首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
In 2‐(2‐deoxy‐β‐d ‐erythro‐pentofuranosyl)‐1,2,4‐triazine‐3,5(2H,4H)‐dione (6‐aza‐2′‐deoxy­uridine), C8H11N3O5, (I), the conformation of the glycosylic bond is between anti and high‐anti [χ = −94.0 (3)°], whereas the derivative 2‐(2‐deoxy‐β‐d ‐erythro‐pentofuranosyl)‐N4‐(2‐methoxy­benzoyl)‐1,2,4‐triazine‐3,5(2H,4H)‐dione (N3‐anisoyl‐6‐aza‐2′‐deoxy­uridine), C16H17N3O7, (II), displays a high‐anti conformation [χ = −86.4 (3)°]. The furanosyl moiety in (I) adopts the S‐type sugar pucker (2T3), with P = 188.1 (2)° and τm = 40.3 (2)°, while the sugar pucker in (II) is N (3T4), with P = 36.1 (3)° and τm = 33.5 (2)°. The crystal structures of (I) and (II) are stabilized by inter­molecular N—H⋯O and O—H⋯O inter­actions.  相似文献   

2.
In the title compound, 3‐amino‐2‐(2‐deoxy‐β‐d ‐erythro‐pento­furan­osyl)‐6‐methyl‐1,2,4‐triazin‐5(2H)‐one, C9H14N4O4, the conformation of the N‐glycosidic bond is high‐anti and the 2‐deoxy­ribo­furan­osyl moiety adopts a North sugar pucker (2T3). The orientation of the exocyclic C—C bond between the –CH2OH group and the five‐membered ring is ap (gauche, trans). The crystal packing is such that the nucleobases lie parallel to the ac plane; the planes are connected via hydrogen bonds involving the five‐membered ring.  相似文献   

3.
Nucleobase‐anion glycosylation of 2‐[(2‐methyl‐1‐oxopropyl)amino]imidazo[1,2‐a]‐1,3,5‐triazin‐4(8H)‐one ( 6 ) with 3,5‐di‐O‐benzoyl‐2‐deoxy‐2‐fluoro‐α‐D ‐arabinofuranosyl bromide ( 8 ) furnishes a mixture of the benzoyl‐protected anomeric 2‐amino‐8‐(2‐deoxy‐2‐fluoro‐D ‐arabinofuranosyl)imidazo[1,2‐a]‐1,3,5‐triazin‐4(8H)‐ones 9 / 10 in a ratio of ca. 1 : 1. After deprotection, the inseparable anomeric mixture 3 / 4 was silylated. The obtained 5‐O‐[(1,1‐dimethylethyl)diphenylsilyl] derivatives 11 and 12 were separated and desilylated affording the nucleoside 3 and its α‐D anomer 4 . Similar to 2′‐deoxy‐2′‐fluoroarabinoguanosine, the conformation of the sugar moiety is shifted from S towards N by the fluoro substituent in arabino configuration.  相似文献   

4.
The title compound, C16H14FNOS, crystallizes with Z′ = 2 in the space group P21/c. In one of the two independent molecules, the heterocyclic ring is effectively planar, but in the other molecule this ring adopts an envelope conformation. The molecules are weakly linked by two C—H...O hydrogen bonds to form C22(14) chains. Comparisons are made with some symmetrically substituted 2‐aryl‐3‐benzyl‐1,3‐thiazolidin‐4‐ones.  相似文献   

5.
An efficient one‐pot synthesis of 3‐[(4,5‐dihydro‐1H‐pyrrol‐3‐yl)carbonyl]‐2H‐chromen‐2‐one (=3‐[(4,5‐dihydro‐1H‐pyrrol‐3yl)carbonyl]‐2H‐1‐benzopyran‐2‐one) derivatives 4 by a four‐component reaction of a salicylaldehyde 1 , 4‐hydroxy‐6‐methyl‐2H‐pyran‐2‐one, a benzylamine 2 , and a diaroylacetylene (=1,4‐diarylbut‐2‐yne‐1,4‐dione) 3 in EtOH is reported. This new protocol has the advantages of high yields (Table), and convenient operation. The structures of these coumarin (=2H‐1‐benzopyran‐2‐one) derivatives, which are important compounds in organic chemistry, were confirmed spectroscopically (IR, 1H‐ and 13C‐NMR, and EI‐MS) and by elemental analyses. A plausible mechanism for this reaction is proposed (Scheme 2).  相似文献   

