首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 33 毫秒
1.
Zhao D  Ding K 《Organic letters》2003,5(8):1349-1351
[reaction: see text] A highly efficient and practical optical resolution of anti-head-to-head racemic coumarin dimer, (+/-)-5, by molecular complexation with TADDOL (6) through hydrogen bonding and a convenient transformation of enantiopure 5 to a new type of C(2)-symmetric bisphosphine ligand (3) have been achieved. The asymmetric induction efficiency of these chiral bisphosphine ligands was evaluated in Pd-catalyzed asymmetric allylic substitution, affording the allylic substitution products in excellent yield (up to 99%) and enantioselectivity (up to 98.9% ee).  相似文献   

2.
[structure: see text] We have designed a series of diphosphite ligands to study the effect of the backbone, the size of the chelate ring, and the substituents of the biphenyl moieties and to determine the scope of this type of ligand in the Pd-catalyzed asymmetric substitution reactions of different types of substrates. Good-to-excellent activities and enantioselectivities have been obtained for disubstituted linear substrate 11 (TOF's up to >2000 mol x (mol x h)(-1), ee values up to 99%) and cyclic substrate 14 (TOF up to 285 mol x (mol x h)(-1), ee values up to 92%). However, these ligands are inadequate for the Pd-catalyzed allylic alkylation of monosubstituted linear substrates because they provide low enantioselectivities.  相似文献   

3.
We describe the highly selective palladium catalyzed kinetic resolutions of the racemic cyclic allylic carbonates rac-1 a-c and racemic acyclic allylic carbonates rac-3 aa and rac-3 ba through reaction with tert-butylsulfinate, tolylsulfinate, phenylsulfinate anions and 2-pyrimidinethiol by using N,N'-(1R,2R)-1,2-cyclohexanediylbis[2-(diphenylphosphino)-benzamide] (BPA) as ligand. Selectivities are expressed in yields and ee values of recovered substrate and product and in selectivity factors S. The reaction of the cyclohexenyl carbonate 1 a (>/=99 % ee) with 2-pyrimidinethiol in the presence of BPA was shown to exhibit, under the conditions used, an overall pseudo-zero order kinetics in regard to the allylic substrate. Also described are the highly selective palladium catalyzed asymmetric syntheses of the cyclic and acyclic allylic tert-butylsulfones 2 aa, 2 b, 2 c, 2 d and 4 a-c, respectively, and of the cyclic and acyclic allylic 2-pyrimidyl-, 2-pyridyl-, and 4-chlorophenylsulfides 5 aa, 5 b, 5 ab, 6 aa-ac, 6 ba and 6 bb, respectively, from the corresponding racemic carbonates and sulfinate anions and thiols, respectively, in the presence of BPA. Synthesis of the E-configured allylic sulfides 6 aa, 6 ab, 6 ac and 6 bb was accompanied by the formation of minor amounts of the corresponding Z isomers. The analogous synthesis of allylic tert-butylsulfides from allylic carbonates and tert-butylthiol by using BPA could not be achieved. Reaction of the cyclopentenyl esters rac-1 da and rac-1 db with 2-pyrimidinethiol gave the allylic sulfide 5 c having only a low ee value. Similar results were obtained in the case of the reaction of the cyclohexenyl carbonate rac-1 a and of the acyclic carbonates rac-3 aa and rac-3 ba with 2-pyridinethiol and lead to the formation of the sulfides 5 ab, 6 ab, and 6 bb, respectively. The low ee values may be ascribed to the operating of a "memory effect", that is, both enantiomers of the substrate give the substitution product with different enantioselectivities. However, in the reaction of the racemic carbonate rac-1 a as well as of the highly enriched enantiomers 1 a (>/=99 % ee) and ent-1 a (>/=99 % ee) with 2-pyrimidinethiol the ee values of the substrates and the substitution product remained constant until complete conversion. Similar results were obtained in the reaction of the cyclic carbonates rac-1 a, ent-1 a (>/=99 % ee) and ent-1 c (>/=99 % ee) with lithium tert-butylsulfinate. Thus, in the case of rac-1 a and 2-pyrimidinthiol and tert-butylsulfinate anion as nucleophiles the enantioselectivity of the substitution step is, under the conditions used, independent of the chirality of the substrate; this shows that no "memory effect" is operating in this case. Hydrolysis of the carbonates ent-1 a-c, ent-3 aa and ent-3 ba, which were obtained through kinetic resolution, afforded the enantiomerically highly enriched cyclic allylic alcohols 9 a-c (>/=99 % ee) and acyclic allylic alcohols 10 a (>/=99 % ee) and 10 b (99 % ee), respectively.  相似文献   

