首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The phase of a liquid crystal (LC) changing from a nematic phase to a cholesteric (Ch) mesophase is achieved by adding different ratios of chiral dopants S811. By studying the transmission spectrum, we are able to measure the helical pitch in cholesteric phase. The pitch in the mixtures of nematic E7 and chiral dopants S811 as a function of the concentration of the dopant and temperature is investigated. The sensitivity of the selective reflection notch of the cholesteric phase to the thermal tuning depends strongly on the ratios of the chiral dopants. It reveals that the influence of temperature is more profound for those cholesteric liquid crystals (CLCs) which exhibit smectic A (SmA) at lower temperatures. When fitted using Keating's formula, the helical pitch calculated from our experimental results lies on the predicted curve. Optimised ratios of the mixture CLCs for the optimised reflection band with the specified wavelength ranging from 467 nm to 2123 nm are suggested.  相似文献   

2.
(Acetyl) (ethyl) cellulose (AEC) polymers with an ethyl degree of substitution (DS) of 2.5 and acetyl DS ranging from 0 to 0.5 dissolve readily in a wide range of organic solvents and form chiral nematic liquid crystalline phases in concentrated solution. The chiroptical properties of these liquid crystals are strongly influenced by the acetyl content and solvent. In dichloromethane, dibromomethane, chloroform, bromoform, m-cresol, acetic acid, and aqueous phenol, the AEC lyotropic mesophases all show a handedness inversion as the acetyl DS of the polymers is increased, changing from left- to right-handed supermolecular helicoidal structures. The temperature dependence of the pitch for these mesophases is also reversed from negative to positive with increasing acetyl DS in all the above solvents except aqueous phenol, in which the corresponding AEC mesophases change from positive to negative. The optical microscopic, optical diffraction, and ORD evidence provide a unique indication that the reversal of the handedness and temperature dependence for the AEC mesophases occurs at a compensated degree of acetylation, DA*. The corresponding compensated mesophases show an infinite pitch and behave optically like nematic mesophases. The value of the DA* is dependent on solvent. In dichloroacetic acid, AEC liquid crystals remain right-handed, independent of the acetyl DS. At given concentration and temperature, the long pitch samples flow much more readily than short pitch samples. © 1994 John Wiley & Sons, Inc.  相似文献   

3.
While the temperature dependence of the lyotropic cholesteric pitch of the single helical sense poly ((R)-2,6-dimethylheptyl isocyanate) is in line with theory, comparable data on this state produced by chiral doping of the lyotropic nematic state of poly(n-hexyl isocyanate) could suggest an interplay between the supramolecular chirality of the liquid crystal and the dynamic equilibrium of the left and right hand helical blocks in this otherwise racemic polyisocyanate. The exclusion of helix reversals, as undersireable kinks in the liquid crystal organization, could play a role in this effect. Such helix reversal exclusions can also explain the peculiar chiral optical changes associated with the thermally reversible gelation of poly(n-hexyl isocyanate) copolymers in hydrocarbon solvents. These gels likely arise by entering the broad biphasic region of the Flory phase diagram leading to the formation of liquid crystal aggregates.  相似文献   

4.
Lattice structures, including reflection lattice planes and lattice constant, of liquid-crystal blue phase I (BPI) are studied via the measurements on reflection spectrum and Kossel diagram as concentration of a chiral dopant is changed. Peaks of the reflection wavelength in BPI are mainly dominated by the lattice plane and the lattice constant, which are affected by the chiral concentration. In the chiral nematic state, as decreasing the chiral concentration the reflection peak will shift to a longer wavelength because the helical pitch linearly depends on the chiral concentration and becomes longer. However, this dependence of the chiral concentration and reflection wavelength is broken in the BPI. The reflection peak of BPI moves to a short wavelength when the chiral concentration is less due to the contraction of the lattice constant as well as helical pitch. Moreover, when the concentration of the chiral dopant increases over a certain value, a discontinuous shift in reflection peak occurs due to the production of the different lattice planes. It means that the relationship between the chiral concentration and the helical pitch in BPI is not the same as it in the chiral nematic phase and should be reconsidered.  相似文献   

5.
<正>A novel series of chiral dopants synthesized from(S)-1,2-propanediol and mesogenic carboxylic acids were characterized by FT-IR,~1H NMR,elemental analysis and their helical twisting properties were investigated by doping the chiral dopants into a nematic liquid crystal host(SLC-1717).The results show that,the helical pitch of N~*-LC mixture exhibited a terminal alkyl chain length dependence and the molecular twisting power β also exhibited a temperature dependence(increasing β with increasing temperature).  相似文献   

