首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
The dinuclear copper enzyme, tyrosinase, activates O2 to form a (μ‐η22‐peroxido)dicopper(II) species, which hydroxylates phenols to catechols. However, the exact mechanism of phenolase reaction in the catalytic site of tyrosinase is still under debate. We herein report the near atomic resolution X‐ray crystal structures of the active tyrosinases with substrate l ‐tyrosine. At their catalytic sites, CuA moved toward l ‐tyrosine (CuA1 → CuA2), whose phenol oxygen directly coordinates to CuA2, involving the movement of CuB (CuB1 → CuB2). The crystal structures and spectroscopic analyses of the dioxygen‐bound tyrosinases demonstrated that the peroxide ligand rotated, spontaneously weakening its O?O bond. Thus, the copper migration induced by the substrate‐binding is accompanied by rearrangement of the bound peroxide species so as to provide one of the peroxide oxygen atoms with access to the phenol substrate's ? carbon atom.  相似文献   

2.
The dinuclear copper enzyme, tyrosinase, activates O2 to form a (μ-η22-peroxido)dicopper(II) species, which hydroxylates phenols to catechols. However, the exact mechanism of phenolase reaction in the catalytic site of tyrosinase is still under debate. We herein report the near atomic resolution X-ray crystal structures of the active tyrosinases with substrate l -tyrosine. At their catalytic sites, CuA moved toward l -tyrosine (CuA1 → CuA2), whose phenol oxygen directly coordinates to CuA2, involving the movement of CuB (CuB1 → CuB2). The crystal structures and spectroscopic analyses of the dioxygen-bound tyrosinases demonstrated that the peroxide ligand rotated, spontaneously weakening its O−O bond. Thus, the copper migration induced by the substrate-binding is accompanied by rearrangement of the bound peroxide species so as to provide one of the peroxide oxygen atoms with access to the phenol substrate's ϵ carbon atom.  相似文献   

3.
It was found that the catalytic effect of modified nanodiamonds (MND) in the H2O2–4-aminoantipyrine–phenol oxidative azo coupling reaction is due to microimpurities of iron and copper ions on the surface of nanoparticles. The efficiency of MND as a catalyst is determined by the amount of surface impurities of these ions and can be doubled by their additional adsorption on nanoparticles. Using MND for phenol indication ensures a linear yield of the colored product of the azo coupling reaction over an analyte concentration range of 0.05–10 μg/mL. The possibility of reusing MND for phenol testing in aqueous samples was demonstrated.  相似文献   

4.
Pyridine(Py)-modified Keggin-type vanadium-substituted heteropoly acids (Py n PMo10V2O40, n=1 to 5) were prepared by a precipitation method as organic/inorganic hybrid catalysts for direct hydroxylation of benzene to phenol in a pressured batch reactor and their structures were detected by FT-IR. Among various catalysts, Py3PMo10V2O40 exhibits the highest catalytic activity (yield of phenol, 11.5%), without observing the formation of catechol, hydroquinone and benzoquinone in the reaction with 80 vol% aqueous acetic acid, molecular oxygen and ascorbic acid used as the solvent, oxidant and reducing reagent, respectively. Influences of reaction temperature, reaction time, oxygen pressure, amount of ascorbic acid and catalyst on yield of phenol were investigated to obtain the optimal reaction conditions for phenol formation. Pyridine can greatly promote the catalytic activity of the Py-free catalyst (H5PMo10V2O40), mostly because the organic π electrons in the hybrid catalyst may extend their conjugation to the inorganic framework of heteropoly acid and dramatically modify the redox properties, at the same time, pyridine adsorbed on heteropoly acids can promote the effect of “pseudo-liquid phase”, thus accounting for the enhancement of phenol yield. Supported by the National Natural Science Foundation of China (Grant Nos. 20476046 and 20776069) and the “Qinglan” Project of Jiangsu Province for Young Researchers  相似文献   