4.
A library of phosphite-oxazoline/oxazine ligands L1-L15 a-h has been synthesized and screened in the Pd-catalyzed allylic substitution reactions of several substrate types. These series of ligands can be prepared efficiently from easily accessible hydroxyl amino acid derivatives. Their modular nature enables the substituents/configurations in the oxazoline/oxazine moiety, alkyl backbone chain and in the biaryl phosphite moiety to be easily and systematically varied. By carefully selecting the ligand components, therefore, high regio- and enantioselectivities (ee values up to 99 %) and good activities have been achieved in a broad range of mono- and disubstituted linear hindered and unhindered liner and cyclic substrates. The NMR studies on the Pd-pi-allyl intermediates provide a deeper understanding about the effect of the ligand parameters on the origin of enantioselectivity. It also indicates that the nucleophilic attack takes place predominantly at the allylic terminal carbon atom located trans to the phosphite moiety.  相似文献   

5.
Three series of P-chiral diphosphines based on ferrocene (1a-f, 2a-c) and biferrocenyl skeletons (3a-c), including novel ligands 1f and 3c, were employed in palladium-catalyzed allylic substitution reactions. Steric effects imposed by the phosphine residues were studied using C2-symmetrical donors 1 (1 = 1,1'-bis(arylphenylphosphino)ferrocene with aryl groups a = 1-naphthyl, b = 2-naphthyl, c = 2-anisyl, d = 2-biphenylyl, e = 9-phenanthryl, and f = ferrocenyl), whereas para-methoxy- and/or para-trifluoromethyl substitution of the phenyl moieties in 1a enabled investigation of ligand electronic effects applying ferrocenyl diphosphines 2a-c. Ligands 3 (3 = 2,2'-bis- (arylphenylphosphino)-1,1'-biferrocenyls with aryl substituents a,c = 1-naphthyl (diastereomers) and b = 2-biphenylyl) allowed for comparison of backbone structure effects (bite angle variation) in catalysis. Linear and cyclic allylic acetates served as substrates in typical test reactions; upon attack of soft carbon and nitrogen nucleophiles on (E)-1,3-diphenylprop-2-ene-1-yl acetate the respective malonate, amine, or imide products were obtained in enantioselectivities of up to 99% ee. A crystal structure analysis of a palladium 1,3-diphenyl-eta 3-allyl complex incorporating ligand (S,S)-1a revealed a marked distortion of the allyl fragment, herewith defining the regioselectivity of nucleophile addition.  相似文献   

6.
We have designed a new library of readily available, highly modular phosphite-phosphoramidite ligands for asymmetric allylic substitution reactions. They are easily prepared in one step from commercially available chiral 1,2-amino alcohols. The introduction of a phosphoramidite moiety into the ligand design is highly advantageous for the product outcome. This ligand library affords high reaction rates (TOFs of up to 800 mol (mol h)(-1)) and enantioselectivities (ees of up to 99%) and, at the same time, contains a broad range of disubstituted hindered and unhindered substrate types. NMR study of the Pd-pi-allyl intermediates provide a deeper understanding of the effect of the ligand parameters on the origin of enantioselectivity.  相似文献   

7.
《Tetrahedron: Asymmetry》2007,18(21):2557-2564
Diamidophosphite P1-monodentate, ligands based on terpene alcohols and (S)- or (R)-(2-anilinomethyl)pyrrolidine, induce high enantioselectivities (ee’s up to 99%) in Pd-catalyzed allylic substitution reactions. In the Pd-catalyzed deracemization of ethyl (E)-1,3-diphenylallyl carbonate up to 92% enantioselectivity has been achieved. The Rh-catalyzed asymmetric hydrogenation of α-dehydrocarboxylic acid esters leads to a maximum of 56% ee with quantitative conversion. Diastereomeric diamidophosphites prepared from [(1S)-endo]-(−)-borneol were found to be the most efficient stereoselectors.  相似文献   

8.
Chiral mixed phosphorus/sulfur ligands 1-3 have been shown to be effective in enantioselective Rh-catalyzed dehydroamino acid hydrogenation and ketone hydrosilylation reactions (eqs 1, 2). After assaying the influence of the substituents at sulfur, the substituents on the ligand backbone, the relative stereochemistry within the ligand backbone, and the substituents at phosphorus, ligands 2c (R = 3,5-dimethylphenyl) and 3 were found to be optimal in the Rh-catalyzed hydrogenation of a variety of alpha-acylaminoacrylates in high enantioselectivity (89-97% ee). A similar optimization of the catalyst for the Rh-catalyzed hydrosilylation of ketones showed that ligand 3 afforded the highest enantioselectivities for a wide variety of aryl alkyl and dialkyl ketones (up to 99% ee). A model for asymmetric induction in the hydrogenation reaction is discussed in the context of existing models, based on the absolute stereochemistry of the products and the X-ray crystal structures of catalyst precursors and intermediates.  相似文献   

