首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
A sensitive adsorptive cathodic stripping voltammetry with H‐point standard addition method for simultaneous determination of uranium and cadmium has been developed. The trace amounts of these metal ions can be simultaneously determined using the Levodpa as complexing agent. Optimal conditions were: accumulation time 50 s, accumulation potential 0.0 mV, scan rate 40 mV s?1, supporting electrolyte 0.1 M ammonium buffer pH 9.6, and 1×10?5 M of Levodopa. The results revealed that the cadmium and uranium could be simultaneously determined by H‐point standard addition method with different concentration ratios of uranium to cadmium. The method was successfully applied in a several of real samples.  相似文献   

2.
H‐point standard addition method (HPSAM) has been applied for simultaneous determination of tyrosine and histidine in trace levels using copper ions by adsorptive cathodic stripping voltammetry. The amino acids‐Cu(II) complexes were accumulated onto the surface of a hanging mercury drop electrode for 40 s. The reduction peaks of preconcentrated complexes were used for simultaneous determination of amino acids in the range 8.0–180 and 30–1100 nM for tyrosine and histidine respectively. The effect of various parameters such as pH, concentration of copper, accumulation time and scan rate on the selectivity were studied. Under the optimized conditions the method was successfully applied for determination of tyrosine and histidine in synthetic and real samples.  相似文献   

3.
A very simple spectrophotometric method for simultaneous determination of aluminum(III) and iron(III) based on formation of their complexes with pyrocatechol violet (PCV) in micellar media, using the H‐point standard addition method (HPSAM), is described. In micellar media, the metal complexes of Al‐PCV and Fe‐PCV are formed very fast. Formation of both of the complexes was complete within 5 min at pH 8.5. The linear ranges for aluminum and iron were 0.05‐2.50 and 0.10‐4.00 μg mL?1, respectively. The relative standard deviation (R.S.D.) for the simultaneous determination 0.40 μg mL?1 of Al(III) and 0.20 μg mL?1 of Fe(III) were 3.24% and 4.22%, respectively. Interference effects of common anions and cations were studied. The method was applied to simultaneous determination of Al(III) and Fe(III) in standard reference material and alloy samples.  相似文献   

4.
A second‐derivative spectrophotometric method based on zero‐crossing over technique is developed in simultaneous determination of copper(II) and nickel(II) ions. Methylthymol blue (MTB) as a chromogenic reagent and cetyltrimethylammonium bromide as a surfactant were used, and measurements were carried out in buffered solution at pH 6 and at a temperature of 25 °C. The amplitude of derivative spectra was measured at wavelengths of 631.9 and 587.7 nm for the simultaneous determination of Ni2+ and Cu2+, respectively. Linearity was obtained in the range of 0.5–5.0 μg mL?1 for both ions in the presence of 0.0–5.0 μg mL?1 of the other ion as an interfering ion. IUPAC detection limits for Cu2+ and Ni2+ ions were obtained at 0.48 and 0.43 μg mL?1, respectively. The proposed procedure has been applied successfully for the simultaneous determination of copper and nickel in synthetic binary mixtures and real samples.  相似文献   

5.
A simple, fast, sensitive and greener voltammetric procedure for simultaneous analysis of nickel (Ni) and cobalt (Co) by square wave adsorptive cathodic stripping voltammetry (SW‐AdCSV) using a solid bismuth vibrating electrode is presented for the first time. The procedure enables to determine Ni together with Co, in ammonia buffer 0.1 M (pH 9.2) and in the presence of oxygen, and involves an adsorptive accumulation of metal‐dimethylglyoxime (Ni‐DMG and Co‐DMG) complexes on the electrode surface. For Ni and Co, the detection limits, obtained with 30 s of accumulation time, were 0.6 and 1.0 µg L?1, respectively. The method was free of metals (Cd2+, Cr3+, Cr6+, Cu2+, Fe3+ and Pb2+ up to 50 µg L?1, Al3+ and Mn2+ up to 500 µg L?1; Zn2+ up to 300 µg L?1) interferences up to the concentrations mentioned in brackets. The proposed method was validated for simultaneous determination of Ni and Co in a certified reference surface and river waters with good results.  相似文献   

