首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
在竞争设施选址问题中,顾客选择行为是决定设施占领市场份额的重要因素,其描述了需求在设施之间的分配方式。为了贴近顾客真实的光顾行为,本文提出了一种考虑顾客便利半径和质量阈值的顾客选择规则,并研究了在该规则下市场中新进入公司的竞争设施选址问题。提出了一种基于排名的遗传算法(RGA)求解该问题,并将该算法与经典遗传算法(GA)和基于排名的离散优化算法(RDOA)进行了比较,结果说明了算法的有效性以及模型中质量阈值的重要性。  相似文献   

2.
Facility location models are applicable to problems in many diverse areas, such as distribution systems and communication networks. In capacitated facility location problems, a number of facilities with given capacities must be chosen from among a set of possible facility locations and then customers assigned to them. We describe a Lagrangian relaxation heuristic algorithm for capacitated problems in which each customer is served by a single facility. By relaxing the capacity constraints, the uncapacitated facility location problem is obtained as a subproblem and solved by the well-known dual ascent algorithm. The Lagrangian relaxations are complemented by an add heuristic, which is used to obtain an initial feasible solution. Further, a final adjustment heuristic is used to attempt to improve the best solution generated by the relaxations. Computational results are reported on examples generated from the Kuehn and Hamburger test problems.  相似文献   

3.
In competitive location theory, one wishes to optimally choose the locations ofr facilities to compete againstp existing facilities for providing service (or goods) to the customers who are at given discrete points (or nodes). One normally assumes that: (a) the level of demand of each customer is fixed (i.e. this demand is not a function of how far a customer is from a facility), and (b) the customer always uses the closest available facility. In this paper we study competitive locations when one or both of the above assumptions have been relaxed. In particular, we show that for each case and under certain assumptions, there exists a set of optimal locations which consists entirely of nodes.This work was supported by a National Science Foundation Grant ECS-8121741.  相似文献   

4.
俞武扬  吕静 《运筹与管理》2019,28(10):13-19
客户意愿与容量限制是竞争设施选址问题中两个重要的影响因素,在考虑客户意愿与设施容量共同作用条件下,建立了最小化企业总成本以及每个客户费用为目标的竞争设施选址问题优化模型,通过设计需求导向服务分配机制解决设施与客户之间服务关系分配问题,结合模拟退火思想提出了求解模型的算法。最后利用数值例子分析了需求导向服务分配机制以及目标权重、预算限额等参数对于选址决策的影响,其中考虑需求导向因素会适当增加企业的总成本,但可以减少客户所付出的费用从而增强对客户的吸引力;另外企业的预算限额对于企业的设施选址决策有着重要的影响,企业所能获取的市场份额与其选址预算限额呈正相关的关系;而客户所需付出的总费用与企业提供服务的总成本两者之间则呈负相关的关系,因此需要通过服务质量与成本之间的权衡实现最理想的选址决策。  相似文献   

5.
The classical discrete location problem is extended here, where the candidate facilities are subject to failure. The unreliable location problem is defined by introducing the probability that a facility may become inactive. The formulation and the solution procedure have been motivated by an application to model and solve a large size problem for locating base stations in a cellular communication network. We formulate the unreliable discrete location problems as 0–1 integer programming models, and implement an enhanced dual-based solution method to determine locations of these facilities to minimize the sum of fixed cost and expected operating (transportation) cost. Computational tests of some well-known problems have shown that the heuristic is efficient and effective for solving these unreliable location problems.  相似文献   

6.
Facility location problems form an important class of integer programming problems, with application in the distribution and transportation industries. In this paper we are concerned with a particular type of facility location problem in which there exist two echelons of facilities. Each facility in the second echelon has limited capacity and can be supplied by only one facility (or depot) in the first echelon. Each customer is serviced by only one facility in the second echelon. The number and location of facilities in both echelons together with the allocation of customers to the second-echelon facilities are to be determined simultaneously. We propose a mathematical model for this problem and consider six heuristics based on Lagrangian relaxation for its solution. To solve the dual problem we make use of a subgradient optimization procedure. We present numerical results for a large suite of test problems. These indicate that the lower-bounds obtained from some relaxations have a duality gap which frequently is one third of the one obtained from traditional linear programming relaxation. Furthermore, the overall solution time for the heuristics are less than the time to solve the LP relaxation.  相似文献   

7.
This paper addresses a novel competitive facility location problem about a firm that intends to enter an existing decentralized supply chain comprised of three tiers of players with competition: manufacturers, retailers and consumers. It first proposes a variational inequality for the supply chain network equilibrium model with production capacity constraints, and then employs the logarithmic-quadratic proximal prediction–correction method as a solution algorithm. Based on this model, this paper develops a generic mathematical program with equilibrium constraints for the competitive facility location problem, which can simultaneously determine facility locations of the entering firm and the production levels of these facilities so as to optimize an objective. Subsequently, a hybrid genetic algorithm that incorporates with the logarithmic-quadratic proximal prediction–correction method is developed for solving the proposed mathematical program with an equilibrium constraint. Finally, this paper carries out some numerical examples to evaluate proposed models and solution algorithms.  相似文献   

