首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 50 毫秒
1.
Polycrystalline samples of SrFe2/3W1/3O3 (SFWO) ceramic were obtained by solid-phase reactions with subsequent sintering using conventional ceramic technology. X-ray diffraction analysis showed that at room temperature, the SFWO ceramic is single-phase and has a perovskite-type structure with tetragonal symmetry and parameters a = 3.941(9) Å, c = 3.955(6) Å, and c/a = 1.0035. In studying the magnetic properties and the Mössbauer effect in SFWO ceramics, it is found that the material is a ferrimagnet, and the iron ions are only in the valence state of Fe3+. It is suggested that in the temperature range of T = 150–210°C, a smeared phase transition from a cubic (paraelectric) phase to a tetragonal (ferroelectric) phase takes place in SFWO with decreasing temperature.  相似文献   

2.
The time dependences of polarization of K0.88(NH4)0.12H2PO4 mixed crystal have been studied within the temperature range of 74–100 K. Two mechanisms of polarization relaxation were found. The first mechanism is caused by domain walls lateral motion and their interaction with point lattice defects. The second one supposedly is due to polar regions infiltration through the regions of frustrated paraelectric phase.  相似文献   

3.
The EPR spectra of Cu2+ ions (2 D 5/2) located at two structurally nonequivalent positions Cu1 and Cu2 in crystals of lithium heptagermanate Li2Ge7O15 are recorded. The angular dependences of the EPR spectrum are measured in the paraelectric phase of the Li2Ge7O15 compound (T = 300 K). The components of the g factor and the hyperfine interaction tensor A are determined, and the orientation of the magnetic axes with respect to the crystallographic basis is established. The EPR spectra are recorded in the temperature range in the vicinity of the temperature T C = 283 K of the transition from the paraelectric phase to the ferroelectric phase. The position symmetry of the Cu1 and Cu2 centers is determined at temperatures above and below the phase transition temperature T C . The localization of paramagnetic centers in the structure is discussed, An analysis of the results obtained demonstrates that the Cu1 and Cu2 centers in the Li2Ge7O15 crystal lattice replace lithium ions located at two structurally nonequivalent positions with the symmetries described at temperatures above T C by the triclinic C i and monoclinic C 2 point groups, respectively.  相似文献   

4.
The absorption spectrum of Cs2ZnI4 thin films in the energy range 3–6 eV at temperatures from 90 to 340 K has been investigated. It is established that this compound belongs to direct-gap insulators. Low-frequency exciton excitations are localized in ZnI4 structural elements of the lattice. Phase transitions at 280 K (paraelectric phase ? incommensurate phase), 135 K (incommensurate phase ? monoclinic ferroelastic phase), and 96 K (monoclinic phase ? triclinic ferroelastic phase) have been found from the temperature dependences of the spectral position and halfwidth of the low-frequency exciton band. Additional broadening of the exciton band is observed for ferroelastic phases; it is likely to be due to exciton scattering from strain fluctuations near domain walls.  相似文献   

5.
Solid solution Sr0.5Ba0.5Nb2O6 films have been synthesized on a (111)Pt/(001)Si substrate by rf deposition in an oxygen atmosphere. The depolarized Raman spectra, the structure, and the dielectric characteristics of the films have been studied over a wide temperature range. It is found that the films were singlephase, had the tetragonal tungsten bronze structure, and had a pronounced axial texture with axis 001 directed perpendicular to the substrate surface. It is shown that the film material undergoes a diffuse phase transition to the state of a relaxor ferroelectric in the temperature range 300–425 K. Possible reasons of the regularities observed are discussed.  相似文献   

6.
Dielectric and Raman scattering experiments were performed on polycrystalline Pb1-xCaxTiO3 thin films (x=0.10, 0.20, 0.30, and 0.40) as a function of temperature. The results showed no shift in the dielectric constant (K) maxima, a broadening with frequency, and a linear dependence of the transition temperature on increasing Ca2+ content. On the other hand, a diffuse-type phase transition was observed upon transforming from the cubic paraelectric to the tetragonal ferroelectric phase in all thin films. The temperature dependence of Raman scattering spectra was investigated through the ferroelectric phase transition. The temperature dependence of the phonon frequencies was used to characterize the phase transitions. Raman modes persisted above the tetragonal to cubic phase transition temperature, although all optical modes should be Raman inactive. The origin of these modes was interpreted in terms of a breakdown of the local cubic symmetry due to chemical disorder. The lack of a well-defined transition temperature and the presence of broad bands in some temperature interval above the FE–PE phase transition temperature suggested a diffuse-type phase transition. This result corroborates the dielectric constant versus temperature data, which showed a broad ferroelectric phase transition in these thin films. PACS 77.80.Bh; 77.55.+f; 78.30.-j; 77.80.-e; 68.55.-a  相似文献   