6.
The H-point standard addition method (HPSAM) was applied to handling spectrophotometric data for simultaneous determination of Zn2+ and Cu2+ or selective determination of Zn2+ in the presence of Cu2+. The ligand 1-(2-pyridylazo)2-naphthol (PAN) and its metal complexes (Zn-PAN and Cu(II)-PAN) were made water-soluble by the neutral surfactant Triton X-100, and therefore, no extraction with organic solvents was required. The method is based on the difference in absorbance of formed complexes between Zn2+ and PAN, at two different wavelengths at pH = 9.2. The formation of both the complexes was complete within five minutes. Zn2+ can be determined in the range of 0.2–25 μg/mL with satisfactory accuracy and precision in the presence of excess of Cu2+ and most other metal ions. Interference effects of common anions and cations were studied. Under working conditions, the proposed method was successfully applied to the simultaneous determination of Zn2+ and Cu2+ in several real and synthetic mixtures with different concentration ratio of Zn2+ and Cu2+. The text was submitted by the authors in English.  相似文献   

7.
The H‐point standard addition method (HPSAM), based on spectrophotometric measurements for simultaneous determination of phosphate and silicate, has been established. The method is based on the difference between their reactions rates with molybdenum in the presence of ascorbic acid. The results revealed that phosphate and silicate could be determined simultaneously with the concentration ratios of phosphate to silicate varying from 1:10 to 12:1 in the binary mixtures. The effects of chelating agent nature, time, interferents and experimental variables are also investigated. Under working conditions, the proposed method was successfully applied to the simultaneous determination of phosphate and silicate in synthetic detergents.  相似文献   

8.
Shams E  Abdollahi H  Yekehtaz M  Hajian R 《Talanta》2004,63(2):359-364
The applicability of H-point standard addition method (HPSAM) to the resolving of overlapping differential pulse anodic stripping voltammetric peaks corresponding to the oxidation of lead and tin is verified. The results show that the H-point standard addition method is suitable for the simultaneous determination of lead and tin in aqueous media. The results of applying the H-point standard addition method showed that Sn2+ and Pb2+ could be determined simultaneously with the concentration ratios of Sn2+ to Pb2+ varying from 1:5 to 10:1 in the mixed sample. The proposed method has been successfully applied to the simultaneous determination of lead in the presence of tin in some synthetic samples. Moreover, the applicability of the method was demonstrated by the recovery of lead in a canned soft drink sample.  相似文献   

9.
《Electroanalysis》2006,18(24):2486-2489
This paper presents the enhanced analysis of copper on a bismuth electrode upon addition of gallium(III). The presence of gallium alleviates the problems of overlapping stripping signals usually observed between copper and bismuth when using the Bismuth Film Electrode. In addition, it has been found that the presence of gallium improves the reproducibility of the bismuth stripping signal. Simultaneous deposition of copper and bismuth at ?1500 mV for 2 minutes in a supporting electrolyte composed of 0.1 M pH 4.75 acetate buffer with 250 μg L?1 gallium yields well resolved copper and bismuth signals when analyzed with square‐wave anodic stripping voltammetry. Simultaneous analysis of copper and lead yielded linear calibration plots in the range 10 to 100 μg L?1 with regression coefficients of 0.997 and 0.994 respectively. The theoretical detection limit for copper was calculated to be 4.98 μg L?1 utilizing a 2 minutes deposition time. The relative standard deviation for a copper concentration of 50 μg L?1 was 1.6% (n=10).  相似文献   

10.
A sensitive and selective method for the simultaneous determination of copper and bismuth by adsorptive stripping was developed using nuclear fast red (2-anthracenesulfonic acid, 4-amino-9,10-dihydro-1,3-dihydroxy-9,10-dioxo-, monosodium salt) as selective complexing agent onto hanging mercury drop electrode. In a single scan both metals gave peaks that were distinctly separated by 85 mV allowing their determination in the presence of each other. Optimal analytical conditions were found to be: nuclear fast red concentration of 80 μM, pH of 2.8 and adsorptive potential of −300 mV versus Ag/AgCl. With accumulation time of 180 s the peaks currents are proportional to concentration of copper and bismuth over the 1-100 and 5-60 ng mL−1 range with detection limits of 0.2 and 1.2 ng mL−1, respectively. The procedure was applied to simultaneous determination of copper and bismuth in some real samples.  相似文献   

