首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The effect of hydrophobic alkylated gold nanoparticles (Au NPs) on the phase behavior and structure of Langmuir monolayers of dipalmitoylphosphatidylcholine (DPPC) and Survanta, a naturally derived commercial pulmonary surfactant that contains DPPC as the main lipid component and hydrophobic surfactant proteins SP-B and SP-C, has been investigated in connection with the potential implication of inorganic NPs in pulmonary surfactant dysfunction. Hexadecanethiolate-capped Au NPs (C(16)SAu NPs) with an average core diameter of 2 nm have been incorporated into DPPC monolayers in concentrations ranging from 0.1 to 0.5 mol %. Concentrations of up to 0.2 mol % in DPPC and 16 wt % in Survanta do not affect the monolayer phase behavior at 20 °C, as evidenced by surface pressure-area (π-A) and ellipsometric isotherms. The monolayer structure at the air/water interface was imaged as a function of the surface pressure by Brewster angle microscopy (BAM). In the liquid-expanded/liquid-condensed phase coexistence region of DPPC, the presence of 0.2 mol % C(16)SAu NPs causes the formation of many small, circular, condensed lipid domains, in contrast to the characteristic larger multilobes formed by pure lipid. Condensed domains of similar size and shape to those of DPPC with 0.2 mol % C(16)SAu NPs are formed by compressing Survanta, and these are not affected by the C(16)SAu NPs. Atomic force microscopy images of Langmuir-Schaefer-deposited films support the BAM observations and reveal, moreover, that at high surface pressures (i.e., 35 and 45 mN m(-1)) the C(16)SAu NPs form honeycomb-like aggregates around the polygonal condensed DPPC domains. In the Survanta monolayers, the C(16)SAu NPs were found to accumulate together with the proteins in the liquid-expanded phase around the circular condensed lipid domains. In conclusion, the presence of hydrophobic C(16)SAu NPs in amounts that do not influence the π-A isotherm alters the nucleation, growth, and morphology of the condensed domains in monolayers of DPPC but not of those of Survanta. Systematic investigations of the effect of the interaction of chemically defined NPs with the lipid and protein components of lung surfactant on the physicochemical properties of surfactant films are pertinent to understanding how inhaled NPs impact pulmonary function.  相似文献   

2.
Abstract— Fluorescence emission from merocyanine 540 (MC540) dimers was observed in dipalmitoylphosphatidylcholine (DPPC) vesicles. This unusual behavior was observed only for vesicles in the gel-phase state. No dimer fluorescence was observed either in monopalmitoylphosphati-dylcholine (C16PC) micelles or in liquid-crystalline DPPC vesicles, indicating that dimer fluorescence efficiency increases in highly packed interfaces. The excitonic theory of Kasha was used to interpret the spectral features. The overall fluorescence quantum yield (φr) decreases with decreasing lipid: probe ratio, not only because of the presence of a weakly fluorescent dimer that absorbs a high fraction of the total absorbed light but also due to quenching of monomer emission. This suggests the existence of probe domains. The dimer fluorescence quantum yields (φm) were estimated in DPPC large unilamellar vesicles (LUV) and DPPC multilamellar vesicles. The dependence of φr with probe concentration is compatible with values of φm lower than 0.05. The dimerization equilibrium of MC540 in C16PC micelles and DPPC-LUV was also studied. Apparent dimerization equilibrium constants, Kdapp and dimer absorption spectrum were calculated in C16PC micelles for the first time. The dimerization equilibrium constant in DPPC-LUV was calculated and discussed in terms of the fraction of volume occupied by the lipid phase.  相似文献   