5.
Liu F  Reviejo AJ  Pingarrón JM  Wang J 《Talanta》1994,41(3):455-459
The possibilities of amperometric enzyme electrodes in reversed micellar systems for the determination of phenol, 4-chloro-3-methylphenol and 2,4-dimethylphenol are illustrated. The used enzymatic reaction consisted of the oxidation of the phenolic compounds by oxygen, catalysed by tyrosinase. The reduction of the liberated quinones was amperometrically detected. The concentration of the components of the reversed micelles, as well as the potential applied to the tyrosinase electrode have been optimized. The stability of the enzyme electrode with time was also evaluated. The effect of the analyte solubility in water upon the analytical performance of the electrode was explored. Advantages of amperometric biosensors in reversed micelles are shown with respect to aqueous media and organic phase enzyme electrodes.  相似文献   

6.
The glucose sensitivity and oxygen dependence of a variety of implantable biosensors based on glucose oxidase (GOx), incorporating an electrosynthesized poly-o-phenylenediamine (PPD) permselective barrier on 125-μm diameter Pt disks (PtD) and cylinders (PtC, 1-mm length), were measured and compared. Full glucose calibrations and experimental monitoring of solution oxygen concentration allowed us to determine apparent Michaelis–Menten parameters for glucose and oxygen. In the linear region of glucose response, the most sensitive biosensor design studied was PtD/PPD/GOx (enzyme deposited over polymer) that was 20 times more sensitive than the more widely used PtC/GOx/PPD (enzyme immobilized before polymer deposition) configuration. The oxygen dependence, quantified as KM(O2), of both active and less active designs was surprisingly similar, a finding that could be rationalized in terms of an increase in KM(G) with increased enzyme loading. The PtD/PPD/GOx design will now enable us to explore glucose concentration dynamics in smaller and layered brain regions with good sensitivity and minimal interference from fluctuations in tissue pO2.  相似文献   

7.
Tyrosinase was found to catalyze the oxidation of phenylhydrazine to phenol in a reaction that did not resemble those typically performed by tyrosinase. The kinetics of this reaction was investigated by measuring the initial velocity of the formation of phenol (25 °C). The values of k cat and K M for the oxidation of phenylhydrazine were obtained as 11.0 s?1 and 0.30 mM, respectively. The generation of superoxides during the oxidation of phenylhydrazine by tyrosinase was monitored by nitroblue tetrazolium (NBT) assay. In the phenylhydrazine-tyrosinase reaction, 1 mol O2 was required for the production of 1 mol phenol and 1/6 mol superoxide. The decomposition of superoxide by superoxide dismutase enhanced the rate constant of the oxidation of phenylhydrazine. Phenol formed in the oxidation of phenylhydrazine by tyrosinase was further oxidized by tyrosinase to an o-quinone, after the oxidation of phenylhydrazine by tyrosinase was almost completed.  相似文献   

8.
The oxidation kinetics of NO by O2 in aqueous solution was observed using a stopped flow apparatus. The kinetics follows a third order rate law of the form k · [NO]2 · [O2] in analogy to gas-phase results. The rate constant at 296 K was measured as (6.4 ± 0.8) · 106 M?2 s?1 with an activation energy of 2.3 kcal/mol and a preexponential factor of (4.0 ± 0.5) · 108 M?2 s?1. The rate constant displays a very slight pH dependence corresponding to less than a factor of three over the range 0 to 12. The system NO/O2 in aqueous solution is an efficient nitrosating agent which has been tested using phenol as a substrate over the pH range 0 to 12. The rate limiting step leading to formation of 4-nitrosophenol is the formation of the reactive intermediate whose competitive hydrolysis yields HONO or NO2?. The absence of NO3? in the autoxidation of NO, the exclusive presence of NO2? as a product of the nitrosation reaction of phenol, and the kinetic results of the N3? trapping experiments point towards N2O3 as the reactive intermediate. © 1994 John Wiley & Sons, Inc.  相似文献   

