.324(1) degrees, and Z = 1. 1 possesses a three-dimensional framework consisting of eight-coordinate ytterbium centers and two kinds of channels along the c axis. Complex 2 crystallizes in triclinic space group P with a = 9.6739(5) A, b = 11.0039(5) A, c = 11.5523 A, alpha = 104.8330(10) degrees, beta = 91.0000(10) degrees, gamma = 114.2570(10) degrees, and Z = 2. 2 has a three-dimensional framework comprising both eight- and nine-coordinate erbium centers and channels along the a axis. Complex 3 crystallizes in monoclinic space group P2(1)/n with a = 10.7246(12) A, b = 7.1693(9) A, c = 17.158(2) A, beta = 97.109(2) degrees, and Z = 4. 3 shows a three-dimensional framework containing nine-coordinate terbium centers and channels along the b axis. Uncoordinated water molecules occupy the channels in the three complexes. TGA and XRPD were determined for the three complexes, and the results illustrate that the framework of 1 is retained upon removal of uncoordinated and coordinated water molecules.  相似文献   

15.
Analogous to the formation of CH(2)[(t-Bu)(2)C(6)H(2)O](2)P(Ph)(O(2)C(6)Cl(4)) (1), the new bicyclic tetraoxyphosphoranes CH(2)[(t-Bu)(2)C(6)H(2)O](2)P(Et)(O(2)C(6)Cl(4)) (3) and CH(2)[ClC(6)H(3)O](2)P(Ph)(O(2)C(6)Cl(4)) (4) were synthesized by the oxidative addition of the appropriate cyclic phosphines with o-tetrachlorobenzoquinone. For the formation of CH(2)[(t-Bu)(2)C(6)H(2)O](2)P(Ph)(O(2)C(2)Ph(2)) (2), a similar reaction was followed with the use of benzil (PhCOCOPh) in place of o-tetrachlorobenzoquinone. X-ray analysis of 1-3 revealed trigonal bipyramidal geometries and provided evidence for the first series of complexes in the absence of ring strain in which the least electronegative group, ethyl or phenyl, is located in an axial position, in violation of the electronegativity rule. Thus, the two oxygen-containing ring systems occupied two different sets of positions in the trigonal bipyramid (TBP) with the eight-membered rings at diequatorial sites. X-ray analysis of 4 revealed a trigonal bipyramidal geometry with electron-withdrawing chlorine substituents on each ring assumed the more conventional geometry with the rings occupying axial-equatorial positions and the phenyl group located in the remaining equatorial site. The fact that molecular mechanics calculations favorably reproduced the observed geometries suggests that a steric contribution associated with the ring tert-butyl groups for 1-3 is partly responsible in favoring diequatorial ring occupancy for the eight-membered ring. NMR data supported rigid pentacoordinated structures in solution at 23 degrees C. Phosphorane 1 crystallizes in the orthorhombic space group Fdd2 with a = 44.787(5) ?, b = 34.648(8) ?, c = 10.3709(9) ?, and Z = 16. Phosphorane 2 crystallizes in the orthorhombic space group Pna2(1) with a = 20.658(8) ?, b = 10.342(2) ?, c = 19.879(6) ?, and Z = 4. Phosphorane 3 crystallizes in the orthorhombic space group Pcmn with a = 9.807(2) ?, b = 16.632(4) ?, c = 23.355(3) ?, and Z = 4. Phosphorane 4 crystallizes in the monoclinic space group C2/c with a = 35.699(5) ?, b = 12.187(2) ?, c = 14.284(3) ?, beta = 107.08(1) degrees, and Z = 8. The final conventional unweighted residuals are 0.0395 (1), 0.0518 (2), 0.0540 (3), and 0.0868 (4).  相似文献   

