首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 481 毫秒
1.
The poor electronic conductivity and low lithium-ion diffusion are the two major obstacles to the largely commercial application of LiFePO4 cathode material in power batteries. In order to improve the defects of LiFePO4, a novel carbon source polyacrylonitrile (PAN), which would form the hierarchical porous structure after carbonization, is fabricated and used. This work comes up with a simple and facile carbothermal reduction method to prepare porous-carbon-coated LiFePO4 (C-LiFePO4-PC) composite and to study the effect of carbon-coated temperature on ameliorating the electrochemical performance. The obtained C-LiFePO4-PC composite shows a high initial discharge capacity of 164.1 mA h g?1 at 0.1 C and good cycling stability as well as excellent rate capacity (49.0 mA h g?1 at 50 C). The most possible factors that improve the electrochemical performance could be related to the enhancement of electronic conductivity and the existence of porous carbon layers. In a word, the C-LiFePO4-PC material would become an excellent candidate for application in the fields of lithium-ion batteries.  相似文献   

2.
Herein, we show the synthesis of high-capacity anode, InFeCoO4 spinel for lithium ion batteries (LIBs), by facile glycine-assisted chemical approach. The structure and morphology are evaluated by X-ray diffraction (XRD), X-ray absorption spectroscopy (XAS) and scanning electron microscopy (SEM) techniques, respectively. The pure phase formation of spinel InFeCoO4 is confirmed from XRD pattern, whereas the oxidation state of Co in 2+ is determined from XAS analysis. Electrochemical performance of InFeCoO4 in the half-cell configuration is evaluated by galvanostatic and cyclic voltammetry (CV) in the voltage window of 0.005–3.0 V vs. Li. When cycled at 60 mA g?1, it shows a high first cycle reversible capacity of 750 (±10) mA h g?1. However, slow capacity degradation is noticed upon cycling and reached 285 (±10) mA h g?1 after 40 cycles. An improved Li-storage performance is noticed under similar cycling condition, when the electrode is heat-treated. It shows first cycle reversible capacity of 880 (±10) mA h g?1 and reached 535 (±10) mA h g?1 after 40 cycles. The coulombic efficiency is >98 % during cycling. The improved Li-storage performance is possibly due to the distribution of PVDF (binder) in the active materials as well as better electrical contact after heat treatment.  相似文献   

3.
In this work, the MWO4 (M = Co, Ni) nanoparticles were successfully synthesized by a facile one-step hydrothermal method and used as novel anode materials for LIBs. The micromorphology of obtained CoWO4 and NiWO4 was uniform nanoparticles with the size of ~60 and ~40 nm, respectively, by structural characterization including X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). When tested as lithium-ion battery anode, CoWO4 nanoparticles exhibited a stabilized reversible capacity of 980 mA h g?1 at 200 mA g?1 after 120 cycles and 632 mA h g?1 at 1000 mA g?1 even after 400 cycles. And, the discharge capacity was as high as 550 mA h g?1 at the 400th cycle for NiWO4 nanoparticles. The excellent electrochemical performance could be attributed to the unique nanoparticles structure of the materials, which can not only shorten the diffusion length for electrons and lithium ions but also provide a large specific surface area for lithium storage.  相似文献   

4.
LiNi0.5Co0.2Mn0.3O2 particles of uniform size were prepared through carbonate co-precipitation method with acacia gum. The precursor of carbonate mixture was calcined at 800 °C, and a well-crystallized Ni-rich layered oxide was got. The phase structure and morphology were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The micro-sized particles delivered high initial discharge capacity of 164.3 mA h g?1 at 0.5 C (1 C?=?200 mA g?1) between 2.5 and 4.3 V with capacity retention of 87.5 % after 100 cycles. High reversible discharge capacities of 172.4 and 131.4 mA h g?1 were obtained at current density of 0.1 and 5 C, respectively. Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were performed to further study the LiNi0.5Co0.2Mn0.3O2 particles. Anyway, the excellent electrochemical performances of LiNi0.5Co0.2Mn0.3O2 sample should be attributed to the use of acacia gum.  相似文献   