9.
《Electroanalysis》2003,15(22):1737-1744
A biosensor design, in which glucose oxidase and peroxidase are coimmobilized by simple physical inclusion into the bulk of graphite‐Teflon pellets, is reported for the detection of phenolic compounds. This design allows the “in situ” generation of the H2O2 needed for the enzyme reaction with the phenolic compounds, which avoids several problems detected in the performance of single peroxidase biosensors as a consequence of the presence of a high H2O2 concentration. So, a much lower surface fouling was found at the GOD‐HRP biosensor in comparison with a graphite‐Teflon‐HRP electrode, suggesting that the controlled generation of H2O2 makes more difficult the formation of polymers from the enzyme reaction products. The construction of trienzyme biosensors, in which GOD, HRP and tyrosinase were coimmobilized into the graphite‐Teflon matrix is also reported, and their performance was compared with that of GOD‐HRP bienzyme electrodes. The practical applicability of the composite multienzyme amperometric biosensors was evaluated by the estimation of the phenolic compounds content in waste waters from a refinery, and the results were compared with those obtained by using a colorimetric official method based on the reaction with 4‐aminoantipyrine.  相似文献   

10.
The exploration of substrate materials to construct electrochemical biosensors for glucose monitoring in the field of clinical diagnosis, especially for diabetes is still being investigated extensively. In this paper, NiO/Fe2O3 nanocomposites are designed and synthesized by two-step hydrothermal approach in combination with calcinations. The morphology and microstructure are studied by SEM, XRD, XPS, and TEM systematically. Optimized NiO/Fe2O3 nanocomposites are employed as substrate to construct glucose biosensors, and the electrochemical properties are carried out by cyclic voltammetric and chronoamperometric techniques. The results indicate as-prepared biosensors achieve a high sensitivity of 230.5 μA cm?2 mM?1, wide linear range between 50 and 2867 μM, and low detection limit of 3.9 μM towards glucose detection. The synergistic effect between NiO and Fe2O3 as substrate to construct glucose biosensors is elucidated. The selectivity is acceptable based on the detection of glucose concentration for diabetics.  相似文献   

11.
The effect of conditions of electrolysis in aqueous solutions of (K2SO4 + H2SO4) electrolytes was studied in the presence of formic, acetic, and butyric acids on the formation of the corresponding peracids under oxygen electroreduction in carbon black gas-diffusion electrodes. In the presence of organic acids with the concentration of 1.5–4.7 M, as dependent in the electrolysis conditions, the current efficiency of H2O2 formation decreases from 70 to 13 % and its concentration drops from 2.3 to 0.4 M. Electrolysis under constant current (50–100 mA/cm2) results in formation of peracids with the concentration of up to 7.5 mM. No direct dependence of the concentration of peracids on the concentration of the obtained H2O2 is observed. The presence of tetrabutylammonium bromide in the solution inhibits significantly peracid formation. It is assumed that synthesis of peracids occurs partly on the surface of carbon black through activation of the adsorbed acid by a hydrogen cation and further interaction with the active form of oxygen obtained under oxygen reduction or decomposition of H2O2.  相似文献   

12.
Carbon electrodes (glassy carbon, GC, screen‐printed carbon, SPC, and carbon fiber, CF) were used as substrate transducers to prepare glucose biosensors of different sizes and geometries, based on iron‐ruthenium hexacyanoferrate as H2O2 reduction mediator and glucose oxidase immobilized in a poly(1,2‐phenylenediamine) membrane. Their response behavior under hydrodynamic amperometric conditions at an operating potential of ?0.02 V vs. Ag/AgCl was studied and compared. While the GC and SPC based conventional size biosensors showed enzymatic catalysis controlled current response with nonlinear concentration dependence, the CF based micro‐biosensor exhibited, due to diffusion‐controlled current response, extended linear range calibration curves with relatively lower sensitivity and longer response times. Several preparation parameters responsible for the improvement of biosensor performance were also investigated.  相似文献   

13.
In the present work an automatic generic tool, based on sequential injection analysis (SIA) for kinetic and inhibition studies of reactions with poorly water-soluble compounds in ionic liquid (IL)-containing systems, is described.The oxidation of the poorly water-soluble phenolic compound, caffeic acid, catalyzed by the mushroom tyrosinase, in different 1-butyl-3-methylimidazolium tetrafluoroborate ([bmim][BF4])/buffer mixtures as reaction media, was investigated. This determination was based on measuring depletion rate of the substrate caffeic acid at its maximum wavelength (λmax 311 nm).The influence of several parameters such as substrate and enzyme concentration, temperature, pH, delay times and measurement periods on the sensitivity and performance of the SIA system were studied and the optimum reaction conditions subsequently selected.The obtained results showed that tyrosinase was active in oxidising caffeic acid in this water-miscible IL and the presence of an impaired tyrosinase activity with increase in [bmim][BF4] concentration as an increase in the apparent Michaelis–Menten constant () was observed while the maximum reaction rate () remained fairly constant. The results were compared to those obtained when the assay was performed in water/methanol mixtures under the same conditions to substantiate [bmim][BF4] as an alternative to conventional organic solvents.Additionally, it was shown that tyrosinase is effectively inhibited by the substrate analogues tested (trans-cinnamic acid and 3,4-dihydroxybenzoic acid) in the IL-containing aqueous system used.  相似文献   