3.
The influence of the preservative, propyl paraben (PPB) on the biophysical properties of dipalmitoyl phosphatidyl choline (DPPC) vesicles, both in multilamellar vesicle (MLV) and unilamellar vesicle (ULV) forms, has been studied using DSC and (1H and 31P) NMR. The mechanism by which PPB interacts with DPPC bilayers was found to be independent of the morphological organization of the lipid bilayer. Incorporation of PPB in DPPC vesicles causes a significant depression in the transition temperature and enthalpy of both the pre-transition (PT) and the gel to liquid crystalline transition. The presence of the PPB also reduces the co-operativity of these transitions. However, at high PPB concentration the PT disappears. DSC and NMR findings indicate that: (i) PPB is bound strongly to the lipid bilayer leading to increased headgroup fluidity due to reduced headgroup–headgroup interaction and (ii) the PPB molecules are intercalated between the DPPC polar headgroups with its alkyl chain penetrate into the co-operative region. MLV incorporated with high PPB concentration shows additional transitions whose intensity increases with increasing PPB concentration. This phase segregation observed could probably be due to co-existence of PPB-rich and PPB-poor phospholipid domains within the bilayers. The effect of inclusion of cholesterol in the PPB-free and PPB-doped DPPC dispersion was also studied. Equilibration studies suggest that PPB molecules are very strongly bound and remain intercalated between the polar headgroup for prolonged time.  相似文献   

4.
The structural transition of L-alpha-dipalmitoylphosphatidylcholine (DPPC) liposomes, caused by the addition of a small amount of stearylamine (SA), has been characterized. It has been reported that the shape of DPPC liposomes changes from multilamellar vesicles to large-unilamellar vesicles at the molar concentration ratio of DPPC/SA=9.5/0.5, however, the possible diving factors for this phenomenon have not so far been presented. Flat lipid membranes consisting of DPPC and SA, prepared by the quasi-Bangham method or the Langmuir-Blodgett (LB) technique, are employed in this study when considering the molecular interaction in and between lipid membranes, which should play a key role for determining the liposome shape. The colloid probe atomic force microscopy reveals that the addition of SA results in an inter-film electrosteric repulsion. This repulsive interaction causes a significant increase in the inter-film distance, which is confirmed with freeze-fracture transmission electron microscopy (FF-TEM) and small-angle X-ray scattering (SAXS), and thereby, the large-unilamellar vesicles are formed for reducing the inter- and intra-firm repulsive forces. Taking the molecular structures into consideration, it seems that the shape transition of DPPC liposomes results from such electrostatic interactions as well as packing geometry of the two components.  相似文献   

5.
Effects of two bile salts, namely sodium deoxycholate (NaDC) and sodium cholate (NaC), on DPPC small unilamellar vesicles have been investigated using the steady-state fluorescence anisotropy (r ss ) of diphenylhexatriene (DPH) as a tool. It was found that the variation of r ss is sensitive enough to monitor different stages of interaction of bile salts with DPPC vesicles. NaDC induced significant changes in the membrane well below its CMC (6 mM). Even at 4 mM, which is still lower than the CMC, the phospholipids were completely solubilised by the NaDC micelles. The effect of NaC on DPPC vesicles, however, was much less significant, especially in the sub-micellar concentration regime. Being more hydrophilic NaC does not interact with the membrane efficiently. Complete solubilisation of phospholipids took place only when the concentration of NaC was above its CMC (16 mM). The experiments also showed that the bile salt-induced changes of vesicle structure were strongly dependent on the concentration of the bile salt and not on the molar ratio of lipid and bile salt.  相似文献   