8.
We consider a generalization of the uncapacitated facility location problem, where the setup cost for a facility and the price charged for service may depend on the number of customers patronizing the facility. Customers are represented by the nodes of the transportation network, and facilities can be located only at nodes; a customer selects a facility to patronize so as to minimize his (her) expenses (price for service + the part of transportation costs paid by the customer). We assume that transportation costs are paid partially by the service company and partially by customers. The objective is to choose locations for facilities and balanced prices so as to either minimize the expenses of the service company (the sum of the total setup cost and the total part of transportation costs paid by the company), or to maximize the total profit. A polynomial-time dynamic programming algorithm for the problem on a tree network is developed.  相似文献   

9.
We propose a new genetic algorithm for a well-known facility location problem. The algorithm is relatively simple and it generates good solutions quickly. Evolution is facilitated by a greedy heuristic. Computational tests with a total of 80 problems from four different sources with 100 to 1,000 nodes indicate that the best solution generated by the algorithm is within 0.1% of the optimum for 85% of the problems. The coding effort and the computational effort required are minimal, making the algorithm a good choice for practical applications requiring quick solutions, or for upper-bound generation to speed up optimal algorithms.  相似文献   

10.
We consider the discrete version of the competitive facility location problem in which new facilities have to be located by a new market entrant firm to compete against already existing facilities that may belong to one or more competitors. The demand is assumed to be aggregated at certain points in the plane and the new facilities can be located at predetermined candidate sites. We employ Huff's gravity-based rule in modelling the behaviour of the customers where the probability that customers at a demand point patronize a certain facility is proportional to the facility attractiveness and inversely proportional to the distance between the facility site and demand point. The objective of the firm is to determine the locations of the new facilities and their attractiveness levels so as to maximize the profit, which is calculated as the revenue from the customers less the fixed cost of opening the facilities and variable cost of setting their attractiveness levels. We formulate a mixed-integer nonlinear programming model for this problem and propose three methods for its solution: a Lagrangean heuristic, a branch-and-bound method with Lagrangean relaxation, and another branch-and-bound method with nonlinear programming relaxation. Computational results obtained on a set of randomly generated instances show that the last method outperforms the others in terms of accuracy and efficiency and can provide an optimal solution in a reasonable amount of time.  相似文献   

11.
为提高应急设施运行的可靠性和抵御中断风险的能力, 研究中断情境下的应急设施选址-分配决策问题。扩展传统无容量限制的固定费用选址模型, 从抵御设施中断的视角和提高服务质量的视角建立选址布局网络的双目标优化模型, 以应急设施的建立成本和抵御设施中断的加固成本最小为目标, 以最大化覆盖服务质量水平为目标, 在加固预算有限及最大最小容量限制约束下, 构建中断情境下应急设施的可靠性选址决策优化模型。针对所构建模型的特性利用非支配排序多目标遗传算法(NSGA-Ⅱ)求解该模型, 得到多目标的Pareto前沿解集。以不同的算例分析和验证模型和算法的可行性。在获得Pareto前沿的同时对不同中断概率进行灵敏度分析, 给出Pareto最优解集的分布及应急设施选址布局网络的拓扑结构。  相似文献   

12.
A competitive facility location model formulated as a bilevel programming problem is considered. A new approach to the construction of estimating problems for bilevel competitive location models is proposed. An iterative algorithm for solving a series of mixed integer programming problems to obtain a pessimistic optimal solution of the model under consideration is suggested.  相似文献   

13.
Facility location models form an important class of integer programming problems, with application in many areas such as the distribution and transportation industries. An important class of solution methods for these problems are so-called Lagrangean heuristics which have been shown to produce high quality solutions and which are at the same time robust. The general facility location problem can be divided into a number of special problems depending on the properties assumed. In the capacitated location problem each facility has a specific capacity on the service it provides. We describe a new solution approach for the capacitated facility location problem when each customer is served by a single facility. The approach is based on a repeated matching algorithm which essentially solves a series of matching problems until certain convergence criteria are satisfied. The method generates feasible solutions in each iteration in contrast to Lagrangean heuristics where problem dependent heuristics must be used to construct a feasible solution. Numerical results show that the approach produces solutions which are of similar and often better than those produced using the best Lagrangean heuristics.  相似文献   

