首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
We introduce the Cauchy augmentation operator for basic hypergeometric series. Heine's transformation formula and Sears' transformation formula can be easily obtained by the symmetric property of some parameters in operator identities. The Cauchy operator involves two parameters, and it can be considered as a generalization of the operator T(bDq). Using this operator, we obtain extensions of the Askey–Wilson integral, the Askey–Roy integral, Sears' two-term summation formula, as well as the q-analogs of Barnes' lemmas. Finally, we find that the Cauchy operator is also suitable for the study of the bivariate Rogers–Szegö polynomials, or the continuous big q-Hermite polynomials.  相似文献   

2.
Dynamical quantum groups were recently introduced by Etingof and Varchenko as an algebraic framework for studying the dynamical Yang–Baxter equation, which is precisely the Yang–Baxter equation satisfied by 6j-symbols. We investigate one of the simplest examples, generalizing the standard SU(2) quantum group. The matrix elements for its corepresentations are identified with Askey–Wilson polynomials, and the Haar measure with the Askey–Wilson measure. The discrete orthogonality of the matrix elements yield the orthogonality of q-Racah polynomials (or quantum 6j-symbols). The Clebsch–Gordan coefficients for representations and corepresentations are also identified with q-Racah polynomials. This results in new algebraic proofs of the Biedenharn–Elliott identity satisfied by quantum 6j-symbols.  相似文献   

3.
We introduce a q-differential operator Dxy on functions in two variables which turns out to be suitable for dealing with the homogeneous form of the q-binomial theorem as studied by Andrews, Goldman, and Rota, Roman, Ihrig, and Ismail, et al. The homogeneous versions of the q-binomial theorem and the Cauchy identity are often useful for their specializations of the two parameters. Using this operator, we derive an equivalent form of the Goldman–Rota binomial identity and show that it is a homogeneous generalization of the q-Vandermonde identity. Moreover, the inverse identity of Goldman and Rota also follows from our unified identity. We also obtain the q-Leibniz formula for this operator. In the last section, we introduce the homogeneous Rogers–Szegö polynomials and derive their generating function by using the homogeneous q-shift operator.  相似文献   

4.
Let Bn( f,q;x), n=1,2,… be q-Bernstein polynomials of a function f : [0,1]→C. The polynomials Bn( f,1;x) are classical Bernstein polynomials. For q≠1 the properties of q-Bernstein polynomials differ essentially from those in the classical case. This paper deals with approximating properties of q-Bernstein polynomials in the case q>1 with respect to both n and q. Some estimates on the rate of convergence are given. In particular, it is proved that for a function f analytic in {z: |z|<q+} the rate of convergence of {Bn( f,q;x)} to f(x) in the norm of C[0,1] has the order qn (versus 1/n for the classical Bernstein polynomials). Also iterates of q-Bernstein polynomials {Bnjn( f,q;x)}, where both n→∞ and jn→∞, are studied. It is shown that for q(0,1) the asymptotic behavior of such iterates is quite different from the classical case. In particular, the limit does not depend on the rate of jn→∞.  相似文献   

5.
Let {pk(x; q)} be any system of the q-classical orthogonal polynomials, and let be the corresponding weight function, satisfying the q-difference equation Dq(σ)=τ, where σ and τ are polynomials of degree at most 2 and exactly 1, respectively. Further, let {pk(1)(x;q)} be associated polynomials of the polynomials {pk(x; q)}. Explicit forms of the coefficients bn,k and cn,k in the expansions
are given in terms of basic hypergeometric functions. Here k(x) equals xk if σ+(0)=0, or (x;q)k if σ+(1)=0, where σ+(x)σ(x)+(q−1)xτ(x). The most important representatives of those two classes are the families of little q-Jacobi and big q-Jacobi polynomials, respectively.Writing the second-order nonhomogeneous q-difference equation satisfied by pn−1(1)(x;q) in a special form, recurrence relations (in k) for bn,k and cn,k are obtained in terms of σ and τ.  相似文献   

6.
In this paper, we systematically recover the identities for the q-eta numbers ηk and the q-eta polynomials ηk(x), presented by Carlitz [L. Carlitz, q-Bernoulli numbers and polynomials, Duke Math. J. 15 (1948) 987–1000], which we define here via generating series rather than via the difference equations of Carlitz. Following a method developed by Kaneko et al. [M. Kaneko, N. Kurokawa, M. Wakayama, A variation of Euler’s approach to the Riemann zeta function, Kyushu J. Math. 57 (2003) 175–192] for a canonical q-extension of the Riemann zeta function, we investigate a similarly constructed q-extension of the Hurwitz zeta function. The details of this investigation disclose some interesting connections among q-eta polynomials, Carlitz’s q-Bernoulli polynomials -polynomials, and the q-Bernoulli polynomials that emerge from the q-extension of the Hurwitz zeta function discussed here.  相似文献   