7.
A structural model of the cubic paraelectric phase of a Fe3B7O13Br crystal belonging to the boracite family has been developed using the data obtained by single-crystal X-ray diffraction with due regard for the results of extended X-ray absorption fine structure (EXAFS) spectroscopy. It has been shown that the best agreement between the data obtained by these two methods is achieved within a model assuming a disorder in the arrangement of both the Fe and Br atoms and a high degree of correlation of their displacements. It has been found that, during the phase transition from the rhombohedral ferroelectric phase to the cubic paraelectric phase, no significant transformation of the structure is observed on a local level. In this case, a change in the macroscopic symmetry occurs predominantly as a result of the variation in the set of possible spatial orientations of stable structural fragments, which is characteristic of order-disorder phase transitions.  相似文献   

8.
The crystal structure of iron-doped barium titanate BaTi1–x Fe x O3 is studied by neutron diffraction in the range of 0 ≤ x ≤ 0.12. At low concentrations of iron, x < 0.01, and at room temperature, these compounds have a polar structure with tetragonal symmetry with space group P4mm. The temperature of the transition of the tetragonal ferroelectric phase into the cubic paraelectric phase with space group Pm \(\bar 3\) m for an iron concentration of x = 0.01 is 390 K (for pure BaTiO3, it is 410 K). At an iron concentration of x = 0.07, the crystal structure of the studied compounds varies, and it is described by the centrosymmetric hexagonal space group P63/mmc. The structural parameters of various phases of compound BaTi1–x Fe x O3 are determined from the experimental data.  相似文献   

9.
(NH4)3NbOF6 single crystals were grown, polarization-optical studies were performed, and birefringence was measured over the temperature range 90–500 K. A sequence of first-order structural phase transitions was found at temperatures T 1↓ = 259.7 K and T 2↓ = 257.7 K with temperature hysteresis δT 1 = 0.9 K and δT 2 = 1.9 K. The transitions are accompanied by twinning and the following change in the crystal symmetry: cubic ? tetragonal ? monoclinic. Optical second harmonic generation is found to occur at room temperature, which indicates that the cubic phase is not centrosymmetric. It is assumed that the phase transitions are ferroelastic and ferroelectric in nature.  相似文献   

10.
11.
The polycrystalline samples of Ba-modified Pb(Fe1/2Nb1/2)O3 (i.e., (Pb1-xBax)(Fe1/2Nb1/2)O3 PBFN, with x=0,0.05,0.07) were synthesized by a mechanosynthesis (i.e., high-energy ball milling) route followed by a mixed oxide method. Structural analysis provides the information on formation of single-phase orthorhombic structure on substitution of a small amount (x=0.07) of Ba at the Pb-site of Pb(Fe0.50Nb0.50)O3 (PFN). The ferroelectric–paraelectric phase transition in PFN was observed at 383 K, which decreases on increasing Ba-concentration in PBFN. Detailed studies of dielectric properties of PBFW show the following: (i) diffuse phase transition, (ii) low loss tangent, (iii) low activation energy, and (iv) low frequency dielectric dispersion. An anomaly in the ac conductivity was found very close to phase transition temperature. The activation energy is found to decrease from 0.19 to 0.01 eV on increasing Ba-concentration to 7% (x=0.07). Temperature field-dependent magnetization measurements of all the samples showed antiferromagnetic transition at ∼15 K (for x=0.07). PBFN sample showed a slight increase in the coercivity (i.e., from 400 Oe (PFN) to 500 Oe (PBFN, for x=0.07) at 2 K. PACS 61.10.Nz; 68.37.Hk; 75.50.Ss; 75.60.Ej; 77.22.Ch; 77.22.Gm  相似文献   