6.
The title diastereoisomers, methyl 5‐(S)‐[2‐(S)‐methoxy­carbonyl)‐2,3,4,5‐tetra­hydro­pyrrol‐1‐yl­carbonyl]‐1‐(4‐methyl­phenyl)‐4,5‐di­hydro­pyrazole‐3‐carboxyl­ate and methyl 5‐(S)‐[2‐(R)‐methoxycarbonyl)‐2,3,4,5‐tetrahydropyrrol‐1‐ylcarbonyl]‐1‐(4‐methyl­phenyl)‐4,5‐di­hydro­pyrazole‐3‐carboxylate, both C19H23N3O5, have been studied in two crystalline forms. The first form, methyl 5‐(S)‐[2‐(S)‐methoxy­carbonyl)‐2,3,4,5‐tetrahydropyrrol‐1‐ylcarbonyl]‐1‐(4‐methylphenyl)‐4,5‐di­hydro­pyrazole‐3‐carboxyl­ate–methyl 5‐(S)‐[2‐(R)‐methoxy­carbonyl)‐2,3,4,5‐tetra­hydro­pyrrol‐1‐yl­carbonyl]‐1‐(4‐methylphenyl)‐4,5‐dihydropyrazole‐3‐carboxylate (1/1), 2(S),5(S)‐C19H23N3O5·2(R),5(S)‐C19H23N3O5, contains both S,S and S,R isomers, while the second, methyl 5‐(S)‐[2‐(S)‐methoxycarbonyl)‐2,3,4,5‐tetrahydro­pyrrol‐1‐ylcarbonyl]‐1‐(4‐methyl­phenyl)‐4,5‐di­hydro­pyrazole‐3‐carboxyl­ate, 2(S),5(S)‐C19H23N3O5, is the pure S,S isomer. The S,S isomers in the two structures show very similar geometries, the maximum difference being about 15° on one torsion angle. The differences between the S,S and S,R isomers, apart from those due to the inversion of one chiral centre, are more remarkable, and are partially due to a possible rotational disorder of the 2‐­(methoxycarbonyl)tetrahydropyrrole group.  相似文献   

7.
The isomorphous structures of the title molecules, 4‐amino‐1‐(2‐deoxy‐β‐d ‐erythro‐pento­furan­osyl)‐3‐iodo‐1H‐pyrazolo‐[3,4‐d]pyrimidine, (I), C10H12IN5O3, and 4‐amino‐3‐bromo‐1‐(2‐deoxy‐β‐d ‐erythro‐pento­furan­osyl)‐1H‐pyrazolo[3,4‐d]­pyrimidine, (II), C10H12BrN5O3, have been determined. The sugar puckering of both compounds is C1′‐endo (1′E). The N‐­glycosidic bond torsion angle χ1 is in the high‐anti range [?73.2 (4)° for (I) and ?74.1 (4)° for (II)] and the crystal structure is stabilized by hydrogen bonds.  相似文献   

8.
In the title compound, 4‐amino‐2‐(2‐O‐methyl‐β‐d ‐ribofuranos­yl)‐2H‐pyrazolo[3,4‐d]pyrimidine monohydrate, C11H15N5O4·H2O, the conformation of the N‐glycosylic bond is syn [χ = 20.1 (2)°]. The ribofuran­ose moiety shows a C3′‐endo (3T2) sugar puckering (N‐type sugar), and the conformation at the exocyclic C4′—C5′ bond is −ap (trans). The nucleobases are stacked head‐to‐head. The three‐dimensional packing of the crystal structure is stabilized by hydrogen bonds between the 2′‐O‐methyl­ribonucleosides and the solvent mol­ecules.  相似文献   

9.
In the monohydrate of 2‐amino‐8‐(2‐deoxy‐α‐d ‐erythro‐pento­furan­osyl)‐8H‐imidazo­[1,2‐a]­[1,3,5]­triazin‐4‐one, C10H13N5O4·H2O, denoted (I) or αZd, the conformation of the N‐gly­cosyl­ic bond is in the high‐anti range [χ = 87.5 (3)°]. The 2′‐deoxy­ribo­furan­ose moiety adopts a C2′‐endo,C3′‐exo(2′T3′) sugar puckering (S‐type sugar) and the conformation at the C4′—C5′ bond is ?sc (trans).  相似文献   