5.
Nitrogen-doped anatase titanium oxide (N-TiO2) with enhanced electronic conductivity induced by titanium nitride (TiN) thin layer coating was employed as high-performance anode material for sodium-ion batteries. The TiN thin layer can not only dramatically increase the electronic conductivity among crystal grains but also alleviate the volume expansion to consolidate the structure during long-term sodiation and desodiation process. The composite exhibits an excellent electrochemical performance, delivering a high specific capacity of 226.9 mA h g?1 at 0.1 C and owning excellent rate capability of 158.3 mA h g?1 at 10 C high rate. Moreover, the composite has no obvious capacity decay after 500 cycles at 1 C, showing its superior cycling performance. The enhancement of electrochemical performance may be attributed to the faster kinetics of sodium ion sodiation/desodiation, which could be a result of enhanced electronic conductivity due to the formation of TiN thin layer coating.  相似文献   

6.
Hari Raj  Anjan Sil 《Ionics》2018,24(9):2543-2553
Pristine LiFePO4 (LFP) and carbon-coated LiFePO4 (LFP/C) are synthesized by sol-gel process using citric acid as a carbon precursor. LFP/C is prepared with three different stoichiometric ratios of metal ions and citric acid, namely 1:0.5, 1:1, and 1:2. Prepared LFP and LFP/C powder samples are characterized by X-ray diffractometer, field emission scanning electron microscope, transmission electron microscope, and Raman spectrophotometer. Electrochemical performances of pristine and carbon-coated LFP are investigated by charge-discharge and cyclic voltammetry technique. The results show that LFP/C (1:1) with an optimum thickness of 4.2 nm and higher graphitic carbon coating has the highest discharge capacity of 148.2 mA h g?1 at 0.1 C rate and 113.1 mA h g?1 at a high rate of 5 C among all four samples prepared. The sample LFP/C (1:1) shows 96% capacity retention after 300 cycles at 1 C rate. The decrease in discharge capacity (141.4and 105.9 mA h g?1 at 0.1 and 5 C, respectively) is observed for the sample LFP/C (1:2). Whereas, pristine LFP shows the lowest discharge capacity of 111.1 mA h g?1 at 0.1 C and capacity was decreased very fast and work only up to 147 cycles. Moreover, cyclic voltammetry has also revealed the lowest polarization of 0.19 V for LFP/C (1:1) and the highest 0.4 V for pristine LFP.  相似文献   

7.
The SnO2 nano-flower/graphene (SnO2-NF/GN) composites were synthesized by using graphene (GN) and SnO2 nano-flower (SnO2-NF). Among them, the SnO2-NFs were prefabricated by using sodium hydroxide and stannic chloride pentahydrate (SnCl4·5H2O) as raw materials. The results of SEM show that the SnO2-NFs are uniformly dispersed on the surface of GN. Furthermore, compared with the pure SnO2, the as-prepared SnO2-NF/GN composites displayed superior cycle performace and high rate capability. The SnO2-NF/GN composite delivers a specific capacity of 650 mAh g?1 after 60 cycles and an excellent rate capability of 480 mAh g?1 at 2000 mA g?1.  相似文献   

8.
A dandelion-like mesoporous Co3O4 was fabricated and employed as anode materials of lithium ion batteries (LIBs). The architecture and electrochemical performance of dandelion-like mesoporous Co3O4 were investigated through structure characterization and galvanostatic charge/discharge test. The as-prepared dandelion-like mesoporous Co3O4 consisted of well-distributed nanoneedles (about 40 nm in width and about 5 μm in length) with rich micropores. Electrochemical experiments illustrated that the as-prepared dandelion-like mesoporous Co3O4 as anode materials of LIBs exhibited high reversible specific capacity of 1430.0 mA h g?1 and 1013.4 mA h g?1 at the current density of 0.2 A g?1 for the first and 100th cycle, respectively. The outstanding lithium storage properties of the as-prepared dandelion-like mesoporous Co3O4 might be attributed to its dandelion-like mesoporous nanostructure together with an open space between adjacent nanoneedle networks promoting the intercalation/deintercalation of lithium ions and the charge transfer on the electrode. The enhanced capacity as well as its high-rate capability made the as-prepared dandelion-like mesoporous Co3O4 to be a good candidate as a high-performance anode material for LIBs.  相似文献   

