首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The annealing behaviors of photoluminescence of SiOx and Er-doped SiOx grown by molecular beam epitaxy in the wavelength range of visible and infrared light are studied. For SiOx, four PL bands located at 510, 600, 716 and 810 nm, respectively, are observed. For Er-doped SiOx, the 716 nm band, which is believed to be originated from the electron–hole recombination at the interface between crystalline Si and amorphous SiO2, disappears in the annealing temperature range of 500–900°C. It is suggested the enhancement of Er luminescence is partially due to the energy transfer from the recombination at the interface between crystalline Si and SiO2 to Er ions.  相似文献   

2.
Metal–organic chemical vapour deposition growth of titanium oxide on moderately pre-oxidised Si(1 1 1) using the titanium(IV) isopropoxide precursor has been studied for two different growth modes, reaction-limited growth at 300 °C and flux-limited growth at 500 °C. The interfacial properties have been characterized by monitoring synchrotron radiation excited Si 2p photoemission spectra. The cross-linking from oxidised Si to bulk Si after TTIP exposure has been found to be very similar to that of SiOx/Si(1 1 1). However, the results show that the additional oxidation of Si most probably causes a corrugation of the SiOx/Si interface. Those conclusions are valid for both growth modes. A model is introduced in which the amorphous interface region is described as (TiO2)x(SiO2)y where x and y changes linearly and continuously over the interface. The model quantifies how (TiO2)x(SiO2)y mixing changes the relative intensities of the signals from silicon oxide and silicon. The method can be generalised and used for the analyses of other metal-oxides on silicon.  相似文献   

3.
Si particles embedded in an SiO2 matrix were obtained by co-sputtering of Si and SiO2 at various deposition temperatures Td (200–700°C) and annealing at different temperatures Ta (900–1100°C). The systems were characterized by X-ray photoelectron, Raman scattering, infrared absorption and photoluminescence spectroscopy techniques. The results show that the photoluminescence efficiency is strongly dependent on the degree of phase separation between the Si nanocrystals and the SiO2 matrix. This is likely connected with the Si/SiO2 interface characteristics, together with the features indicating the involvement of quantum confinement.  相似文献   

4.
a-Si/insulator multilayers have been deposited on (0 0 1) Si by electron gun Si evaporation and periodic electron cyclotron resonance plasma oxidation or nitridation. Exposure to an O or N plasma resulted in the formation of a thin SiO2 and SiNx layer whose thickness was self-limited and controlled by process parameters. For thin-layer (2 nm) Si/SiO2 and Si/SiNx multilayers no visible photoluminescence (PL) was observed in most samples, although all exhibited weak “blue” PL. For the nitride multilayers, annealing at 750°C or 850°C induced visible PL that varied in peak energy with Si layer thickness. Depth profiling of a-Si caps on thin insulating layers revealed no detectable contamination for the SiNx layers, but substantial O contamination for the SiO2 films.  相似文献   

5.
K-band electron spin resonance (ESR) at 4.3 K has revealed the dipole-dipole (DD) interaction effects between [1 1 1]Pb centers (*Si ≡ Si3 defects with unpaired sp3 hybrid [1 1 1]) at the 2 dimensional (1 1 1)Si/SiO2 interface. This has been enabled by the perfectly reversible H2 passivation of Pb, which affects the defect's spin state. Sequential hydrogenation at 253–353°C and degassing treatments in high vacuum at 743–835°C allowed to vary the Pb density in the range 5 × 1010 < [Pb] (1.14 ± 0.06) × 1013 cm-2. With increasing [Pb] fine structure doublets are clearly resolved. It is found that (1 1 1)Si/SiO2 interfaces, dry thermally grown at ≈920°C, naturally comprise a *Si ≡ Si3 defect density — passivated or not — of 1.14 × 1013 cm-2.  相似文献   

6.
Silicon nanocrystals have been synthesized in SiO2 matrix using Si ion implantation. Si ions were implanted into 300-nm-thick SiO2 films grown on crystalline Si at energies of 30–55 keV, and with doses of 5×1015, 3×1016, and 1×1017 cm−2. Implanted samples were subsequently annealed in an N2 ambient at 500–1100°C during various periods. Photoluminescence spectra for the sample implanted with 1×1017 cm−2 at 55 keV show that red luminescence (750 nm) related to Si-nanocrystals clearly increases with annealing temperature and time in intensity, and that weak orange luminescence (600 nm) is observed after annealing at low temperatures of 500°C and 800°C. The luminescence around 600 nm becomes very intense when a thin SiO2 sample is implanted at a substrate temperature of 400°C with an energy of 30 keV and a low dose of 5×1015 cm−2. It vanishes after annealing at 800°C for 30 min. We conclude that this luminescence observed around 600 nm is caused by some radiative defects formed in Si-implanted SiO2.  相似文献   