7.
A classical result on the expansion of an analytic function in a series of Jacobi polynomials is extended to a class of q-orthogonal polynomials containing the fundamental Askey–Wilson polynomials and their special cases. The function to be expanded has to be analytic inside an ellipse in the complex plane with foci at ±1. Some examples of explicit expansions are discussed.   相似文献   

8.
The Askey–Wilson function transform is a q-analogue of the Jacobi function transform with kernel given by an explicit non-polynomial eigenfunction of the Askey–Wilson second order q-difference operator. The kernel is called the Askey–Wilson function. In this paper an explicit expansion formula for the Askey–Wilson function in terms of Askey–Wilson polynomials is proven. With this expansion formula at hand, the image under the Askey–Wilson function transform of an Askey–Wilson polynomial multiplied by an analogue of the Gaussian is computed explicitly. As a special case of these formulas a q-analogue (in one variable) of the Macdonald–Mehta integral is obtained, for which also two alternative, direct proofs are presented.  相似文献   

9.
In the paper, we discuss Voronovskaya-type theorem and saturation of convergence for q-Bernstein polynomials for arbitrary fixed q, 0<q<1. We give explicit formulas of Voronovskaya-type for the q-Bernstein polynomials for 0<q<1. If , we show that the rate of convergence for the q-Bernstein polynomials is o(qn) if and only ifWe also prove that if f is convex on [0,1] or analytic on (-ε,1+ε) for some ε>0, then the rate of convergence for the q-Bernstein polynomials is o(qn) if and only if f is linear.  相似文献   

10.
In a recent paper Ismail et al. (Algebraic Methods and q-Special Functions (J.F. van Diejen and L. Vinet, eds.) CRM Proceding and Lecture Notes, Vol. 22, American Mathematical Society, 1999, pp. 183–200) have established a continuous orthogonality relation and some other properties of a 21-Bessel function on a q-quadratic grid. Dick Askey (private communication) suggested that the Bessel-type orthogonality found in Ismail et al. (1999) at the 21-level has really a general character and can be extended up to the 87-level. Very-well-poised 87-functions are known as a nonterminating version of the classical Askey–Wilson polynomials (SIAM J. Math. Anal. 10 (1979), 1008–1016; Memoirs Amer. Math. Soc. Number 319 (1985)). Askey's conjecture has been proved by the author in J. Phys. A: Math. Gen. 30 (1997), 5877–5885. In the present paper which is an extended version of Suslov (1997) we discuss in detail properties of the orthogonal 87-functions. Another type of the orthogonality relation for a very-well-poised 87-function was recently found by Askey et al. J. Comp. Appl. Math. 68 (1996), 25–55.  相似文献   

11.
The convergence properties of q-Bernstein polynomials are investigated. When q1 is fixed the generalized Bernstein polynomials nf of f, a one parameter family of Bernstein polynomials, converge to f as n→∞ if f is a polynomial. It is proved that, if the parameter 0<q<1 is fixed, then nff if and only if f is linear. The iterates of nf are also considered. It is shown that nMf converges to the linear interpolating polynomial for f at the endpoints of [0,1], for any fixed q>0, as the number of iterates M→∞. Moreover, the iterates of the Boolean sum of nf converge to the interpolating polynomial for f at n+1 geometrically spaced nodes on [0,1].  相似文献   

12.
We introduce polynomials B n i (x;ω|q), depending on two parameters q and ω, which generalize classical Bernstein polynomials, discrete Bernstein polynomials defined by Sablonnière, as well as q-Bernstein polynomials introduced by Phillips. Basic properties of the new polynomials are given. Also, formulas relating B n i (x;ω|q), big q-Jacobi and q-Hahn (or dual q-Hahn) polynomials are presented. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

13.
The rate of convergence of q-Bernstein polynomials for   总被引:3,自引:0,他引:3  
In the note, we obtain the estimates for the rate of convergence for a sequence of q-Bernstein polynomials {Bn,q(f)} for 0<q<1 by the modulus of continuity of f, and the estimates are sharp with respect to the order for Lipschitz continuous functions. We also get the exact orders of convergence for a family of functions , and the orders do not depend on α, unlike the classical case.  相似文献   