14.
In the Single Source Capacitated Facility Location Problem (SSCFLP) each customer has to be assigned to one facility that supplies its whole demand. The total demand of customers assigned to each facility cannot exceed its capacity. An opening cost is associated with each facility, and is paid if at least one customer is assigned to it. The objective is to minimize the total cost of opening the facilities and supply all the customers. In this paper we extend the Kernel Search heuristic framework to general Binary Integer Linear Programming (BILP) problems, and apply it to the SSCFLP. The heuristic is based on the solution to optimality of a sequence of subproblems, where each subproblem is restricted to a subset of the decision variables. The subsets of decision variables are constructed starting from the optimal values of the linear relaxation. Variants based on variable fixing are proposed to improve the efficiency of the Kernel Search framework. The algorithms are tested on benchmark instances and new very large-scale test problems. Computational results demonstrate the effectiveness of the approach. The Kernel Search algorithm outperforms the best heuristics for the SSCFLP available in the literature. It found the optimal solution for 165 out of the 170 instances with a proven optimum. The error achieved in the remaining instances is negligible. Moreover, it achieved, on 100 new very large-scale instances, an average gap equal to 0.64% computed with respect to a lower bound or the optimum, when available. The variants based on variable fixing improved the efficiency of the algorithm with minor deteriorations of the solution quality.  相似文献   

15.
近年来世界各地频发灾情疫情等紧急事件,严重影响人民的生活物资保障。在这种情况下,急需建立应急物资中心来缓解燃眉之急。该类问题通常面临资源稀缺并且时间相对紧迫的处境,因此需要在短时间内获得合理的应急设施选址方案来提升服务的质量和效率。本文对应急物资中心选址问题展开研究,提出一种考虑后续运输成本以及有概率发生紧急事件而导致无法正常运送物资的双目标离散选址模型,并为此设计一种二进制多目标蝗虫优化算法。该算法采用模糊关联熵系数来引导迭代更新,同时为其添加外部档案,最优解选择机制和竞争决策机制来提升算法性能。多次数值实验表明该算法的计算效率和求解质量较高,可作为应急物资中心选址问题的一种可行且有效的算法。  相似文献   

16.
The team orienteering problem (TOP) is a generalization of the orienteering problem. A limited number of vehicles is available to visit customers from a potential set. Each vehicle has a predefined running-time limit, and each customer has a fixed associated profit. The aim of the TOP is to maximize the total collected profit. In this paper we propose a simple hybrid genetic algorithm using new algorithms dedicated to the specific scope of the TOP: an Optimal Split procedure for chromosome evaluation and local search techniques for mutation. We have called this hybrid method a memetic algorithm for the TOP. Computational experiments conducted on standard benchmark instances clearly show our method to be highly competitive with existing ones, yielding new improved solutions in at least 5 instances.  相似文献   

17.
In this paper we develop a method for solving to optimality a general 0–1 formulation for uncapacitated location problems. This is a 3-stage method that solves large problems in reasonable computing times.The 3-stage method is composed of a primal-dual algorithm, a subgradient optimization to solve a Lagrangean dual and a branch-and-bound algorithm. It has a hierarchical structure, with a given stage being activated only if the optimal solution could not be identified in the preceding stage.The proposed method was used in the solution of three well-known uncapacitated location problems: the simple plant location problem, thep-median problem and the fixed-chargep-median problem. Computational results are given for problems of up to the size 200 customers ×200 potential facility sites.  相似文献   

18.
In this paper, we present the problem of optimizing the location and pricing for a set of new service facilities entering a competitive marketplace. We assume that the new facilities must charge the same (uniform) price and the objective is to optimize the overall profit for the new facilities. Demand for service is assumed to be concentrated at discrete demand points (customer markets); customers in each market patronize the facility providing the highest utility. Customer demand function is assumed to be elastic; the demand is affected by the price, facility attractiveness, and the travel cost for the highest-utility facility. We provide both structural and algorithmic results, as well as some managerial insights for this problem. We show that the optimal price can be selected from a certain finite set of values that can be computed in advance; this fact is used to develop an efficient mathematical programming formulation for our model.  相似文献   

19.
In the Dial-a-Ride problem (DARP), customers request transportation from an operator. A request consists of a specified pickup location and destination location along with a desired departure or arrival time and capacity demand. The aim of DARP is to minimize transportation cost while satisfying customer service level constraints (Quality of Service). In this paper, we present a genetic algorithm (GA) for solving the DARP. The algorithm is based on the classical cluster-first, route-second approach, where it alternates between assigning customers to vehicles using a GA and solving independent routing problems for the vehicles using a routing heuristic. The algorithm is implemented in Java and tested on publicly available data sets. The new solution method has achieved solutions comparable with the current state-of-the-art methods.  相似文献   

20.
以大型连锁卖场的选址为研究背景,提出了一个在竞争环境下使获利最大的竞争选址定价双层规划模型,其中上层模型做出选址决策,下层模型确定产品的纳什均衡价格.将设施效用引入到模型中,用指数效用函数来刻画顾客的购物行为偏好,首次证明了不合作状态下双方价格均衡解的存在性和唯一性,并给出了求解最优设施点设置方案和价格均衡解的算法思想及数值算例.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号