10.
7‐Alkynylated 7‐deazaadenine (pyrrolo[2,3‐d]pyrimidin‐4‐amine) 2′‐deoxyribonucleosides show strong fluorescence which is induced by the 7‐alkynyl side chain (Table 3). A large Stokes shift with an emission around 400 nm is observed when the compound is irradiated at 280 nm. The solvent dependence indicates the formation of a charged transition state. The fluorescence appears when the triple bond is in conjugation with the heterocyclic base. Electron‐donating substituents at the triple bond increase the fluorescence, while electron‐withdrawing residues reduce it. In comparison, the 7‐alkynylated 8‐aza‐7‐deazaadenine (pyrazolo[3,4‐d]pyrimidin‐4‐amine) 2′‐deoxyribonucleosides are rather weakly fluorescent (Table 4). Quantum yields and fluorescence decay times are measured. The synthesis of the 7‐alkynylated 7‐deaza‐2′‐deoxyadenosines and 8‐aza‐7‐deaza‐2′‐deoxyadenosines was performed with 7‐deaza‐2′‐deoxy‐7‐iodoadenosine ( 6 ) or 8‐aza‐7‐deaza‐2′‐deoxy‐7‐iodoadenosine ( 22 ) as starting materials and employing the Pd0‐catalyzed cross‐coupling reaction with the corresponding alkynes (Schemes 1, 4, and 5). Catalytic hydrogenation of the side chain of the unsaturated nucleosides 5 and 17 afforded the 7‐alkyl derivatives 18 and 19 , respectively, which do not show significant fluorescence (Scheme 2).  相似文献   

11.
Convergent syntheses of the 9‐(3‐X‐2,3‐dideoxy‐2‐fluoro‐β‐D ‐ribofuranosyl)adenines 5 (X=N3) and 7 (X=NH2), as well as of their respective α‐anomers 6 and 8 , are described, using methyl 2‐azido‐5‐O‐benzoyl‐2,3‐dideoxy‐2‐fluoro‐β‐D ‐ribofuranoside ( 4 ) as glycosylating agent. Methyl 5‐O‐benzoyl‐2,3‐dideoxy‐2,3‐difluoro‐β‐D ‐ribofuranoside ( 12 ) was prepared starting from two precursors, and coupled with silylated N6‐benzoyladenine to afford, after deprotection, 2′,3′‐dideoxy‐2′,3′‐difluoroadenosine ( 13 ). Condensation of 1‐O‐acetyl‐3,5‐di‐O‐benzoyl‐2‐deoxy‐2‐fluoro‐β‐D ‐ribofuranose ( 14 ) with silylated N2‐palmitoylguanine gave, after chromatographic separation and deacylation, the N7β‐anomer 17 as the main product, along with 2′‐deoxy‐2′‐fluoroguanosine ( 15 ) and its N9α‐anomer 16 in a ratio of ca. 42 : 24 : 10. An in‐depth conformational analysis of a number of 2,3‐dideoxy‐2‐fluoro‐3‐X‐D ‐ribofuranosides (X=F, N3, NH2, H) as well as of purine and pyrimidine 2‐deoxy‐2‐fluoro‐D ‐ribofuranosyl nucleosides was performed using the PSEUROT (version 6.3) software in combination with NMR studies.  相似文献   

12.
The stereoselective total synthesis of an antiproliferative and antifungal α‐pyrone natural product (6S)‐5,6‐dihydro‐6‐[(2R)‐2‐hydroxy‐6‐phenylhexyl]‐2H‐pyran‐2‐one is described. The key steps involved are the Prins cyclization, Mitsunobu reaction, and ring‐closing metathesis reaction.  相似文献   

13.
In the molecular structures of a series of substituted chalcones, namely (2E)‐3‐(2‐fluoro‐4‐phenoxyphenyl)‐1‐phenylprop‐2‐en‐1‐one, C21H15FO2, (I), (2E)‐3‐(2‐fluoro‐4‐phenoxyphenyl)‐1‐(4‐fluorophenyl)prop‐2‐en‐1‐one, C21H14F2O2, (II), (2E)‐1‐(4‐chlorophenyl)‐3‐(2‐fluoro‐4‐phenoxyphenyl)prop‐2‐en‐1‐one, C21H14ClFO2, (III), (2E)‐3‐(2‐fluoro‐4‐phenoxyphenyl)‐1‐(4‐methylphenyl)prop‐2‐en‐1‐one, C22H17FO2, (IV), and (2E)‐3‐(2‐fluoro‐4‐phenoxyphenyl)‐1‐(4‐methoxyphenyl)prop‐2‐en‐1‐one, C22H17FO3, (V), the configuration of the keto group with respect to the olefinic double bond is scis. The molecules pack utilizing weak C—H...O and C—H...π intermolecular contacts. Identical packing motifs involving C—H...O interactions, forming both chains and dimers, along with C—H...π dimers and π–π aromatic interactions are observed in the fluoro, chloro and methyl derivatives.  相似文献   