16.
Treatment of the metallo ligands [ML(pz)(2)(Hpz)] (pz = pyrazolate; L = C(5)Me(5), M = Ir (1); L = mesitylene, M = Ru (3)) with [M'Cl{HB(3-i-Pr-4-Br-pz)(3)}] (M' = Co (4), Ni (5)) yields heterodinuclear complexes of formula [LM(&mgr;-pz)(2)(&mgr;-Cl)M'{HB(3-i-Pr-4-Br-pz)(3)}] (L = C(5)Me(5); M = Ir; M' = Co (6), Ni (7). L = mesitylene; M = Ru; M' = Co (8)). The related complex [Ru(eta(6)-p-cymene)(pz)(2)(Hpz)] (2) reacts with equimolar amounts of 4 or 5 to give mixtures of the corresponding bis(&mgr;-pyrazolato) &mgr;-chloro complexes [(eta(6)-p-cymene)Ru(&mgr;-pz)(2)(&mgr;-Cl)M'{HB(3-i-Pr-4-Br-pz)(3)}] (M' = Co (9), Ni (10)) and the triply pyrazolato-bridged complexes [(eta(6)-p-cymene)Ru(&mgr;-pz)(3)M'{HB(3-i-Pr-4-Br-pz)(3)}] (M' = Co (11), Ni (12)). Complex 1 reacts with 5 in the presence of KOH to give the IrNi complex [(eta(5)-C(5)Me(5))Ir(&mgr;-pz)(3)Ni{HB(3-i-Pr-4-Br-pz)(3)}] (13) whereas its reaction with 4 and KOH rendered the bis(&mgr;-pyrazolato) &mgr;-hydroxo complex [(eta(5)-C(5)Me(5))Ir(&mgr;-pz)(2)(&mgr;-OH)Co{HB(3-i-Pr-4-Br-pz)(3)}] (14). The molecular structure of the heterobridged IrCo complex (6) and those of the homobridged RuNi (12) and IrNi (13) complexes have been determined by X-ray analyses. Compound 6 crystallizes in the monoclinic space group P2(1)/n, with a = 10.146(5) ?, b = 18.435(4) ?, c = 22.187(13) ?, beta = 97.28(4) degrees, and Z = 4. Complex 12 is monoclinic, space group P2(1), with a = 10.1169(7) ?, b = 21.692(2) ?, c = 11.419(1) ?, beta = 112.179(7) degrees, and Z = 2. Compound 13 crystallizes in the monoclinic space group Cc, with a = 13.695(2) ?, b = 27.929(6) ?, c = 13.329(2) ?, beta = 94.11(4) degrees, and Z = 4. All the neutral complexes 6, 12, and 13 consist of linear M.M'.B backbones with two (6) or three (12, 13) pyrazolate ligands bridging the dimetallic M.M' units and three substituted 3-i-Pr-4-Br-pz groups joining M' to the boron atoms. The presence in the proximity of the first-row metal M' of the three space-demanding isopropyl substituents of the pyrazolate groups induces a significant trigonal distortion of the octahedral symmetry, yielding clearly different M'-N bond distances on both sides of the ideal octahedral coordination sphere of these metals.  相似文献   

17.
Yeh CY  Chiang YL  Lee GH  Peng SM 《Inorganic chemistry》2002,41(16):4096-4098
The one-electron oxidized linear pentanuclear nickel complexes [Ni(5)(tpda)(4)(H(2)O)(BF(4))](BF(4))(2) (1) and [Ni(5)(tpda)(4)(SO(3)CF(3))(2)](SO(3)CF(3)) (2) have been synthesized by reacting the neutral compound [Ni(5)(tpda)(4)Cl(2)] with the corresponding silver salts. These compounds have been characterized by various spectroscopic techniques. Compound 1 crystallizes in the monoclinic space group P2(1)/n with a = 15.3022(1) A, b = 31.0705(3) A, c = 15.8109(2) A, beta = 92.2425(4) degrees, V = 7511.49(13) A(3), Z = 4, and compound 2 crystallizes in the monoclinic space group C2/c with a = 42.1894(7) A, b = 17.0770(3) A, c = 21.2117(4) A, beta = 102.5688(8) degrees, V = 14916.1(5) A(3), Z = 8. X-ray structural studies reveal an unsymmetrical Ni(5) unit for both compounds 1 and 2. Compounds 1 and 2 show stronger Ni-Ni interactions as compared to those of the neutral compounds.  相似文献   