9.
[reaction: see text] C(2)-symmetric tridentate bis(oxazoline) and bis(thiazoline) ligands with a diphenylamine backbone have been investigated in the catalytic asymmetric Henry reaction of alpha-keto esters with different Lewis acids. Their Cu(OTf)(2) complexes furnished S enantiomers, while Et(2)Zn complexes afforded R enantiomers, both of them with higher enantioselectivities (up to 85% ee). Reversal of enantioselectivity in asymmetric Henry reactions was achieved with the same chiral ligand by changing the Lewis acid center from Cu(II) to Zn(II). The results show that the NH group in C(2)-symmetric tridentate chiral ligands plays a very important role in controlling both the yields and enantiofacial selectivity of the Henry products.  相似文献   

10.
The asymmetric allylic alkenylation of Morita-Baylis-Hillman (MBH) carbonates with N-itaconimides as nucleophiles has been developed using a commercially available Cinchona alkaloid catalyst. A variety of multifunctional chiral α-methylene-β-maleimide esters were attained in moderate to excellent yields (up to 99%) and good to excellent enantioselectivities (up to 91% ee). The origin of the regio- and stereoselectivity was verified by DFT methods. Calculated geometries and relative energies of various transition states strongly support the observed regio- and enantioselectivity.  相似文献   

11.
The palladium-catalyzed allylic alkylation of KSAc and KSBz with racemic cyclic and acyclic allylic esters by using N,N'-(1R,2R)-1,2-cyclohexandiylbis[2-(diphenylphosphino)-benzamide] as ligand frequently gave the corresponding allylic thioesters with high ee values and yields. The reaction of the cyclic allylic carbonates with KSAc in the presence of H(2)O was accompanied by a partial palladium-catalyzed enantioselective "hydrolysis" of the substrates with formation of the corresponding enantioenriched allylic alcohols. The degree of the "hydrolysis" was strongly dependent on the solvent and the thiocarboxylate ion. Highly selective kinetic resolutions (KRs) were observed in the palladium-catalyzed reaction of the racemic cyclohexenyl and cycloheptenyl acetates with KSAc. While the KR of the cyclohexenyl acetate is characterized by a selectivity factor S = 72 +/- 19, that of the cycloheptenyl acetate afforded (R)-cycloheptenyl acetate of >or=99% ee in 48% yield and (S)-cycloheptenyl thioacetate of 98% ee in 50% yield. The palladium-catalyzed reaction of the racemic cyclopentenyl acetate with KSAc showed a strong "memory effect" (ME), that is, both enantiomers reacted with different enantioselectivities. The ME was probed by studying the palladium-catalyzed reactions of both the matched acetate of >or=99% ee and the mismatched acetate of >or=99% ee with KSAc. The acetates not only reacted with different enantioselectivities and rates but also suffered an unexpected and concomitant palladium-catalyzed racemization in the presence of the chiral ligand. This led in the case of the mismatched acetate to a temporary dynamic kinetic resolution (DKR) that featured a racemization of the mismatched acetate by the chiral catalyst. Studies of the palladium-catalyzed reaction of the racemic cyclopentenyl acetate, carbonate, and naphthoate with KSAc in the presence of the chiral ligand also showed the ME to be strongly dependent on the nucleofuge. This also allowed the synthesis of (S)-cyclopentenyl thioacetate of 92% ee in high yield from the racemic cyclopentenyl naphthoate.  相似文献   

12.
胡向平 《分子催化》2012,26(6):487-492
将苯乙胺衍生的手性膦-亚磷酰胺酯配体应用在Rh-催化α-烯醇酯膦酸酯的不对称氢化反应中,考察了配体结构及反应条件对反应结果的影响,并在优化的条件下研究了各种底物的适用范围,产物的对映选择性最高>99%ee.  相似文献   

13.
Vanda R. Marinho 《合成通讯》2013,43(24):4423-4428
One relatively unexploited commercial ligand, Walphos 1, was tested in the Pd(0)-catalyzed asymmetric allylic alkylation using rac-1,3-diphenyl propenyl acetate and rac-1-acetoxycyclohexene as substrates, methyl malonate as nucleophile, and a variety of Pd precatalysts under standard conditions. The conversions and enantioselectivities were generally good, with the greatest substrate conversion of 99% and a greatest ee of 70%. With the latter cyclic substrate, an enantioselectivity of 98% was obtained, but the conversions were all poor (15–33%).  相似文献   