14.
Methyl 2‐benzamido‐4‐(3,4‐dimethoxyphenyl)‐5‐methylbenzoate, C24H23NO5, (Ia), and N‐{5‐benzoyl‐2‐[(Z)‐2‐methoxyethenyl]‐4‐methylphenyl}benzamide, C24H21NO3, (IIa), were formed via a Diels–Alder reaction of appropriately substituted 2H‐pyran‐2‐ones and methyl propiolate or (Z)‐1‐methoxybut‐1‐en‐3‐yne, respectively. Each of these cycloadditions might yield two different regioisomers, but just one was obtained in each case. In (Ia), an intramolecular N—H...O hydrogen bond closes a six‐membered ring. A chain is formed due to aromatic π–π interactions, and a three‐dimensional framework structure is formed by a combination of C—H...O and C—H...π(arene) hydrogen bonds. Compound (IIa) was formed not only regioselectively but also chemoselectively, with just the triple bond reacting and the double bond remaining unchanged. Compound (IIa) crystallizes as N—H...O hydrogen‐bonded dimers stabilized by aromatic π–π interactions. Dimers of (IIa) are connected into a chain by weak C—H...π(arene) interactions.  相似文献   

15.
Possible approaches to synthesis of 5‐methyl‐4‐oxo‐2‐(coumarin‐3‐yl)‐N‐aryl‐3,4‐dihydrothieno[2,3‐d]pyrimidine‐6‐carboxamides 4 have been discussed. It is shown that the preferable approach is cyclization of 2‐iminocoumarin‐3‐carboxamides 1 , utilizing 5‐amino‐3‐methyl‐N2‐arylthiophene‐2,4‐dicarboxamides 2 as binucleophilic reagents. The proposed procedure allowed us to easily obtain 4 in two stages, using common reagents. © 2007 Wiley Periodicals, Inc. Heteroatom Chem 18:341–346, 2007; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/hc.20303  相似文献   

16.
As part of the structure‐activity relationship of the dopamine D2 and serotonin 5‐HT3 receptors antagonist 1, which is a clinical candidate with a broad antiemetic activity, the synthesis and dopamine D2 and serotonin 5‐HT3 receptors binding affinity of (R)‐5‐bromo‐N‐(1‐ethyl‐3‐methylhexahydro‐1,3‐diazin‐5‐yl)‐ and (R)‐5‐bromo‐N‐(1‐ethyl‐5‐methyloctahydro‐1,5‐diazocin‐3‐yl)‐2‐methoxy‐6‐methylaminopyridine‐3‐carboxam‐ides ( 2 and 3 ) are described. Treatment of 1‐ethyl‐2‐(p‐toluenesulfonyl)amino‐3‐methylaminopropane dihy‐drochloride ( 4a ) with paraformaldehyde and successive deprotection gave the 5‐aminohexahydro‐1,3‐diazine 6 in excellent yield. 3‐Amino‐1‐ethyl‐5‐methyloctahydro‐1,5‐diazocine ( 15 ) was prepared from 2‐(benzyloxycarbonyl)amino‐3‐[[N‐(tert‐butoxycarbonyl)‐N‐methyl]amino]‐1‐ethylaminopropane ( 9 ) through the intramolecular amidation of (R)‐3‐[N‐[(2‐benzyloxycarbonylamino‐3‐methylamino)propyl]‐N‐ethyl]aminopropionic acid trifluoroacetate ( 12 ), followed by lithium aluminum hydride reduction of the resulting 6‐oxo‐1‐ethyl‐5‐methyloctahydrodiazocine ( 13 ) in 41% yield. Reaction of the amines 6 and 15 with 5‐bromo‐2‐methoxy‐6‐methylaminopyridine‐3‐carboxylic acid furnished the desired 2 and 3 , which showed much less potent affinity for dopamine D2 receptors than 1 .  相似文献   