6.
We used micropipette aspiration of giant unilamellar vesicles to directly measure the areal expansion of gel (Lβ′) phase 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) lipid bilayers induced by exposure to ethanol/water mixtures. Areal expansion began in 7 vol% ethanol and increased monotonically as the concentration of ethanol was increased to 15 vol% at which point areal expansion reached a plateau of 50%. This ethanol concentration range is in good agreement with that of the interdigitated phase (LβI) of DPPC, therefore, we believe that this is the first direct measurement of the areal expansion accompanying interdigitation of gel-phase lipids. Our observations are consistent with the presence of coexisting LβI and Lβ′ phases in ethanol concentrations between 7% and 15 vol% and 100% LβI phase in 15 vol% ethanol and higher. We observed a bimodal distribution of areal expansion (0% and 20%) induced by 7 vol% ethanol indicating that at the threshold concentration, interdigitation is induced in only a portion of DPPC vesicles. Areal expansion could not be easily reversed, consistent with kinetic trapping of the LβI phase. DPPC vesicles exposed to butanol at the known threshold and plateau concentrations for the LβI phase displayed areal expansion behavior consistent with our ethanol observations. However, the area expanded significantly faster for DPPC bilayers exposed to butanol vs. ethanol, which we attribute to enhanced partitioning of the longer-chained butanol into the lipid headgroups. Ethanol-induced areal expansion of DPPC bilayers was inhibited by inclusion of 10 mol% and 25 mol% cholesterol in the bilayer. However, areal expansion could be induced by application of tensions (∼8 mN/m) similar to the phenomena of interdigitation induced by high pressure. The presence of 20 vol% ethanol significantly decreased surface cohesion of DPPC bilayers containing 25 mol% cholesterol as evidenced by a decreased area compressibility modulus and lysis tension.  相似文献   

7.
Here, we use coarse grained molecular dynamics (MD) simulations to study the spontaneous aggregation of dipalmitoylphosphatidylcholine (DPPC) lipids into small unilamellar vesicles. We show that the aggregation process occurs on a nanosecond time scale, with bicelles and cuplike vesicles formed at intermediate stages. Formation of hemifused vesicles is also observed at higher lipid concentration. With either 25% dipalmitoylphosphatidylethanolamine (DPPE) or lysoPC mixed into the system, the final stages of the aggregation process occur significantly faster. The structure of the spontaneously formed vesicles is analyzed in detail. Microsecond simulations of isolated vesicles reveal significant differences in the packing of the lipids between the inner and outer monolayers, and between PC, PE, and lysoPC. Due to the small size of the vesicles they remain almost perfectly spherical, undergoing very limited shape fluctuations or bilayer undulations. The lipid lateral diffusion rate is found to be faster in the outer than in the inner monolayer. The water permeability coefficient of the pure DPPC vesicles is of the order of 10(-)(3) cm s(-)(1), in agreement with experimental measurements.  相似文献   

8.
We report on the investigations of the transformation of spherically closed lipid bilayers to supported lipid bilayers in aqueous media in contact with SiO(2) surfaces. The adsorption kinetics of small unilamellar vesicles composed of dimyristoyl- (DMPC) and dipalmitoylphosphatidylcholine (DPPC) mixtures on SiO(2) surfaces were investigated using a dissipation-enhanced quartz crystal microbalance (QCM-D) as a function of buffer (composition and pH), lipid concentration (0.01-1.0 mg/mL), temperature (15-37 degrees C), and lipid composition (DMPC and DMPC/DPPC mixtures). The lipid mixtures used here possess a phase transition temperature (T(m)) of 24-33 degrees C, which is close to the ambient temperature or above and thus considerably higher than most other systems studied by QCM-D. With HEPES or Tris.HCl containing sodium chloride (150 mM) and/or calcium chloride (2 mM), intact vesicles adsorb on the surface until a critical density ((c)) is reached. At close vesicle contact the transformation from vesicles to supported phospholipid bilayers (SPBs) occurs. In absence of CaCl(2), the kinetics of the SPB formation process are slowed, but the passage through (c) is still observed. The latter disappears when buffers with low ionic strength were used. SPB formation was studied in a pH range of 3-10, yet the passage through (c) is obtained only for pH values above to the physiological pH (7.4-10). With an increasing vesicle concentration, (c) is reached after shorter exposure times. At a vesicle concentration of 0.01-1 mg/mL, vesicle fusion on SiO(2) proceeds with the same pathway and accelerates roughly proportionally. In contrast, the pathway of vesicle fusion is strongly influenced by the temperature in the vicinity of T(m). Above and around the T(m), transformation of vesicles to SPB proceeds smoothly, while below, a large number of nonruptured vesicles coexist with SPB. As expected, the physical state of the membrane controls the interaction with both surface and neighboring vesicles.  相似文献   