12.
The crystal structure of lead titanate PbTiO3 was investigated by energy dispersive X-ray diffraction at high pressures up to 4 GPa in a temperature range of 300–950 K. At the ambient conditions, the PbTiO3 structure is tetragonal with the space group P4mm (ferroelectric phase). A structural phase transition into the cubic phase with a space group Pm[`3]mPm\bar 3m is observed at T = 747 K. It was found that the phase transition temperature decreases upon applying the high pressure with the coefficient dT C /dP = -65 K/GPa. Dependences of parameters and volume of the unit cell on the pressure and temperature was found, and the bulk modulus and thermal expansion coefficients for the tetragonal and cubic phases of lead titanate have been calculated.  相似文献   

13.
The static and resonance properties of copper metaborate CuB2O4 were experimentally studied in a magnetic field applied in the crystal tetragonal plane. The field-induced second-order phase transition to a weakly ferromagnetic state was observed in the temperature range 10–20 K. The low-field state is characterized by the absence of spontaneous moment, and it represents, presumably, a long-period helicoid. At temperatures below 2 K, two sequential first-order phase transitions were observed. They were accompanied by jumps in resonance absorption with a hysteresis upon changing field-scan direction. These transitions can be caused by the transformation of the incommensurate spin structure into the helicoidal states with periods commensurate with the lattice translation period.  相似文献   

14.
N. Nouiri  K. Jaouadi  T. Mhiri  N. Zouari 《Ionics》2016,22(9):1611-1623
Synthesis and structural characterization by single-crystal X-ray diffraction method, thermal behavior, and electrical proprieties are given for a new compound with a superprotonic phase transition Cs2(HSO4)(H2AsO4). The title compound crystallizes in the monoclinic system with the P21/n space group. The structure contains zigzag chains of hydrogen-bonded anion tetrahedra that extend in the [010] direction. Each tetrahedron is additionally linked to a tetrahedron neighboring chain to give a planar structure with hydrogen-bonded sheets lying parallel to (10ī). The existence of O–H and (S/As)–O bonds in the structure at room temperature has been confirmed by IR and Raman spectroscopy in the frequency ranges 4000–400 cm?1and 1200–50 cm?1, respectively. Differential scanning calorimetry analysis of the superprotonic transition in Cs2(HSO4)(H2AsO4) showed that the transformation to high temperature phase occurs at 417 K by one-step process. Thermal decomposition of the product takes place at much higher temperatures, with an onset of approximately 534 K. The superprotonic transition was also studied by impedance and modulus spectroscopy techniques. The conductivity in the high temperature phase at 423 K is 1.58 × 10?4 Ω?1 cm?1, and the activation energy for the proton transport is 0.28 eV. The conductivity relaxation parameters associated with the high disorder protonic conduction have been examined from analysis of the M”/M”max spectrum measured in a wide temperature range. Transport properties of this material appear to be due to the proton hopping mechanism.  相似文献   

15.
Ferroelectric ceramics with formula Pb0.8Ba0.2[(In1/2Nb1/2)1-xTix]O3 (PBINT) (x=0.0,0.1,0.2,0.3,0.4 and 0.5) were prepared via a two-step solid state reaction method. It was found that ceramics with compositions in the range of x=0.0∼0.3 showed a pseudo-cubic structure, whereas the ceramic with x=0.5 displayed a tetragonal structure. All compositions showed significant frequency dispersion in their dielectric properties. The remanent polarization Pr as well as the coercive field Ec, measured at room temperature, increases with the Ti content. The experimental results obtained in this system are summarized into a phase diagram, with the morphotropic phase boundary (MPB) located at x=0.4. Compared with the Pb[(In1/2Nb1/2)1-xTix]O3 solid solution system, incorporating Ba in the A-site leads to a significant decrease in the dielectric maximum temperature Tmax, a suppression of the dielectric relaxation parameter γ, and a shift of the MPB composition to a higher Ti content. PACS 77.84.Dy; 77.80.Bh; 77.22.Ch  相似文献   