17.
Aldol reaction of 7‐chloro‐1,3‐dihydro‐1‐methyl‐5‐phenyl‐2H‐1,4‐benzodiazepin‐2‐one ( 1 ) with 4‐substituted α‐methylcinnamaldehydes 2 – 5 afforded a mixture of threo‐ and erythro‐3‐(3‐aryl‐1‐hydroxy‐2‐methylprop‐2‐enyl)‐7‐chloro‐1,3‐dihydro‐1‐methyl‐5‐phenyl‐2H‐1,4‐benzodiazepin‐2‐ones 6 – 13 . The chromatographically separated threo diastereoisomers 6, 8, 10 , and 12 and erythro diastereoisomers 7, 9, 11 , and 13 were submitted to ‘directed' homogeneous hydrogenation catalyzed by [RhI(cod)(diphos‐4)]ClO4 (cod=cycloocta‐1,5‐diene, diphos‐4=butane‐1,4‐diylbis[diphenylphosphine]. From the erythro‐racemates 9, 11 , and 13 , the erythro,erythro/erythro,threo‐diastereoisomer mixtures 16 / 17, 20 / 21 , and 24 / 25 were obtained in ratios of 20 : 80 to 28 : 72 (HPLC), which were separated by chromatography. From the threo racemates 8, 10 , and 12 , the threo,threo/threo,erythro‐diastereoisomer mixtures were obtained in a ratio of ca. 25 : 75 (1H‐NMR). The relative configurations were assigned by means of 1H‐NMR data and X‐ray crystal‐structure determination of 21 . Hydrolysis of 21 afforded the diastereoisomerically pure N‐(benzyloxy)carbonyl derivative 27 of α‐amino‐β‐hydroxy‐γ‐methylpentanoic acid 26 , representative of the novel group of polysubstituted α‐amino‐β‐hydroxycarboxylic acids.  相似文献   

18.
An efficient route to 2′,3′‐dihydro‐2′‐thioxospiro[indole‐3,6′‐[1,3]thiazin]‐2(1H)‐one derivatives is described. It involves the reaction of isatine, 1‐phenyl‐2‐(1,1,1‐triphenyl‐λ5‐phosphanylidene)ethan‐1‐one, and different amines in the presence of CS2 in dry MeOH at reflux (Scheme 1). The alkyl carbamodithioate, which results from the addition of the amine to CS2, is added to the α,β‐unsaturated ketone, resulting from the reaction between 1‐phenyl‐2‐(1,1,1‐triphenyl‐λ5‐phosphanylidene)ethan‐1‐one and isatine, to produce the 3′‐alkyl‐2′,3′‐dihydro‐4′‐phenyl‐2′‐thioxospiro[indole‐3,6′‐[1,3]thiazin]‐2(1H)‐one derivatives in excellent yields (Scheme 2). Their structures were corroborated spectroscopically (IR, 1H‐ and 13C‐NMR, and EI‐MS) and by elemental analyses.  相似文献   

19.
The model morpholine‐1‐carbothioic acid (2‐phenyl‐3H‐quinazolin‐4‐ylidene) amide (1) reacts with phenacyl bromides to afford N4‐(5‐aryl‐1,3‐oxathiol‐2‐yliden)‐2‐phenylquinazolin‐4‐amines (4) or N4‐(4,5‐diphenyl‐1,3‐oxathiol‐2‐yliden)‐2‐phenyl‐4‐aminoquinazoline ( 5 ) by a thermodynamically controlled reversible reaction favoring the enolate intermediate, while the 4‐[4‐aryl‐5‐(2‐phenylquinazolin‐4‐yl)‐1,3‐thiazol‐2‐yl]morpholine ( 8 ) was produced by a kinetically controlled reaction favoring the C‐anion intermediate. 1H nmr, 13C nmr, ir, mass spectroscopy and x‐ray identified compounds ( 4 ), ( 5 ) and ( 8 ).  相似文献   

20.
A series of novel 2‐(aryl)‐3‐[5‐(2‐oxo‐2H‐3‐chromenyl)‐1,3‐oxazol‐2‐yl]‐1,3‐thiazolan‐4‐ones 4a , 4b , 4c , 4e , 4f , 4g , 4h , 4i , 4j have been synthesized and assayed for their antibacterial activity against Gram‐positive bacteria viz. Bacillus subtilis (ATCC 6633), Staphylococcus aureus (ATCC 6538p), Micrococcus luteus (IFC 12708), and Gram‐negative bacteria viz. Proteus vulgaris (ATCC 3851), Salmonella typhimurium (ATCC 14028), Escherichia coli (ATCC 25922), and also antifungal activity against Candida albicans (ATCC 10231), Aspergillus fumigatus (HIC 6094), Trichophyton rubrum (IFO 9185), and Trichophyton mentagrophytes (IFO 40996). Among the screened compounds, 4d , 4e , 4f , 4g , and 4j exhibited potent inhibitory activity compared with the standard drug at the tested concentrations. The results reveal that, the presence of difluorophenyl in 4f and pipernyl ring in 4j at 2‐position of thiazolidine‐4‐one ring show significant inhibitory activity. The other compounds also showed appreciable activity against the test bacteria and fungi and emerged as potential molecules for further development. J. Heterocyclic Chem., 2011.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号