9.
The adsorption of lipids onto spherical polymer colloids led to original assemblies presenting structural characteristics adjustable with the lipid formulation. The model system selected for this work involved sulfate-charged poly(styrene) submicrometer particles and zwitterionic/cationic lipid mixtures composed of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and 1,2-dipalmitoyl-3-trimethylammonium-propane (DPTAP). According to the theoretical packing parameter calculations and whatever the DPPC/DPTAP ratio, the two lipids self-assembled in aqueous media to spontaneously form vesicles. A phase transition investigation of these DPPC/DPTAP vesicles using differential scanning calorimetry revealed particular thermotropic behaviors, especially for the equimolar formulation where very strong interactions occurred between DPPC and DPTAP. Furthermore, the coating of the lipids around particles was monitored versus DPPC/DPTAP ratio by means of numerous appropriate techniques. First, a thermogravimetric analysis, providing decomposition profiles of lipid/polymer particle assemblies with temperature, was atypically carried out for such nanostructures. Then, 1H NMR spectroscopy enabled the exact DPPC/DPTAP molar ratios adsorbed on particles to be determined by differentiating both lipids. Subsequently, it also pointed out the major role of electrostatic interactions as driving forces in the assembly elaboration process. In addition to these findings, quantitative information has been collected and correlated with chemical lipid assays and permitted the statement of a lipid bilayer coverage for the assemblies prepared in water, in agreement with quasi-elastic light scattering data.  相似文献   

10.
Raman spectroscopy has been used to obtain thermal phase transition profiles for recombinant particles composed of 1,2-dipalmitoylphosphatidylcholine (DPPC) and apolipoprotein A—I. Comparison of these profiles with unilamellar vesicles of DPPC indicates that lateral packing of DPPC acyl chains is tighter in recombinant DPPC/apolipoporotein A—I particles than in uncomplexed lipid of unilamellar vesicles. Consequently, the magnitude of the entropy change associated with acyl chain melting in the recombinants at the main lipid phase transition is almost twice that of unilamellar DPPC. In addition, a second phase transition has been observed for the DPPC/apolipoprotein A—I complex and has been assigned to the acyl chain melting of DPPC molecules which are bound to the apolipoprotein annulus on the periphery of the discoidal complexes. A combination of results from Raman spectroscopy, electron micrograph measurements and chemical analysis leads to the conclusion that these protein-bound lipids, the “boundary layer”, account for about 20% of the total lipid in the recombinant material. Calculations indicate that there are about 55 protein-bound lipid molecules per apolipoprotein A—I molecule in the DPPC/apolipoprotein A—I discoidal complexes prepared for this study.  相似文献   

11.
The effect of sonication and freezing-thawing on the aggregate size and dynamic surface tension of aqueous dipalmitoylphosphatidylcholine (DPPC) dispersions was studied by cryogenic-transmission electron microscopy (cryo-TEM), dynamic light scattering (DLS), UV-vis spectroturbidimetry, and surface tensiometry. When 1000 ppm (0.1 wt%) DPPC dispersions were prepared with a certain protocol, including extensive sonication, they contained mostly frozen vesicles and were quite clear, transparent, and stable for at least 30 days. The average dispersed vesicles diameter was 80 nm in water and 90 nm in standard phosphate saline buffer. After a freeze-thaw cycle, this dispersion became turbid, and precipitates of coagulated vesicles were observed with large particles of average size of 1.5x10(3) nm. The vesicle coagulation is due to the local salt concentration increase during the freezing of water. This dispersion has much higher equilibrium and dynamic surface tension than those before freezing. When this freeze-thawed dispersion was subjected to a resonication at 55 degrees C, smaller vesicles with sizes of ca. 70 nm were produced, and a lower surface tension behavior was restored as before freezing. Similar behavior was observed at 30 ppm DPPC. These results indicate that the freeze-thaw cycle causes substantial aggregation and precipitation of the vesicles. These results have implications for designing efficient protocols of lipid dispersion preparation and lung surfactant replacement formulations in treating respiratory disease and for effective administration.  相似文献   