14.
《Analytical letters》2012,45(13):1167-1178
Abstract

For application in enzyme electrodes liver microsomal cytochrome P-450 was immobilized in a membraneous form. The immobilization yielded 60% of activity and did not impair the functional stability of the enzyme. By coimmobilization of glucose oxidase with P-450 the cofactor NADPH could be replaced by H2O2 formed from the enzymatic glucose oxidation. Fixed to a graphite electrode the obtained preparations were employed for quantitative substrate analysis. The P-450 substrate aniline was measured by anodic oxidation of its hydroqlation product at +250mV. A linear dependence of: the current on aniline concentration up to 0.5mM was obtained.  相似文献   

15.
The dipeptide derivativesZ-Tyr-Leu-NH2 andMca-Tyr-Leu-NH2 were synthesized by -chymotrypsin-catalyzed coupling reactions in solvent systems consisting of buffer and ethyl acetate. In comparison to a pure aqueous medium, in which only insignificant synthesis takes place, the product formation is greatly enhanced in a biphasic medium due to extraction of the dipeptide into the organic phase. The influence of several reaction parameters, such as buffer concentration, reaction time, volume ratio of organic and aqueous phase, and reagent concentration on the yield ofZ-Tyr-Leu-NH2 was investigated. Replacement of the hydrophobicZ-group by the more hydrophilic chloroacetyl group resulted in better dipeptide yields at higher reaction rates. Abbreviations: IUPAC-IUB rules for peptides are followed, see Eur J Biochem 27: 201 (1972).Ac = acetyl,Glt = 4-carboxybutyryl (glutaryl),Mca = monochloroacetyl,Z = benzyloxycarbonyl, –OMe = methyl ester, –Nan = 4-nitroanilide, TLC = thin layer chromatography. All amino acids are ofL-configuration.  相似文献   

16.
In this progress report an attempt is made to rationalize, from a mechanistic point of view, the different ways in which oxygen is transferred from inorganic and organic peroxides to nucleophilic substrates, particularly olefins. Oxygen transfer from transition-metal peroxides, which is relevant to catalytic oxidations using O2, H2O2 or ROOH, occurs via a cyclic or “pseudocyclic” peroxymetalation in which a dioxametallacycle is formed. Owing to the wide discrepancy between peroxymetalation and the conventional oxidation mechanism, i.e. nucleophilic attack of the substrate at the electrophilic “active oxygen”, we propose an alternative mechanism involving dioxiranes as the reactive species. The generation of dioxiranes appears to be a common denominator in the reactions of most organic peroxides e.g. peroxy acids, the reaction of electrophilic ketones with H2O2, or ozonizations. Oxygen transfer from dioxirane reagents probably involves the formation of a charge-transfer π-complex between the substrate and the carbon atom of the dioxirane, and the subsequent formation of a cyclic peroxidic intermediate.  相似文献   

17.
The phenolic compounds phenol, 4-nitrophenol, 2,4-dinitrophenol, 2,6-dinitrophenol, 1-naphthol, 2-naphthol, and 4-chlorophenol are extracted nearly quantitatively from aqueous solution into the room temperature ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate (BMImPF6) in molecular form at pH<pKa. Picric acid is extracted efficiently in anionic form. Recovery of pyrocatechol and resorcinol is much lower. The effect of pH, phenol concentration, and volume ratio of aqueous and organic phases were studied. Ionic liquid BMImPF6 is shown to be suitable for extraction–voltammetric determination of phenols without back-extraction or addition of support electrolyte. The electrochemical window of BMImPF6 at various electrodes was determined, and voltammetric oxidation of phenols and reduction of nitrophenols in BMImPF6 was studied.  相似文献   