6.
Chiral helical polymers have been expected to exhibit optical activity with a significantly large optical rotation power. In this paper polymethylphenylethylcarbodiimides (Poly-PhEMCDI) with helical structure were synthesized by the insertion polymerization of a corresponding chiral monomeric carbodiimide initiated by a copper complex. The circular dichroism spectra and optical rotation power induced by the ordered rigid main chain helical structure of polycarbodiimides, in solution and as cast films, were studied. Polycarbodiimides have a rigid rod helical structure and form lyotropic liquid crystal (LLC) in organic solvents such as dichloromethane (DCM), chloroform and THF. The LLC phase was studied using polarizing optical microscopy and X-ray diffraction. A chiral nematic phase was formed in DCM and chloroform in the concentration range 20–36%. Spherulites were formed in more concentrated solution. The formation of a LLC phase in polycarbodiimides organic solutions makes it possible to align the polymer helical chain to form an ordered film for electro-optical applications.  相似文献   

7.
A new type of polymer-liquid crystal composite with photovariable dichroism and birefringence is described. Porous stretched polyethylene films were used as polymer matrices. To induce a cholesteric phase in a commercial nematic host, a chiral photochromic dopant based on sorbide and cinnamic acid capable of E-Z isomerization under UV irradiation was used. A merocianine-type substance was selected as a dichroic dye. Introduction of a dye-doped cholesteric mixture with a helical pitch higher than ∼300 nm to polymer film led to an almost complete transition from a cholesteric to an oriented nematic phase, as well as to an increase in birefringence and the appearance of dichroism. Decrease of the helical pitch by increasing in the chiral dopant concentration in the liquid crystal-polymer composite results in a reduction of the dichroism values. UV irradiation of polymer composite leading to an isomerization of the chiral dopant and helix untwisting induces a noticeable gradual growth of dichroism and birefringence. These new composites can be considered as promising materials for optical applications.  相似文献   

8.
Chiral helical polymers have been expected to exhibit optical activity with a significantly large optical rotation power. In this paper polymethylphenylethylcarbodiimides (Poly-PhEMCDI) with helical structure were synthesized by the insertion polymerization of a corresponding chiral monomeric carbodiimide initiated by a copper complex. The circular dichroism spectra and optical rotation power induced by the ordered rigid main chain helical structure of polycarbodiimides, in solution and as cast films, were studied. Polycarbodiimides have a rigid rod helical structure and form lyotropic liquid crystal (LLC) in organic solvents such as dichloromethane (DCM), chloroform and THF. The LLC phase was studied using polarizing optical microscopy and X-ray diffraction. A chiral nematic phase was formed in DCM and chloroform in the concentration range 20-36%. Spherulites were formed in more concentrated solution. The formation of a LLC phase in polycarbodiimides organic solutions makes it possible to align the polymer helical chain to form an ordered film for electro-optical applications.  相似文献   

9.
We have synthesized azobenzene-based molecules containing either one or two chiral groups. A cholesteric phase can be induced by adding the chiral azobenzene compounds to a host nematic liquid crystal. We investigated the effects of the trans - cis photoisomerization of the chiral azobenzene compounds on the properties of the cholesteric phase, such as the helical pitch length. This can be increased or decreased by the photoisomerization of the chiral azobenzene compounds. We discuss the photochemically driven change in the helical pitch of the cholesteric phase with respect to structural effects involving the chiral groups.  相似文献   

10.
A new type of polymer–liquid crystal composite with photovariable dichroism and birefringence is described. Porous stretched polyethylene films were used as polymer matrices. To induce a cholesteric phase in a commercial nematic host, a chiral photochromic dopant based on sorbide and cinnamic acid capable of E–Z isomerization under UV irradiation was used. A merocianine‐type substance was selected as a dichroic dye. Introduction of a dye‐doped cholesteric mixture with a helical pitch higher than ~300 nm to polymer film led to an almost complete transition from a cholesteric to an oriented nematic phase, as well as to an increase in birefringence and the appearance of dichroism. Decrease of the helical pitch by increasing in the chiral dopant concentration in the liquid crystal–polymer composite results in a reduction of the dichroism values. UV irradiation of polymer composite leading to an isomerization of the chiral dopant and helix untwisting induces a noticeable gradual growth of dichroism and birefringence. These new composites can be considered as promising materials for optical applications.  相似文献   