14.
The design of new chiral ligands plays a very important role in the development of transition metal catalyzed asymmetric synthesis. Many chiral diphosphine ligands have been prepared and applied in asymmetric catalytic reactions with excellent enantioselectivities. Among the chiral diphosphine ligands reported, BINAP was found to have been the widest application in the transition metal catalyzed reaction. Recently we have developed a novel oxovanadium (Ⅳ) complex catalyst for the oxidative …  相似文献   

15.
A series of [5]ferrocenophane diphosphane ligands were used in Pd-catalyzed allylic substitution reactions. With a symmetrical substrate, 1,3-diphenylpropenyl acetate, enantioselectivities between 70% and 94% ee were observed. Several non-symmetrically substituted allylic substrates were also used. Depending on the substituents of the non-symmetrical allylic substrates, various degrees of regioselectivity (from 1:1 to 100:0) and enantioselectivity (from 0% to 96% ee) were observed. Tentative catalytically active complexes were studied by DFT computational methods.  相似文献   

16.
Ghosh AK  Matsuda H 《Organic letters》1999,1(13):2157-2159
[formula: see text] Platinum and palladium chiral bisphosphine complexes and their counterion effects in asymmetric Diels-Alder reactions have been investigated. The reaction of cyclopentadiene and various bidentate dienophiles in the presence of a catalytic amount of Pt(II)- or Pd(II)-BINAP complex proceeds with excellent endo/exo selectivity as well as endo enantioselectivity (up to 99% ee).  相似文献   

17.
Yu Jin  Da-Ming Du 《Tetrahedron》2012,68(18):3633-3640
The phosphine oxide-linked bis(oxazoline) ligands were designed and synthesized in two ways. One is the coupling of Grignard reagent derived from 2-(2-bromophenyl)oxazoline with phenylphosphonic dichloride, another route is the condensation of bis(2-formylphenyl)(phenyl)phosphine oxide with chiral amino alcohols followed by NBS oxidation. These new bis(oxazoline) ligands were applied in Pd-catalyzed asymmetric allylic alkylation reactions and good yields and enantioselectivities were obtained with diphenyl substituted ligand (up to 95% ee).  相似文献   

18.
Kharasch and Sosnovsky reported the allylic oxidation of alkenes to give racemic allylic benzoates. This could be achieved efficiently using a tert-butyl perester as the oxidant, in the presence of a copper or cobalt salt. The use of C(2)-symmetric bis(oxazoline) ligands in the presence of copper(I) triflate with cyclic olefinic substrates gave the first synthetically useful asymmetric variant. The enantioselective control was good (up to 84 % ee) although yields were variable. In all cases the facial preference of the newly formed C-O bond was the same giving an S configuration at the allylic stereocenter. Lower stereocontrol was observed for large-ring alkenes and substantially reduced enantioselectivities were found with open-chain alkenes. This reaction has been further screened using a variety bis(oxazoline) and proline-derived ligands, which give a direct correlation between the chirality of the ligand and the enantioselectivity obtained. Individual substrates were found to be extremely sensitive to both the ligand structure and copper salt used as well as the presence of additives such as zinc, hydrazine, and molecular sieves.  相似文献   

19.
A series of diphosphite, phosphine-phosphite, and thioether-phosphite ligands 1-5 with a furanoside backbone have been used in the enantioselective palladium-catalyzed allylic substitution of rac-1,3-diphenyl-2-propenyl acetate giving low to high enantioselectivies (from close to 0% to 97% ee). The modular nature of these ligands enables systematic investigations of the effect of the ligand structure on the enantioselectivity. The enantioselectivity is mainly determined by the configuration of the stereogenic center C-3 of the furanose backbone. From this we conclude that the attack of the nucleophile takes place trans toward the donating group at the stereogenic C-5 atom. Systematic variation of the donor group attached to the carbon atom C-5 indicated that the presence of a bulky phosphite functionality has a positive effect on enantioselectivity. Thus, the highest ee's are obtained using the bulky diphosphite ligand 1b containing a xylofuranoside backbone.  相似文献   

20.
We have designed and synthesized a new family of readily available highly modular phosphite-oxazoline ligands for the Pd-catalyzed asymmetric allylic substitution reactions. The introduction of a pi-acceptor flexible bulky biphenyl phosphite moiety in the ligand design is highly adventitious in the product outcome. Thus, this ligand series affords excellent reaction rates (TOF's up to >2400 mol.(mol.h)-1) and enantioselectivities (ee's up to >99%) and, at the same time, shows a broad scope for different substrate types.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号