9.
V2O5 nanoneedle arrays were grown directly on titanium (Ti) substrate by a facile solvothermal route followed with calcination at 350 °C for 2 h. The as-prepared V2O5 nanoneedles are about 50 nm in diameter and 800 nm in length. The electrochemical behavior of V2O5 nanoarrays as binder-free cathode for lithium-ion batteries (LIBs) was evaluated by cyclic voltammetry and galvanostatic discharge/charge tests. Compared with V2O5 powder electrode, V2O5 nanoneedle arrays electrode exhibited improved electrochemical performance in terms of high discharge capacity of 262.5 mA h g?1 between 2.0 and 4.0 V at 0.2 C, and high capacity retention up to 77.1% after 100 cycles. Under a high current rate of 2 C, a discharge capacity of about 175.6 mA h g?1 can be maintained. The enhanced performance are mainly due to the intimate contact between V2O5 nanoneedle active material and current collector, which enable shortened electron transfer pathway and improved charge transfer kinetics, demonstrating their potential applications in high rate electrochemical storage devices.  相似文献   

10.
Nanoporous carbon microspheres (NCMs) are prepared by a one-step carbonizing and activating resorcinol?formaldehyde polymer spheres (RFs) in inert and CO2 atmosphere for anode materials of lithium-ion batteries (LIBs). Compared with RFs carbon microspheres (RF-C), after activating with hot CO2, the NCMs with porous structure and high BET surface area of 2798.8 m2 g?1, which provides abundant lithium-ion storage site as well as stable lithium-ion transport channel. When RF-C and NCM are used to anode material for LIBs, at the same current density of 210 mA g?1, the initial specific discharge capacity are 482.4 and 2575.992 mA h g?1, respectively; after 50 cycles, the maintain capacity are 429.379 and 926.654 mA h g?1, respectively. The porous spherical structure of NCM possesses noticeably lithium-ion storage capability, which exhibits high discharge capacity and excellent cycling stability at different current density. The CO2 activating carbonaceous materials used in anode materials can tremendously enhance the capacity storage, which provides a promising modification strategy to improve the storage capacity and cyclic stability of carbonaceous anode materials for LIBs.  相似文献   

11.
Inferior rate capability is a big challenge for LiTi2(PO4)3 anode for aqueous lithium-ion batteries. Herein, to address such issue, we synthesized a high-performance LiTi2(PO4)3/carbon/carbon nanotube (LTP/C/CNT) composite by virtue of high-quality carbon coating and incorporation of good conductive network. The as-prepared LTP/C/CNT composite exhibits excellent rate performance with discharge capacity of 80.1 and 59.1 mAh g?1 at 10 C and 20 C (based on the mass of anode, 1 C = 150 mA g?1), much larger than that of the LTP/C composite (53.4 mAh g?1 at 10 C, and 31.7 mAh g?1 at 20 C). LTP/C/CNT also demonstrates outstanding cycling stability with capacity retention of 83.3 % after 1000 cycles at 5 C, superior to LTP/C without incorporation of CNTs (60.1 %). As verified, the excellent electrochemical performance of the LTP/C/CNT composite is attributed to the enhanced electrical conductivity, rapid charge transfer, and Li-ion diffusion because of the incorporation of CNTs.  相似文献   

12.
A facile two-step approach has been used for the synthesis of porous SnO2 rods: the initial room-temperature precipitation of precursor SnC2O4 and its subsequent thermal decomposition at 550 °C. Both the as-obtained porous SnO2 microrods (length ~10.0?±?3.5 μm, diameter ~1.1?±?0.4 μm) and submicrorods (length ~5.8?±?1.9 μm, diameter ~0.4?±?0.1 μm) are the crystalline mixtures of major tetragonal and minor orthorhombic crystal phases, showing a tetragonal fraction of 84.7 and 87.0 %, respectively. When applied as a lithium-ion battery anode, the porous submicrorods (specific surface area ~13.6 m2 g?1) can deliver an initial discharge capacity of 1,730.7 mAh g?1 with a high coulombic efficiency of 61.6 % and show the 50th discharge capacity of 662.8 mAh g?1 at 160 mA g?1 within a narrow potential range of 10.0 mV to 2.0 V. Similarly, even the anode of porous microrods (specific surface area ~11.8 m2 g?1) can still exhibit an initial discharge capacity of 1,661.1 mAh g?1 at 160 mA g?1 with a coulombic efficiency of 60.9 %. Regardless of the polymorphic nature, the acquired porosity may only alleviate the huge volume change of anodes for the first cycle; thus, the structural parameters of average size and specific surface area can be feasibly associated with the enhanced lithium storage capability. Anyway, these indicate a facile oxalate precursor method for the controlling synthesis and high performance of rodlike SnO2 for lithium-ion batteries.  相似文献   