11.
Five photochromic chiral azobenzene compounds and one nonphotochromic chiral compound were synthesized and characterized by IR, 1H NMR spectroscopy, and elemental analysis. Cholesteric liquid crystalline phases were induced by mixing of the nonphotochromic chiral compound and one of the photochromic chiral azobenzene compounds in a host nematic liquid crystal (E44). The helical pitch of the induced cholesteric phase was determined by Cano's wedge method and the helical twisting power (HTP) of each sample was thus determined. The helical twisting powers of azobenzene compounds were decreased upon UV irradiation, due to trans-->cis photoisomerization of azobenzene molecules. Among the azobenzene compounds synthesized in our study, Azo-5, with isomannide (radical) as chiral photochromic dopant, showed the highest HTP and contrast ratio (Tmax/Tmin). Photoswitching between compensated nematic phase and cholesteric phase was achieved through reversible trans<-->cis photoisomerization of the chiral azobenzene molecules through irradiation with UV and visible light, respectively. Transmission rates (contrast ratios) increased with decreasing helical pitch length in the induced cholesteric phase. The influence of helical twisting power on the photoswitching behavior of chiral azobenzene compounds is discussed in detail.  相似文献   

12.
We have synthesized azobenzene-based molecules containing either one or two chiral groups. A cholesteric phase can be induced by adding the chiral azobenzene compounds to a host nematic liquid crystal. We investigated the effects of the trans-cis photoisomerization of the chiral azobenzene compounds on the properties of the cholesteric phase, such as the helical pitch length. This can be increased or decreased by the photoisomerization of the chiral azobenzene compounds. We discuss the photochemically driven change in the helical pitch of the cholesteric phase with respect to structural effects involving the chiral groups.  相似文献   

13.
A ribbon‐shaped chiral liquid crystalline (LC) dendrimer with photochromic azobenzene mesogens and an isosorbide chiral center (abbreviated as AZ3DLC) was successfully synthesized and its major phase transitions were studied by using differential scanning calorimetry (DSC) and linear polarized optical microscopy (POM). Its ordered structures at different temperatures were further identified through structure‐sensitive diffraction techniques. Based on the experimental results, it was found that the AZ3DLC molecule exhibited the low‐ordered chiral smectic (Sm*) LC phase with 6.31 nm periodicity at a high‐temperature phase region. AZ3DLC showed the reversible photoisomerization in both organic solvents and nematic (N) LC media. As a chiral‐inducing agent, it exhibited a good solubility, a high helical‐twisting power, and a large change in the helical‐twisting power due to its photochemical isomerization in the commercially available N LC hosts. Therefore, we were able to reversibly “remote‐control” the colors in the whole visible region by finely tuning the helical pitch of the spontaneously formed helical superstructures.  相似文献   

14.
Chirality switching is intriguing for the dynamic control of the electronic and optical properties in nanoscale materials. The ability to photochemically switch the chirality in liquid crystals (LCs) is especially attractive given their potential applications in electro-optic displays, optical data storage, and the asymmetric synthesis of organic molecules and polymers. Here, we present a dynamic photoswitching of the helical inversion in chiral nematic LCs (N*-LCs) that contain photoresponsive axially chiral dopants. Novel photoresponsive chiral dithienylethene derivatives bearing two axially chiral binaphthyl moieties are synthesized. The dihedral angle of the binaphthyl rings changes via the photoisomerization between the open and closed forms of the dithienylethene moiety. The N*-LCs induced by the dithienylethene derivatives that are used as chiral dopants exhibit reversible photoswitching behaviors, including a helical inversion in the N*-LC and a phase transition between the N*-LC and the nematic LC. The present compounds are the first chiral dopants that induce a helical inversion in N*-LC via the photoisomerization between open and closed forms of the dithienylethene moiety.  相似文献   

15.
Ferroelectric liquid-crystalline polymers and copolymers were synthesized from acrylate polymers with side chains consisting of a flexible spacer unit, a mesogenic unit and an optically active substituent. In the chiral smectic C (S*c) phases typical fan-shaped textures with equidistant lines (caused by the helical structures) were observed. It was found that the helical pitch increased with increasing polymer molecular weight. The helical pitch also increased in copolymers containing mixtures of right- and left-handed chiral side chains.  相似文献   