7.
A method for the fabrication of luminescent Si nanoclusters in an amorphous SiO2 matrix by ion implantation and annealing, and the detailed mechanisms for the photoluminescence are reported. We have measured the implanted ion dose, annealing time and excitation energy dependence of the photoluminescence from implanted layers. The samples were fabricated by Si ion implantation into SiO2 and subsequent high-temperature annealing. After annealing, a photoluminescence band below 1.7 eV has been observed. The peak energy of the photoluminescence is found to be independent of annealing time and excitation energy, while the intensity of the luminescence increases as the annealing time and excitation energy increase. Moreover, we found that the peak energy of the luminescence is strongly affected by the dose of implanted Si ions especially in the high dose range. These results indicate that the photons are absorbed by Si nanoclusters, for which the band-gap energy is modified by the quantum confinement effects, and the emission is not simply due to direct electron–hole recombination inside Si nanoclusters, but is related to defects probably at the interface between Si nanoclusters and SiO2, for which the energy state is affected by Si cluster–cluster interactions. It seems that Si nanoclusters react via a thin oxide interface and the local concentrations of Si nanoclusters play an important role in the peak energy of the photoluminescence.  相似文献   

8.
We have shown that, for thermally evaporated Ta2O5 or ZrO2 thin films on Si(1 0 0), O2 annealing at 300–500 °C causes the formation of an interfacial silicon oxide layer as thin as 1–2 nm which can be interpreted in terms of their high permeability to oxygen. And we have demonstrated how useful the energy loss spectra of photoexcited electrons from core levels such as O 1s are to measure the energy bandgaps of very thin insulators. With the combination of measured bandgaps and valence band lineups determined for X-ray photoelectron spectroscopy valence band spectra, we have determined the energy band alignments of Ta2O5 and ZrO2 with Si(1 0 0) before and after the O2 annealing at 500 °C. In addition, we have demonstrated that total photoelectron yield spectroscopy provides us direct information to quantify the energy distributions of both the defect states in the high-k dielectrics and the dielectric/Si(1 0 0) interface states over nearly entire Si bandgap.  相似文献   

9.
Thermally grown SiO2 layers on Si substrates implanted with Si+ ions with a dose of 6×1016 cm−2 were studied by the techniques of photoluminescence, electron paramagnetic resonance (EPR), and low-frequency Raman scattering. Distinct oxygen-vacancy associated defects in SiO2 and non-bridging oxygen hole centers were identified by EPR. The luminescence intensity in the 620 nm range was found to correlate with the number of these defects. The low-frequency Raman scattering technique was used to estimate the average size of the Si nanocrystallites formed after the implantation and thermal annealing at T>1100°C, which are responsible for the photoluminescence band with a maximum at 740 nm. The intensity of this band can be significantly enhanced by an additional treatment of the samples in a low-temperature RF plasma.  相似文献   

10.
The depth profiling of O 1s energy loss in silicon oxide near the SiO2/Si interface was performed using extremely small probing depth. As a result, the energy loss of O 1s photoelectrons with threshold energy of 3.5 eV was found. This value of 3.5 eV is much smaller than the SiO2 bandgap of 9.0 eV, but quite close to direct interband transition at Γ point in energy band structure of silicon. This can be explained by considering the penetration of electronic states from silicon substrate into silicon oxide up to 0.6 nm from the interface. In addition, the penetrating depth is larger than the thickness of the compositional transition layer.  相似文献   

11.
We have studied the influence of the hydrostatic pressure during annealing on the intensity of the visible photoluminescence (PL) from thermally grown SiO2 films irradiated with Si+ ions. Post-implantation anneals have been carried out in an Ar ambient at temperatures Ta of 400°C and 450°C for 10 h and 1130°C for 5 h at hydrostatic pressures of 1 bar–15 kbar. It has been found that the intensity of the 360, 460 and 600 nm PL peaks increases with rising hydrostatic pressure during low-temperature annealing. The intensity of the short-wavelength PL under conditions of hydrostatic pressure continues to rise even at Ta=1130°C. Increasing Ta leads to a shift in the PL spectra towards the ultraviolet range. The results obtained have been interpreted in terms of enhanced, pressure-mediated formation of ≡Si–Si≡ centres and small Si clusters within metastable regions of the ion-implanted SiO2.  相似文献   