11.
Differential pulse polarography was used for simultaneous determination of Sn2+ and Pb2+. But there is a problem for simultaneous determination and it is high overlapped DPPs of mentioned cations that their determination is impossible in the presence of each other, so multivariate calibration methods as chemomatrics methods were used for this determination. There are some disadvantageous for multivariate calibration methods that can be solved by a new and simple method called net analyte signal standard addition method. This method has some advantages, such as: the use of a full voltammogram, realization in a single step, therefore it does not require calibration and prediction steps and only a few measurements are required for the determination.  相似文献   

12.
A novel, sensitive and selective adsorptive stripping procedure for simultaneous determination of copper, bismuth and lead is presented. The method is based on the adsorptive accumulation of thymolphthalexone (TPN) complexes of these elements onto a hanging mercury drop electrode, followed by reduction of adsorbed species by voltammetric scan using differential pulse modulation. The influences of control variables on the sensitivity of the proposed method for the simultaneous determination of copper, lead and bismuth were studied using the Derringer desirability function. The optimum analytical conditions were found to be TPN concentration of 4.0 microM, pH of 9.0, and accumulation potential at -800 mV vs. Ag/AgCl with an accumulation time of 80 s. The peak currents are proportional to the concentration of copper, bismuth and lead over the 0.4-300, 1-200 and 1-100 ng mL(-1) ranges with detection limits of 0.4, 0.8 and 0.7 ng mL(-1), respectively. The procedure was applied to the simultaneous determination of copper, bismuth and lead in the tap water and some synthetic samples with satisfactory results.  相似文献   

13.
A simple, rapid, precise and accurate kinetic method for simultaneous spectrophotometric determination of Nb(V) and Ta(V) is described. This method is based on the difference between the rate of the reaction of Nb(V) and Ta(V) with 4‐(2‐pyridylazo)resorcinol (PAR) in the presence of tartaric acid. H‐point standard addition method (HPSAM) was used to resolve the mixtures. The results showed that Nb(V) and Ta(V) can be determined simultaneously in the ranges of 0.10–5.0 and 0.50–12.0 μg mL?;1, respectively. The proposed method was successfully applied to the simultaneous determination of Nb(V) and Ta(V) in several alloy samples.  相似文献   

14.
A simple, reliable and effective gas chromatography coupled with flame ionization detection method was developed for the simultaneous determination of eight components (α‐pinene, β‐pinene, myrcene, limonene, terpinen‐4‐ol, α‐terpineol, bornyl acetate and methyl‐n‐nonylketone) in Chinese medicine Houttuynia cordata and its injection. The chromatographic separation of all eight components, including undecylene as internal standard was performed on a DB‐1 column (30 m×0.25 mm, 0.25 μm). Excellent linear behaviors including herb and injection over the investigated concentration ranges were observed with the values of r2 higher than 0.9990 for all analytes. Satisfactory intra‐day and inter‐day precisions were achieved with RSD less than 2% and the average recoveries for all analytes at three different concentrations obtained were in the range of 93.4–104.4%, with RSD ranging from 1.3 to 4.1%. The proposed method was successfully applied in the simultaneous determination of these active components in H. cordata and H. cordata injection (HCI), including the intermediate product of HCI in productive process, from different pharmaceutical factories and different production batches, indicating that the method in this paper was particularly suitable for the routine analysis of HCI and its quality control in productive process.  相似文献   

15.
Simultaneous determination of uranium and thorium using arsenazo III as a chromogenic reagent at pH 1.70 by H‐point standard addition method (HPSAM) and partial least squares (PLS) calibration is described. Under optimum conditions, the simultaneous determinations of uranium and thorium by HPSAM were performed. The absorbencies at one pair of wavelengths, 649 and 669 nm, were monitored with the addition of standard solutions of uranium. The results of applying the HPSAM showed that uranium and thorium can be determined simultaneously with weight concentration ratios of uranium to thorium varying from 20:1 to 1:15 in the mixed sample. By multivariate calibration methods such as PLS, it is possible to obtain a model adjusted to the concentration values of the mixtures used in the calibration range. In this study, the calibration model is based on absorption spectra in the 600–750 nm range for 25 different mixtures of uranium and thorium. Calibration matrices contained 0.10–21.00 and 0.25–18.5 μg mL?1 of uranium and thorium, respectively. The RMSEP for uranium and thorium were 0.7400 and 0.7276, respectively. Both proposed methods (HPSAM and PLS) were also successfully applied to the determination of uranium and thorium in several synthetic and real matrix samples.  相似文献   