16.
The optical microscopic mass transport (OMMT) method was utilized to determine the cholesteric pitch values of the mixtures of mesogenic and non-mesogenic chiral species in nematic materials. The cholesteric pitch was determined by transient analysis of the diffusion profile established by allowing an initial cholestric composition (solute) to diffuse under semi-infinite linear boundary conditions into an oriented thin film of its corresponding nematic solvent. During the steady-state diffusion, where the initial concentration (pitch) remains constant, the transient analysis of the profile with a polarization microscope exhibits a maximum number of pitch discontinuity domains. The evaluation of the unknown pitch was carried out by extrapolation of the diffusion pitch gradient to the original diffusion source by using the exact relation between the pitch and the film thickness. The method is experimentally simple; at constant temperature and pressure, determination of the pitch depends only on the film thickness. There is a good agreement between the pitch values obtained with this method and those from conventional techniques.  相似文献   

17.
A phototunable polymer-stabilised liquid crystal film reflecting both right- and left-circularly polarised light has been successfully fabricated by a washout/refill method. The film was obtained by prefabricating the polymer network with a left-handed helical structure and then refilling a light-driven chiral nematic liquid crystal with a right-handed helical structure into the network. Interestingly, the reflection wavelength and the reflectivity properties can be precisely tuned by UV-light irradiation. A hyper-reflective notch, the reflectivity of which approaches 100%, was achieved in a layer when the pitch lengths of the two opposite helical structures are almost the same. Moreover, their original state can be properly returned by visible-light irradiation.  相似文献   

18.
It is demonstrated that the sign of helical twisting power (HTP) of an enantiomeric Ru(III) complex of type [Ru(acac)(2)L] can be switched by choosing L from either L(per) or L(para), which is elongated either perpendicular or parallel to the C(2) symmetry axis, and four states become available in combination with DeltaLambda-chirality of the metal center. Complexes 1-n, in which 4,4'-dialkoxylated dibenzoylmethanate ligands are used as L(per), and 2 having L(para) = 3-(4'-decyloxyphenyl)pentane-2,4-dionate ligand were prepared for this purpose. They were optically resolved into the enantiomers by means of a clay column chromatography, and their performance as chiral dopants was evaluated in nematic liquid crystals including a room-temperature system, N-methoxybenzylidene-4-n-butylaniline (MBBA), which allowed facile measurements of the helical pitch lengths and CD spectra in the induced chiral nematic states. The induced CD signals have provided a clear evidence for the helical inversion between the two structure types, 1 and 2, of the same chirality. The twisting power of these six-coordinate metal complexes and their structure versus twist sense correlations are interpreted by the shape model. Intrinsically high HTP of Delta-[Ru(acac)(2)L(per)] has also allowed for observation of the pitch band due to the selective reflection in the visible wavelength range at the doping level of 2 mol % in MBBA.  相似文献   

19.
Optical rotation and circular dichroism measurements performed in the pretransitional isotropic region above the chiral smectic phases TGBA*, TGBC*, S*C, and S*A exhibited by 1-alkylalkyl 4'-(4'-n-alkoxyphenylpropioloyloxy)biphenyl-4-carboxylates are reported. These results revealed a high degree of increasing chiral ordering on cooling in the isotropic phase, particularly in the temperature region where a broad DSC peak appears. However, the behaviour of the pretransitional optical activity was unlike that commonly observed for chiral nematic or blue phase compounds and did not follow a simple Landau-de Gennes temperature dependence. Characteristic features of the pretransitional optical activity may aid in understanding the local structure of chiral smectic phases. Electric fields did not seem to influence the results significantly, but strong electric field-induced optical rotation behaviour was demonstrated for a mixture constituted of the laterally fluorinated propiolate ester component and a nematic with a large positive dielectric anisotropy. These field-induced results could be fitted to expressions from the existing theory of pretransitional optical activity. Circular dichroism studies at low temperatures were performed for two compounds in dilute solution and were found to exhibit very large changes in their extinction coefficient at wavelengths in the ultraviolet region, which may indicate strong chiral interactions even in dilute isotropic solutions of these materials.  相似文献   

20.
A homologous series of chiral three ring esters were synthesised and their properties were studied. The materials possess an antiferroelectric phase (SmCA*) or/and a ferroelectric phase (SmC*), which was confirmed by observations of microscopic textures using a polarising optical microscope. The phase transition temperatures and enthalpies were checked by differential scanning calorimetry. The helical pitch was measured by a spectrophotometry method. For all cases the helix is right-handed, in the antiferroelectric phase the helical pitch increases with temperature, and in the ferroelectric phase the helical pitch is short.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号