16.
The Cr3+ EPR spectra of Li2Ge7O15 (LGO) crystals are analyzed in the temperature range of the ferroelectric phase transition. The temperature dependence of the local order parameter is determined from the measured splittings of the EPR lines in the polar phase. The experimental critical exponent of the order parameter β=0.31 in the range from the phase transition temperature T C to (T C -T) ~ 40 K corresponds to the critical exponent of the three-dimensional Ising model. Analysis of the available data demonstrates that, away from the phase transition temperature T C , the macroscopic and local properties of LGO crystals are characterized by a crossover from the fluctuation behavior to the classical behavior described in terms of the mean-field theory. The temperature dependence of the local order parameter for LGO: Cr crystals does not exhibit a crossover from the Ising behavior (β=0.31) to the classical behavior (β=0.5). This is explained by the defect nature of Cr3+ impurity centers, which weaken the spatial correlations in the LGO host crystal. The specific features of the critical properties of LGO: Cr3+ crystals are discussed within a microscopic model of structural phase transitions.  相似文献   

17.
Electrical transport and structural characterizations of isoelectronically substituted Ba(Fe0.9Ru0.1)2As2 have been performed as a function of pressure up to ~ 30 GPa and temperature down to ~ 10 K using designer diamond anvil cell. Similar to undoped members of the AFe2As2 (A = Ca, Sr, Ba) family, Ba(Fe0.9Ru0.1)2As2 shows anomalous a-lattice parameter expansion with increasing pressure and a concurrent ThCr2Si2 type isostructural (I4/mmm) phase transition from tetragonal (T) phase to a collapsed tetragonal (cT) phase occurring between 12 and 17 GPa where the a is maximum. Above 17 GPa, the material remains in the cT phase up to 30 GPa at 200 K. The resistance measurements show evidence of pressure-induced zero resistance that may be indicative of high-temperature superconductivity for pressures above 3.9 GPa. The onset of the resistive transition temperature decreases gradually with increasing pressure before completely disappearing for pressures above ~ 10.6 GPa near the T-cT transition. We have determined the crystal structure of the high-T c phase of Ru-doped BaFe2As2 to remain as tetragonal (I4/mmm) by analyzing the X-ray diffraction pattern obtained at 10 K and 9.7 ± 0.7 GPa, as opposed to inferring the structural transition from electrical resistance measurement, as in a previous report [S.K. Kim, M.S. Torikachvili, E. Colombier, A. Thaler, S.L. Bud’ko, P.C. Canfield, Phys. Rev. B 84, 134525 (2011)].  相似文献   

18.
First-principles density functional theory is used to calculate the phonon spectrum in the paraelectric phase, the ground-state structure and polarization distribution in the polar phase, and energies of ferro- and antiferroelectrically ordered phases of free-standing (KNbO3)1(KTaO3) n ferroelectric superlattices with n = 1–7. It is established that quasi-two-dimensional ferroelectricity with polarization oriented in the layer plane, which weakly interacts with polarization in neighboring layers, appears in potassium niobate layers with a thickness of one unit cell in the superlattices. The possibility of using of such ferroelectric superlattices as a medium for three-dimensional information recording is shown.  相似文献   

19.
Guoqiang Liu  Lei Wen  Yue Li  Yulong Kou 《Ionics》2015,21(4):1011-1016
The pure phase P2-Na2/3Ni1/3Mn2/3O2 was synthesized by a solid reaction process. The optimum calcination temperature was 850 °C. The as-prepared product delivered a capacity of 158 mAh g?1 in the voltage range of 2–4.5 V, and there was a phase transition from P2 to O2 at about 4.2 V in the charge process. The P2 phase exhibited excellent intercalation behavior of Na ions. The reversible capacity is about 88.5 mAh g?1 at 0.1 C in the voltage range of 2–4 V at room temperature. At an elevated temperature of 55 °C, it could remain as an excellent capacity retention at low current rates. The P2-Na2/3Ni1/3Mn2/3O2 is a potential cathode material for sodium-ion batteries.  相似文献   

20.
This paper reports on the results of measurements of the internal friction Q?1 and the shear modulus G of Li2B4O7 single crystals along the crystallographic directions [100] and [001] in the temperature range 300–550 K for strain amplitudes of (2–10)×10?5 at infralow frequencies. The anomalies observed in Q?1 and G in the temperature range 390–410 K are due to thermal activation of the mobility of lithium cations and their migration from one energetically equivalent position to another. A jump in the internal friction background is revealed in the vicinity of the Q?1 and G anomalies for the Li2B4O7 crystal. The magnitude of this jump depends on the crystallographic direction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号