13.
TiO2-reduced graphene oxide (RGO) composite was synthesized via a sol-gel process and investigated as an anode material for sodium-ion batteries (SIBs). A remarkable improvement in sodium ion storage with a reversible capacity of 227 mAh g?1 after 50 cycles at 50 mA g?1 is achieved, compared to that (33 mAh g?1) for TiO2. The enhanced electrochemical performance of TiO2-RGO composite is attributed to the larger specific surface area and better electrical conductivity of TiO2-RGO composite. The excellent performance of TiO2-RGO composite enables it a potential electrode material for SIBs.  相似文献   

14.
Three-dimensional hierarchical Co3O4@C hollow microspheres (Co3O4@C HSs) are successfully fabricated by a facile and scalable method. The Co3O4@C HSs are composed of numerous Co3O4 nanoparticles uniformly coated by a thin layer of carbon. Due to its stable 3D hierarchical hollow structure and uniform carbon coating, the Co3O4@C HSs exhibit excellent electrochemical performance as an anode material for lithium-ion batteries (LIBs). The Co3O4@C HSs electrode delivers a high reversible specific capacity, excellent cycling stability (1672 mAh g?1 after 100 cycles at 0.2 A g?1 and 842.7 mAh g?1 after 600 cycles at 1 A g?1), and prominent rate performance (580.9 mAh g?1 at 5 A g?1). The excellent electrochemical performance makes this 3D hierarchical Co3O4@C HS a potential candidate for the anode materials of the next-generation LIBs. In addition, this simple synthetic strategy should also be applicable for synthesizing other 3D hierarchical metal oxide/C composites for energy storage and conversion.  相似文献   

15.
In this paper, we report a facile method to prepare a twins-structural Sn@C core–shell composite that is used as anode materials for lithium-ion batteries. Its surface morphology and microstructures were characterized by the scanning electron microscope, X-ray diffraction, and transmission electron microscope. The electrochemical performances of Sn@C were measured by charge–discharge tests, cyclic voltammogram, and electrochemical impedance spectra. It is shown that such a composite exhibits a high initial specific capacity of 970 mA h g?1 and a capacity retention of 400 mA h g?1 after 50 cycles at the current density of 100 mA g?1.  相似文献   

16.
Cr-doped layered oxides Li[Li0.2Ni0.2???x Mn0.6???x Cr2x ]O2 (x?=?0, 0.02, 0.04, 0.06) were synthesized by co-precipitation and high-temperature solid-state reaction. The materials were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (TRTEM), X-ray photoelectron spectroscopy (XPS), and electrochemical impedance spectroscopy (EIS). XRD patterns and HRTEM results indicate that the pristine and Cr-doped Li1.2Ni0.2Mn0.6O2 show the layered phase. The Li1.2Ni0.16Mn0.56Cr0.08O2 shows the best electrochemical properties. The first discharge specific capacity of Li1.2Ni0.16Mn0.56Cr0.08O2 is 249.6 mA h g?1 at 0.1 C, while that of Li1.2Ni0.2Mn0.6O2 is 230.4 mA h g?1. The capacity retaining ratio of Li1.2Ni0.16Mn0.56Cr0.08O2 is 97.9% compared with 93.9% for Li1.2Ni0.2Mn0.6O2 after 80 cycles at 0.2 C. The discharge capacity of Li1.2Ni0.16Mn0.56Cr0.08O2 is 126.2 mA h g?1 at 5.0 C, while that of the pristine Li1.2Ni0.2Mn0.6O2 is about 94.5 mA h g?1. XPS results show that the content of Mn3+ in the Li1.2Ni0.2Mn0.6O2 can be restrained after Cr doping during the cycling, which results in restraining formation of spinel-like structure and better midpoint voltages. The lithium-ion diffusion coefficient and electronic conductivity of Li1.2Ni0.2Mn0.6O2 are enhanced after Cr doping, which is responsible for the improved rate performance of Li1.2Ni0.16Mn0.56Cr0.08O2.  相似文献   