12.
The interaction of submicellar concentrations of various physiologically important unconjugated [sodium deoxycholate (NaDC), sodium cholate (NaC)] and conjugated [sodium glycodeoxycholate (NaGDC), sodium glycocholate (NaGC), sodium taurodeoxycholate (NaTDC), sodium taurocholate (NaTC)] bile salts with dipalmitoylphosphatidylcholine (DPPC) and dimyristoylphosphatidylcholine (DMPC) small unilamellar vesicles in solid gel (SG) and liquid crystalline (LC) phases was investigated using the excited-state prototropism of 1-naphthol. Steady-state and time-resolved fluorescence of the two excited-state prototropic forms of 1-naphthol indicate that submicellar bile salt concentration induces hydration of the lipid bilayer membrane into the core region. This hydration effect is a general phenomenon of the bile salts studied. The bilayer hydration efficiency of the bile salt follows the order NaDC > NaC > NaGDC > NaTDC > NaGC > NaTC for both DPPC and DMPC vesicles in their SG and LC phases.  相似文献   

13.
The adsorption behavior of dipalmitoylphosphatidylcholine (DPPC), which is the major component of lung surfactant, at the air/aqueous interface and the competitive adsorption with bovine serum albumin (BSA) were studied with tensiometry, infrared reflection absorption spectroscopy (IRRAS), and ellipsometry. Dynamic surface tensions lower than 1 mN/m were observed for DPPC dispersions, with mostly vesicles, prepared with new protocols, involving extensive sonication above 50 °C. The lipid adsorbs faster and more extensively for DPPC dispersions with vesicles than with liposomes. For DPPC dispersions by a certain preparation procedure at T > Tc, when lipid particles were observed on the surface, dynamic surface tensions as low as 1 mN/m were measured. Moreover, IRRAS intensities and ellipsometric δΔ values were found to be much higher than the values for other DPPC dispersions or spread DPPC monolayers, suggesting that a larger amount of liposomes or vesicles adsorb on the surface. For DPPC/BSA mixtures, the tension behavior is controlled primarily by BSA, which prevents the formation of a dense DPPC monolayer. When BSA is injected into the subphase with a spread DPPC monolayer or into a DPPC dispersion with preadsorbed layers, little or no BSA adsorbs and the DPPC layer remains on the surface. When a DPPC monolayer is spread on a BSA solution at 0.1 wt% at 25 °C, then DPPC lipid can displace the adsorbed BSA molecules. The lack of BSA adsorption, and the expulsion of BSA by DPPC monolayer is probably due to the strong hydrophilicity of the lipid polar headgroup. When a DPPC dispersion is introduced with Trurnit's method or when dispersion drops are sprayed onto the surface of a DPPC/BSA mixture, the surface tension becomes lower and is controlled by DPPC, which can prevent the adsorption of BSA. The results may be important in understanding inhibition of lung surfactants by serum proteins and in designing efficient protocols of surfactant preparation and administration.  相似文献   

14.
Summary The concentration dependent effects of deep rough mutant lipopolysaccharide (LPS) from Salmonella minnesota (R595) on two different phospholipid model membranes was investigated by differential scanning calorimetry and small-angle X-ray scattering (SAXS). At low concentrations of LPS the well ordered multilamellar arrangement of dipalmitoylphosphatidylcholine (DPPC) vesicles is strongly distorted resulting in a loss of positional correlation of the lipid lamellae and smaller domain sizes within the lamellae. The pre-transition of DPPC was abolished at a LPS/DPPC molar ratio of 0.1:1 and the main or chain melting transition was strongly broadened. Moreover, the enthalpy was significantly decreased and a transition was hardly detected at an equimolar mixture of LPS/DPPC. LPS also affected the lamellar arrangement of a mixture of dipalmitoylphosphatidylethanolamine (DPPE) and dipalmitoylphosphatidylglycerol (DPPG). Furthermore, a phase separation was observed for this phospholipid mixture resulting in DPPE enriched and depleted domains. Similarly to DPPC, only a weak phase transition was observed at the highest LPS concentration used (LPS/DPPE-DPPG 1:1 mol/mol). SAXS measurements showed that for both systems increasing the concentration of LPS resulted in a concomitant increase of the formation of cubic structures, which are predominant at an equimolar mixture of LPS/phospholipid. However, because of the small number of peaks it was not possible to unambiguously identify the space group of the cubic structure, complicated by the coexistence with a lamellar phase, which was particularly detectable for the LPS/DPPC mixture.  相似文献   