16.
We report the simultaneous electroanalytical determination of Pb2+ and Cd2+ by square‐wave anodic stripping voltammetry (SWASV) using a bismuth nanoparticle modified boron doped diamond (Bi‐BDD) electrode. Bi deposition was performed in situ with the analytes, from a solution of 0.1 mM Bi(NO3)3 in 0.1 M HClO4 (pH 1.2), and gave detection limits of 1.9 μg L?1 and 2.3 μg L?1 for Pb(II) and Cd(II) respectively. Pb2+ and Cd2+ could not be detected simultaneously at a bare BDD electrode, whilst on a bulk Bi macro electrode (BiBE) the limits of detection for the simultaneous determination of Pb2+ and Cd2+ were ca. ten times higher.  相似文献   

17.
An electrochemical adsorptive stripping approach is presented for the trace measurement of copper in some real samples. The method is based on the reduction of Cu2+ at pH 5.5 calcein blue (CB) containing solution at ?250 mV (vs. Ag/AgCl), adsorption of Cu? CB complex on hanging mercury drop electrode (HMDE) and the voltammetric determination by further reduction to Cu+ at HMDE. Experimental optimum conditions were determined in the fundamental studies. At the experimental optimum conditions the adsorbed complex of Cu2+ and calcein blue gives a well defined cathodic stripping peak current at ?0.135 V, which has been used for the determination of copper in the concentration range of 0.02 to 15 ng/mL with accumulation time of 90 s. The relative standard deviation (RSD) for the determination of 0.5 and 6.0 ng mL?1 were 2.60 and 1.94% respectively. (n=10). The method has been applied to the analysis of copper in analytical reagent grade salts and tap water, mineral water and drug samples with satisfactory results.  相似文献   

18.
This work reports the utility of an iridium microwire plated in situ with a bismuth film for the simultaneous determination of Pb(II) and Cd(II) by square‐wave anodic stripping voltammetry (SWASV). The experimental variables (concentration of the bismuth plating solution, preconcentration potential, accumulation time) were investigated. The limit of detection was 1 µg L?1 for Pb(II) and 1.5 µg L?1 for Cd(II) (at 300 s of preconcentration) and the % relative standard deviations were lower than 4.9 % and 5.5 %, respectively, at the 20 µg L?1 level (n=8). In addition, a study was made of coating the iridium‐based bismuth‐film microsensor with a film of Nafion for operation in the presence of surfactants. Finally, the electrode was applied to the determination of Pb(II) and Cd(II) in wastewater and tapwater samples.  相似文献   

19.
A new sensor has been developed for the simultaneous detection of cadmium, lead, copper and mercury, using differential pulse and square wave anodic stripping voltammetry (DPASV and SWASV) at a graphite–polyurethane composite electrode with SBA‐15 silica organofunctionalized with 2‐benzothiazolethiol as bulk modifier. The heavy metal ions were preconcentrated on the surface of the modified electrode at ?1.1 V vs. SCE where they complex with 2‐benzothiazolethiol and are reduced to the metals, and are then reoxidized. Optimum SWASV conditions lead to nanomolar detection limits and simultaneous determination of Cd2+, Pb2+, Cu2+ and Hg2+ in natural waters was achieved.  相似文献   

20.
A novel, sensitive and selective adsorptive stripping procedure for simultaneous determination of iron, copper and cadmium is presented. The method is based on the adsorptive accumulation of thymolphthalexone (TPN) complexes of these elements onto a hanging mercury drop electrode, followed by reduction of adsorbed species by voltammetric scan using differential pulse modulation. The influences of control variables on the sensitivity of the proposed method for the simultaneous determination of iron, copper and cadmium were studied using the Derringer desirability function. The optimum analytical conditions were found to be TPN concentration of 2.0 μM, pH of 9.5, and accumulation potential at ?0.4 V vs. Ag/AgCl with an accumulation time of 60 s. The peak currents are proportional to the concentration of iron, copper and cadmium over the 1–80, 0.5–100 and 1–100 ng mL?1 ranges with detection limits of 0.5, 0.4 and 0.9 ng mL?1, respectively. The R.S.D. at a concentration level of 20 ng mL?1 of iron, copper and cadmium were 2.5%, 0.9% and 1.5% (n=6), respectively. The procedure was applied to the simultaneous determination of iron, copper and cadmium in the tap water and some synthetic samples with satisfactory results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号