18.
Breeze SR  Wang S 《Inorganic chemistry》1996,35(11):3404-3408
A new mixed valence copper complex Cu(II)(Me(5)dien)Cl(2)(Cu(I)Cl) (2) was obtained from the reaction of CuCl with Cu(II)(Me(5)dien)Cl(2) (1) in acetonitrile. The structures of 1 and 2 have been determined by single-crystal X-ray diffraction analyses. Compound 1 crystallizes in the monoclinic space group P2(1)/n with a = 8.374(5) ?, b = 17.155(3) ?, c = 23.806(5) ?, beta = 94.40(4) degrees, Z = 8, and V = 3398(1) ?(3) while compound 2 crystallizes in orthorhombic space group Pbcn with a = 14.71(1) ?, b = 16.06(2) ?, c = 13.38(1) ?, Z = 8, and V = 3159(5) ?. The Cu(II)(Me(5)dien)Cl(2) unit in both compounds has a similar distorted square-pyramidal geometry. The Cu(I)Cl moiety in 2 is attached to the Cu(II) unit via two bridging chlorine atoms and has a distorted trigonal planar geometry. UV-vis and EPR spectroscopic studies and molecular orbital calculations established the presence of significant perturbation of the Cu(I)Cl unit to the electronic structure of the Cu(II) ion in compound 2.  相似文献   

19.
The synthesis, characterization, and reactivity of new polyether adducts of strontium and barium carboxylates of general composition M(O(2)CCF(3))(n)()(L) (M = Ba, L = 15-crown-5, (1); M = Ba (2), Sr (3), respectively, with L = tetraglyme are reported. The compounds were synthesized by reaction of BaCO(3) or MH(2) (M = Sr or Ba) with organic acids in the presence of the polyether ligands. These compounds have been characterized by IR and (13)C and (1)H NMR spectroscopies, elemental analyses, and thermogravimetric analysis. The species Ba(2)(O(2)CCF(3))(4)(15-crown-5)(2) (1) and [Ba(2)(O(2)CCF(3))(4)(tetraglyme)](infinity) (2), were also characterized by single-crystal X-ray diffraction. Ba(2)(O(2)CCF(3))(4)(15-crown-5)(2) (1) crystallizes in the orthorhombic space group Cccm with cell dimensions of a = 13.949(1) ?, b = 19.376(2) ?, c = 16.029(1) ?, and Z = 8. [Ba(2)(O(2)CCF(3))(4)(tetraglyme)](infinity) (2) crystallizes in the monoclinic space group C2/c with cell dimensions of a = 12.8673(12) ?, b = 16.6981(13) ?, c = 15.1191(12) ?, beta = 99.049(8) degrees, and Z = 4. Compounds 1-3 thermally decompose at high temperatures in the solid state to give MF(2). However, solutions of compounds 1-3 dissolved in ethanol with Ti(O-i-Pr)(4) give crystalline perovskite phase MTiO(3) films, or in the case of mixtures of 2 and 3, Ba(1)(-)(x)()Sr(x)()TiO(3) films below 600 degrees C when spin coated onto silicon substrates and thermally treated. The crystallinity, purity, and elemental composition of the films was determined by glancing angle X-ray diffraction and Auger electron spectroscopy.  相似文献   

20.
Four new organic/inorganic coordination polymers, [Cd(C(10)H(8)N(2))(2)(H(2)O)(2)(NO(3))(2)](n)(1), [Co(C(10)H(8)N(2))(H(2)O)NO(3)CH(3)OH](n)(2), [Cu(C(10)H(8)N(2))(CH(3)OH)(NO(3))(2)](n) (3), and [Cu(C(10)H(8)N(2))(hfac)(2)](n)(4), were synthesized by using the rigid ligand 1,2-bis(3-pyridyl)ethyne (3,3'-DPA). Complex 1 crystallizes in space group P2/n: a = 12.462(2) A, b = 9.485(1) A, c = 13.383(2) A, beta = 96.629(2) degrees, V = 1559.6(3) A(3), Z = 4. Complex 2 crystallizes in space group Fddd: a = 9.248(4) A, b = 19.982(7) A, c = 35.093(16) A, V = 6485.0(4) A(3), Z = 8. Complex 3 crystallizes in space group I2/a: a = 18.315(2) A, b = 8.517(1) A, c = 20.494(3) A, beta = 104.042(2) degrees, V = 3101.2(7) A(3), Z = 8. Complex 4 crystallizes in space group P21/c: a = 6.576(1) A, b = 16.189(1) A, c = 11.653(1) A, beta = 91.337(1) degrees, V = 1240.3(2) A(3), Z = 2. The coordination polymers display a variety of structural architectures, ranging from sinusoidal and zigzag chains (1, 3, 4) to two-dimensional channel-type architectures (2). The effects of the orientation of the nitrogen atom in the pyridine rings on the resultant structures are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号