15.
The effect of dipalmitoyl phosphatidylcholine (DPPC)/dihexanoyl phosphatidylcholine (DHPC) bicelles on the microstructure of pig stratum corneum (SC) in vitro was evaluated. The physicochemical characterization of these nanoaggregates revealed small disks with diameters around 15 nm and a thickness of 5.4 nm. Upon dilution, the bicelles grow and transform into vesicles. Cryogenic scanning electron microscopy (cryo-SEM) images of the SC pieces treated with this system showed vesicles of about 200 nm and lamellar-like structures in the intercellular lipid areas. These vesicles probably resulted from the growth and molecular rearrangement of the DPPC/DHPC bicelles after penetrating the SC. The presence of lamellar-like structures is ascribed to the interaction of the lipids from bicelles with the SC lipids. The bicellar system used is suitable to penetrate the skin SC and to reinforce the intercellular lipid areas, constituting a promising tool for skin applications.  相似文献   

16.
The adsorption kinetics of extruded 1,2-dipalmitoyl- sn-glycero-3-phosphatidylcholine (DPPC)/1-(cis-9-octadecenoyl)- rac-glycerol (monoolein, MO) aggregates on SiO 2 surface at 25 degrees C is investigated in real time, using the dissipative quartz crystal microbalance (QCM) technique. Four adsorption pathways have been identified depending on the molar fraction of MO in the DPPC/MO system: (I) intact vesicle adsorption, (II) vesicle reorganization on a SiO 2 surface, (III) supported lipid bilayer (SLB) formation, and (IV) cubosome adsorption. The results can be understood by the fact that DPPC is a lamellar phase-forming lipid, whereas MO prefers the cubic phase. Therefore, the incorporation of MO in DPPC increases the packing parameter. Equally important, MO also increases the mobility of lipid molecules and lateral pressure in the bilayers as a result of the presence of a unique cis- double bond. Before extrusion, the vesicles size increases with the MO content when X MO or= 0.8. The extruded DPPC/MO suspensions consist of reformed vesicles for X MO or= 0.8, all with a uniform diameter of approximately 100 nm. Differential scanning calorimetry (DSC) further indicates that the addition of MO lowers the main phase transition temperature of DPPC and thus makes the hydrophobic interior more fluid.  相似文献   

17.
Amphiphilic lipid molecules can form various micelles depending on not only their molecular composition but also their self-assembly pathway. In this work, coarse-grained molecular dynamics simulations have been applied to study the micellization behaviors of mixed di-palmitoylphosphatidylcholine (DPPC)/hexadecylphosphocholine (HPC) droplets. By vary-ing DPPC/HPC composition and the size of lipid droplets, various micelles such as spherical and nonspherical (oblate or prolate) vesicles, disk-like micelles, double or single ring-like and worm-like micelles were observed. It is found that the lipid droplet as an initial state favors forming vesicles and ring-like micelles due to in situ micellization. Our simulation results demonstrate that using special initial conditions combined with various molecular compositions is an effective way to tune lipid micellar structure.  相似文献   