12.
Polycrystalline (1−x)Ta2O5xTiO2 thin films were formed on Si by metalorganic decomposition (MOD) and annealed at various temperatures. As-deposited films were in the amorphous state and were completely transformed to crystalline after annealing above 600 °C. During crystallization, a thin interfacial SiO2 layer was formed at the (1−x)Ta2O5xTiO2/Si interface. Thin films with 0.92Ta2O5–0.08TiO2 composition exhibited superior insulating properties. The measured dielectric constant and dissipation factor at 1 MHz were 9 and 0.015, respectively, for films annealed at 900 °C. The interface trap density was 2.5×1011 cm−2 eV−1, and flatband voltage was −0.38 V. A charge storage density of 22.8 fC/μm2 was obtained at an applied electric field of 3 MV/cm. The leakage current density was lower than 4×10−9 A/cm2 up to an applied electric field of 6 MV/cm.  相似文献   

13.
The water adsorption on the bare and H-terminated Si(1 0 0) surfaces has been studied by the BML-IRRAS technique. It is found that H-terminated surfaces are much less reactive compared to the bare silicon surfaces. The (1 × 1)-H and (3 × 1)-H surfaces show similar and less reactivity pattern compared to the (2 × 1)-H surface. At higher exposures, the water reaction with coupled monohydride species provides an effective channel for oxygen insertion into the back bonds of dihydride species. It is not attributed to the H–Si–Si–H + H2O → H–S–Si–OH + H2, which could give rise to the characteristic Si–H and Si–OH modes, respectively at 2081 and 921 cm−1. A more suitable reaction mechanism involving a metastable species, H–Si–Si–H + H2O → H2Si  HO–Si–H (metastable) explains well the bending modes of oxygen inserted silicon dihydride species which are observed relatively strongly in the reaction of water with H-terminated Si(1 0 0) surfaces.  相似文献   

14.
NiO/Co and NiO/Ni80Fe20 bilayers were prepared at 293 onto SiO2(1 0 1)/Si(1 1 1) and glass substrates using UHV (5×10−10 mbar) RF/DC magnetron sputtering. Results on magnetic measurements showed that the exchange biasing and coercive fields are inversely proportional to the Co and Ni80Fe20 (Py) layer thickness down to 2 nm. A maximal RT coupling energy for the NiO–Co and NiO–Py interface was estimated as 0.04 and 0.03 mJ/m2 for the samples prepared onto SiO2(1 0 1)/Si(1 1 1) substrates.  相似文献   

15.
A transitory etching regime after SiO2 dissolution and before bulk Si(1 1 1) etching in neutral NH4F solutions was monitored by in situ Brewster-angle reflectometry (BAR). An observed intermediate increase of the BAR reflectance signal is attributed to a fast dissolution of a stressed/strained interlayer beneath the SiO2/Si(1 1 1) interface. Similar effects were observed on thin thermal oxides (18.2 nm), grown on float zone silicon, as well as on ultra-thin native oxides (1.2 nm) on Czochralsky silicon. Native oxide covered samples showed an increased surface roughness in the course of interlayer dissolution while the surface is progressively covered with compounds of fluorinated silicon. The etch rate, determined by atomic force microscopy (AFM) and compared to the etch rate of bulk silicon, is increased by a factor of four. In the limit of extended etching, the known low etch rates for silicon in 40% NH4F are observed. Structural and chemical properties of the interfacial layer were analyzed by synchrotron radiation photoelectron spectroscopy (SRPES) which confirmed the presence of Si3+/4+ valence states throughout the interlayer and by near open-circuit potential (N-OCP) dark current measurements. As a result, oxide etch rates in NH4F in the pH-range 7–8 as well as the silicon interlayer depth can be assessed by in situ BAR.  相似文献   

16.
Cathodoluminescence (CL) spectra for the Si nanocrystallites embedded in a matrix of silicon oxide films are measured at room temperature. The CL spectra consist of two principal bands whose peak energies are in a near-infrared (NIR) region (<1.6 eV) and in a blue region (2.6 eV), respectively. The spectral feature of the NIR CL band is similar to the corresponding PL spectra. The strong correlation between the presence of Si nanocrystallites and the formation of the NIR CL band are found as well as the PL spectrum. The peak energy of the blue CL band is slightly lower than that of the luminescence band originating from oxygen vacancies (≡Si–Si≡) in SiO2. Therefore, the blue CL band is considered to come from Sin clusters with n3 in the oxide matrix. Under irradiation of electron beams, degradation of the intensity is observed for both the CL bands but the decay characteristics are different.  相似文献   