17.
Mn1.5Co1.5O4 hierarchical microspheres have been successfully synthesized via a solvothermal method and an annealing procedure. Mn1.5Co1.5O4 exhibits advanced cycling performance, and it retains a reversible capacity of 633 mA h g?1 at a current density of 400 mA g?1 with a coulombic efficiency of 99.0% after 220 cycles. Its remarkable performance is attributed to the hierarchical structure assembled with nanorods, which increases the contact area between each nanorod and electrolyte. More significantly, the open space between neighboring nanorods and the pores on the surface of nanorods can improve Li+ ion diffusion rate. Furthermore, the nanorods have rapid one-dimensional Li+ diffusion channels, which not only possess a large specific surface area for high activity but accommodate the volume change during lithiation–delithiation processes. Therefore, Mn1.5Co1.5O4 hierarchical microspheres can act as a promising alternative anode material for lithium-ion battery.  相似文献   

18.
To suppress the capacity fade of Li-rich Li1.2Ni0.13Co0.13Mn0.54O2 material as cathode materials for lithium-ion battery, we introduce a LiF coating layer on the surface to improve the cycling performance of Li1.2Ni0.13Co0.13Mn0.54O2 material. The modified sample shows a capacity of 163.2 mAh g?1 with a capacity retention of 95% after 100 cycles at a current density of 250 mA g?1, while the pristine sample only delivers a capacity of 129.9 mAh g?1 with a capacity retention of 82%. Compared with the pristine material, the LiF-modified sample exhibits an obvious enhancement in the electrochemical performance, which will be very beneficial for this material to be commercialized on the new energy vehicles and other related areas.  相似文献   

19.
Three-dimensional fabricated Fe3O4 quantum dots/graphene aerogel materials (Fe3O4 QDs/GA) were obtained from a facile hydrothermal strategy, followed by a subsequently heat treatment process. The Fe3O4 QDs (2–5 nm) are anchored tightly and dispersed uniformly on the surface of three-dimensional GA. The as-prepared anode materials exhibit a high reversible capacity of 1078 mAh g?1 at a current density of 100 mA g?1 after 70 cycles in lithium-ion batteries (LIBs) system. Moreover, the rate capacity still remains 536 mAh g?1 at 1000 mA g?1. The enhanced electrochemical performance is attributed to that the GA not only acts as a three-dimensional electronic conductive matrix for the fast transportation of Li+ and electrons, but also provides with double protection against the aggregation and pulverization of Fe3O4 QDs during cycling. Apparently, the synergistic effects of the three-dimensional GA and the quantum dots are fully utilized. Therefore, the Fe3O4 QDs/GA composites are promising materials as advanced anode materials for LIBs.  相似文献   

20.
A simple and highly efficient method is developed for in situ one-step preparation of carbon co-encapsulated anatase and rutile TiO2 nanocrystals (TiO2@C) with core-shell structure for lithium-ion battery anode. The synthesis is depending on the solid-phase reaction of titanocene dichloride with ammonium persulfate in an autoclave at 200 °C for 30 min. The other three titanocene complexes including bis(cyclopentadienyl)dicarbonyl titanium, cyclopentadienyltitanium trichloride, and cyclopentadienyl(cycloheptatrienyl)titanium are used instead to comprehensively investigate the formation mechanism and to improve the microstructure of the product. The huge heat generated during the explosive reaction cleaves the cyclopentadiene ligands into small carbon fragments, which form carbon shell after oxidative dehydrogenation coating on the TiO2 nanocrystals, resulting in the formation of core-shell structure. The TiO2 nanocrystals prepared by titanocene dichloride have an equiaxed morphology with a small diameter of 10–55 nm and the median size is 30.3 nm. Hundreds of TiO2 nanocrystals are encapsulated together by the worm-like carbon shell, which is amorphous and about 20–30 nm in thickness. The content of TiO2 nanocrystals in the nanocomposite is about 31.1 wt.%. This TiO2@C anode shows stable cyclability and retains a good reversible capacity of 400 mAh g?1 after 100 cycles at a current density of about 100 mA g?1, owing to the enhanced conductivity and protection of carbon shell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号