18.
Langmuir isotherm, neutron reflectivity, and small angle neutron scattering studies have been conducted to characterize the monolayers and vesicular bilayers formed by a novel chimeric phospholipid, ChemPPC, that incorporates a cholesteryl moeity and a C-16 aliphatic chain, each covalently linked via a glycerol backbone to phosphatidylcholine. The structures of the ChemPPC monolayers and bilayers are compared against those formed from pure dipalmitoylphoshatidylcholine (DPPC) and those formed from a 60:40 mol % mixture of DPPC and cholesterol. In accord with previous findings showing that very similar macroscopic properties were exhibited by ChemPPC and 60:40 mol % DPPC/cholesterol vesicles, it is found here that the chimeric lipid and lipid/sterol mixture have very similar monolayer structures (each having a monolayer thickness of ~26 ?), and they also form vesicles with similar lamellar structure, each having a bilayer thickness of ~50 ? and exhibiting a repeat spacing of ~65 ?. The interfacial area of ChemPPC, however, is around 10 ?(2) greater than that of the combined DPPC/cholesterol unit in the mixed lipid monolayer (viz., 57 ± 1 vs 46 ± 1 ?(2), at 35 mN·m(-1)), and this difference in area is attributed to the succinyl linkage which joins the ChemPPC steroid and glyceryl moieties. The larger area of the ChemPPC is reflected in a slightly thicker monolayer solvent distribution width (9.5 vs 9 ? for the DPPC/cholesterol system) and by a marginal increase in the level of lipid headgroup hydration (16 vs 13 H(2)O per lipid, at 35 mN·m(-1)).  相似文献   

19.
The properties of n-tetradecane/electrolyte emulsions with DPPC or DPPC vesicles in the electrolyte solution were investigated. The DPPC molecules form different aggregates, which possess different surface affinity, size and structure, and therefore we assumed some differences in the adsorption at the oil droplet/water interface. The n-tetradecane emulsions in 1:1, 1:2 and 1:3 electrolytes were prepared by mechanical stirring in the presence of DPPC at natural pH. Electrokinetic properties of the systems were investigated taking into account the effective diameter and multimodal size distribution of the droplets as well as the zeta potentials using the dynamic light scattering technique. The zeta potential of the droplets was negative in all systems with NaCl. In the emulsions with CaCl(2) at a higher concentration of electrolyte and emulsions with LaCl(3) with all investigated concentrations, positive values were observed. Similar measurements were performed for DPPC vesicles in the electrolyte solution. The pH and ionic strength changes induce those in the electrical charge of DPPC layer or vesicle surface. This is due to the fact that the DPPC molecule contains -PO(-) and -N(CH(3))(3) groups, which are in equilibrium with H(+) and OH(-), as well as other ions present in the solution, i.e. Na(+), Ca(2+), La(3+) or Cl(-). In the n-tetradecane/electrolyte emulsion stabilized by DPPC or DPPC vesicles the zeta potential may be also related to acid-base interactions. The effect of the ions from the solution on the DPPC layer adsorbed on n-tetradecane droplets or DPPC vesicles is discussed.  相似文献   

20.
Lipid vesicles made up of dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) were used as a biological membrane model to investigate the interaction between natural and modified β-cyclodextrins and these membrane bilayers. Differential scanning calorimetry was used to study the thermotropic behavior of the DPPC vesicles and any change caused by the presence of cyclodextrins. The presence of dimethyl-β-cyclodextrin (DM-β-CyD) triggered a reduction in the enthalpy values related to the main transition peak from gel state to liquid crystal phase of DPPC aqueous dispersions, as a function of the DM-β-CyD molar fraction: the larger the amount of DM-β-CyD, the greater the reduction in ΔHvalues. This effect was probably due to the ability of DM-β-CyD to extract and to complex the DPPC molecules forming the phospholipid vesicles. The presence of β-cyclodextrin (β-CyD) or hydroxypropyl-β-cyclodextrin (HP-β-CyD) caused no particular alteration in the thermotropic parameters of DPPC vesicles, whereas trimethyl-β-cyclodextrin (TM-β-CyD) at molar fractions higher than 0.12 caused broadening of the transition peak due to a possible interaction with the hydrophobic part of the bilayers. Experiments on DPPC–cholesterol (10 mol%) vesicles showed the capability of β-CyD and TM-β-CyD to extract cholesterol from the ordered bilayer structures, triggering an alteration in the lipid constituents of the membranes. HP-β-CyD caused no variation in the thermotropic parameters of the DPPC–cholesterol (10 mol%) vesicles. The findings show that HP-β-CyD seems the most suitable molecular drug carrier forin vivoadministration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号