17.
We report on the formation technique of single-crystalline β-FeSi2 balls (<100 nm) embedded in a Si p–n junction region by Si molecular beam epitaxy (MBE). β-FeSi2 films grown on Si (0 0 1) by reactive deposition epitaxy (RDE) aggregated into islands after annealing at 850°C in ultrahigh vacuum. The islands of β-FeSi2 aggregated further into a ball shape by following the Si MBE overgrowth at 750°C. It was found from X-ray diffraction (XRD) patterns that the epitaxial relationship between the two materials, and single-crystalline nature were preserved even after the annealing and the Si overgrowth. Capacitance–voltage (CV) characteristics and transmission electron microscope (TEM) images revealed that a lot of defects were introduced around the embedded β-FeSi2 balls with an increase of embedded β-FeSi2 quantity.  相似文献   

18.
In this work, the investigation of the interface state density and series resistance from capacitance–voltage (CV) and conductance–voltage (G/ωV) characteristics in In/SiO2/p-Si metal–insulator–semiconductor (MIS) structures with thin interfacial insulator layer have been reported. The thickness of SiO2 film obtained from the measurement of the oxide capacitance corrected for series resistance in the strong accumulation region is 220 Å. The forward and reverse bias CV and G/ωV characteristics of MIS structures have been studied at the frequency range 30 kHz–1 MHz at room temperature. The frequency dispersion in capacitance and conductance can be interpreted in terms of the series resistance (Rs) and interface state density (Dit) values. Both the series resistance Rs and density of interface states Dit are strongly frequency-dependent and decrease with increasing frequency. The distribution profile of RsV gives a peak at low frequencies in the depletion region and disappears with increasing frequency. Experimental results show that the interfacial polarization contributes to the improvement of the dielectric properties of In/SiO2/p-Si MIS structures. The interface state density value of In/SiO2/p-Si MIS diode calculated at strong accumulation region is 1.11×1012 eV−1 cm−2 at 1 MHz. It is found that the calculated value of Dit (≈1012 eV−1 cm−2) is not high enough to pin the Fermi level of the Si substrate disrupting the device operation.  相似文献   

19.
Irradiation of SiO2 with soft X-ray photons (hν>100 eV) produces a variety of defects, of which E1′ centers and neutral Si–Si bonds are mainly responsible for the dielectric response change. The thermal processes that modify the structures around the defect sites have been investigated by in situ spectroscopic ellipsometry. Annealing the irradiated SiO2 film diminishes the number of defects which are assigned to E1′ centers by about half. The competing channels for annihilation of E1′ centers are the recovery of the Si–O–Si bonding configuration and, in the opposite direction, the decomposition of the material into volatile products until the network is completely restructured. The other half of the defects are converted to Si–Si bond units and precipitates as nanocrystalline particles of Si.  相似文献   

20.
The adsorption reactions and binding configurations of cyclohexene, 1,3-cyclohexadiene and 1,4-cyclohexadiene on Si(1 1 1)-7 × 7 were studied using high-resolution electron energy loss spectroscopy (HREELS), ultraviolet photoelectron spectroscopy (UPS), X-ray photoelectron spectroscopy (XPS) and DFT calculation. The covalent attachments of these unsaturated hydrocarbons to Si(1 1 1)-7 × 7 through the formation of Si–C linkages are clearly demonstrated by the observation of the Si–C stretching mode at 450–500 cm−1 in their HREELS spectra. For chemisorbed cyclohexene, the involvement of πC=C in binding is further supported by the absence of C=C stretching modes and the disappearance of the πC=C photoemission. The chemisorption of both 1,3-cyclohexadiene and 1,4-cyclohexadiene leads to the formation of cyclohexene-like intermediates through di-σ bonding. The existence of one πC=C bond in their chemisorbed states is confirmed by the observation of the C=C and (sp2)C---H stretching modes and the UPS and XPS results. DFT calculations show that [4 + 2]-like cycloaddition is thermodynamically preferred for 1,3-cyclohexadiene on Si(1 1 1)-7 × 7, but a [2 + 2]-like reaction mechanism is proposed for the covalent attachment of cyclohexene and 1,4-cyclohexadiene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号