14.
In this paper we show the equivalence between Goldman-Rota q-binomial identity and its inverse. We may specialize the value of the parameters in the generating functions of Rogers-Szegö polynomials to obtain some classical results such as Euler identities and the relation between classical and homogeneous Rogers-Szegö polynomials. We give a new formula for the homogeneous Rogers-Szegö polynomials hn(x,y|q). We introduce a q-difference operator θxy on functions in two variables which turn out to be suitable for dealing with the homogeneous form of the q-binomial identity. By using this operator, we got the identity obtained by Chen et al. [W.Y.C. Chen, A.M. Fu, B. Zhang, The homogeneous q-difference operator, Advances in Applied Mathematics 31 (2003) 659-668, Eq. (2.10)] which they used it to derive many important identities. We also obtain the q-Leibniz formula for this operator. Finally, we introduce a new polynomials sn(x,y;b|q) and derive their generating function by using the new homogeneous q-shift operator L(bθxy).  相似文献   

15.
We give equivalent forms of the Askey-Wilson polynomials expressing them with the help of the Al-Salam-Chihara polynomials. After restricting parameters of the Askey-Wilson polynomials to complex conjugate pairs we expand the Askey-Wilson weight function in the series similar to the Poisson-Mehler expansion formula and give its probabilistic interpretation. In particular this result can be used to calculate explicit forms of ‘q-Hermite’ moments of the Askey-Wilson density, hence enabling calculation of all moments of the Askey-Wilson density. On the way (by setting certain parameter q to 0) we get some formulae useful in the rapidly developing so-called ‘free probability’.  相似文献   

16.
In this paper, we discuss properties of the ω,q-Bernstein polynomials introduced by S. Lewanowicz and P. Woźny in [S. Lewanowicz, P. Woźny, Generalized Bernstein polynomials, BIT 44 (1) (2004) 63–78], where fC[0,1], ω,q>0, ω≠1,q−1,…,qn+1. When ω=0, we recover the q-Bernstein polynomials introduced by [G.M. Phillips, Bernstein polynomials based on the q-integers, Ann. Numer. Math. 4 (1997) 511–518]; when q=1, we recover the classical Bernstein polynomials. We compute the second moment of , and demonstrate that if f is convex and ω,q(0,1) or (1,∞), then are monotonically decreasing in n for all x[0,1]. We prove that for ω(0,1), qn(0,1], the sequence converges to f uniformly on [0,1] for each fC[0,1] if and only if limn→∞qn=1. For fixed ω,q(0,1), we prove that the sequence converges for each fC[0,1] and obtain the estimates for the rate of convergence of by the modulus of continuity of f, and the estimates are sharp in the sense of order for Lipschitz continuous functions.  相似文献   

17.
Connections betweenq-rook polynomials and matrices over finite fields are exploited to derive a new statistic for Garsia and Remmel'sq-hit polynomial. Both this new statisticmatand another statistic for theq-hit polynomial ξ recently introduced by Dworkin are shown to induce different multiset Mahonian permutation statistics for any Ferrers board. In addition, for the triangular boards they are shown to generate different families of Euler–Mahonian statistics. For these boards the ξ family includes Denert's statisticden, and gives a new proof of Foata and Zeilberger's Theorem that (exc, den) is equidistributed with (des, maj). Thematfamily appears to be new. A proof is also given that theq-hit polynomials are symmetric and unimodal.  相似文献   

18.
The mixed moments for the Askey–Wilson polynomials are found using a bootstrapping method and connection coefficients. A similar bootstrapping idea on generating functions gives a new Askey–Wilson generating function. Modified generating functions of orthogonal polynomials are shown to generate polynomials satisfying recurrences of known degree greater than three. An important special case of this hierarchy is a polynomial which satisfies a four term recurrence, and its combinatorics is studied.  相似文献   

19.
We introduce a q-analogue of Wigner’s 9-j symbols following the notational scheme used by Wilson in identifying the 6-j symbols with Racah polynomials, which eventually led Askey and Wilson to obtain a q-analogue of them, namely, the q-Racah polynomials. Most importantly, we prove the orthogonality of our analogues in complete generality, as well as derive an explicit polynomial expression for these new functions.  相似文献   

20.
In this paper, a new class of so-called q-adic Chebyshev–Vandermonde-like matrices over an arbitrary non-algebraically closed field is introduced. This class generalizes both the ordinary Chebyshev–Vandermonde-like matrices over the complex field studied earlier by Kailath and Olshevsky [T. Kailath, V. Olshevsky, Displacement structure approach to Chebyshev–Vandermonde and related matrices, Integral Equations Operator Theory 22 (1995) 65–92], and the classical q-adic Vandermonde-like matrices with respect to power basis by Yang and Hu [Z.H. Yang, Y.J. Hu, Displacement structure and fast inversion formulas for q-adic Vandermonde-like matrices, J. Comput. Appl. Math. 176 (2005) 1–14]. Three kinds of displacement structures and consequently, three kinds of fast inversion formulas are presented for this class of matrices by using displacement structure theory method, which generalize the corresponding results for Chebyshev–Vandermonde-like and q-adic Vandermonde-like matrices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号