18.
The present work synthesizes La-Cu4FeAICO3 catalyst under microwave irradiation and characterizes its structure using XRD and IR techniques. The results show that the obtained La-Cu4FeAICO3 has a hydrotalcite structure. In the phenol hydroxylation with H2O2 catalyzed by La-Cu4FeAICO3, the effects of reaction time and phenol/H2O2 molar ratio on the phenol hydroxylation, and relationships between the initial hydroxylation rate with concentration of the catalyst, phenol, H2O2 and reaction temperature are also investigated in details. It is shown the phenol conversion can reach 50.09% (mol percent) in the phenol hydroxylation catalyzed by La-Cu4FeAICO3, under the reaction conditions of the molar ratio of phenol/H2O21/2, the amount ratio of phenol/catalyst 20, reaction temperature 343 K, reaction time 120 min, 10 ml_ distilled water as solvent. Moreover, a kinetic equation of v = k[La-Cu4FeAlCO3][C6H5OH][H2O2]. and the activation energy of E a=58.37 kJ/mol are obtained according to the kinetic studies. Due to the fact that the HO-Cu+-OH species are detected in La-Cu4FeAICO3/H2O2 system by XPS, the new mechanism about the generation of hydroxyl free radicals in the phenol hydroxylation is proposed, which is supposed that HO-Cu+-OH species are transition state in this reaction.  相似文献   

19.
The supplemental activator and reducing agent (SARA) atom transfer radical polymerization (ATRP) mediated by Na2S2O4 in the presence of air, without external deoxygenation or additional oxygen scavengers, is reported for several vinyl monomers: methyl acrylate (MA), n-butyl acrylate (n-BA), methyl methacrylate (MMA), 2-(dimethylamino)ethyl methacrylate (DMAEMA), poly(ethylene glycol) methyl ether acrylate (OEOA), and styrene (Sty). The polymerizations can be conducted in aqueous medium or using organic/water mixtures as solvent, with low concentration of copper, near room temperature. In the absence of any external deoxygenation, several well-defined homopolymers and block copolymers were obtained (Ð < 1.3). The evolution of the oxygen concentration during the polymerizations was monitored with an optical oxygen sensor. The consumption of oxygen prior polymerization in ethanol/water mixtures was attributed to the combined presence of Na2S2O4 and alkyl halide initiator, which led to a lower initiation efficiency (Ieff). This could be overcome by decreasing the headspace volume of the reaction. The system reported exhibited the potential to be scalable, which is very relevant from an industrial standpoint. © 2019 Wiley Periodicals, Inc. J. Polym. Sci. 2020 , 58, 145–153  相似文献   

20.
Nitrophenols have been detected in some Antarctic lakes, the water of which is basic and rich in nitrate, nitrite and other nutrients. Nitrate or nitrite photolysis could be a possible reaction to explain the presence of these compounds. This work presents evidence for the formation of 2-nitrophenol (2NP), 4-nitrophenol (4NP) and 4-nitrosophenol (4NOP) upon UV irradiation of phenol and nitrite in aerated basic solutions.

The pH dependence of the 2NP initial formation rate is different from those of 4NP and 4NOP. The dependence of the first mainly reflects the phenol/phenolate equilibrium, with phenol yielding 2NP at a higher rate than phenolate. In the case of 4NOP, the initial formation rate vs pH has a maximum at pH 9.5. The pH dependence of 4NOP formation rate suggests that three pathways are likely to operate: nitrosation of undissociated phenol by N2O3, prevailing at pH<8.7, nitrosation of phenolate by N2O3, prevailing in the pH interval 8.7–10.8, and reaction between phenoxyl radical and ?NO, prevailing at pH>10.8. Phenol nitrosation by N2O3 is favoured when phenol is negatively charged (phenolate), but it is also disfavoured at alkaline pH values, owing to the depletion of N2O3 (the nitrosating agent) by basic hydrolysis. Differently from 2NP, the initial formation rate vs pH of 4NP is very similar to that of 4NOP, suggesting that 4NP may originate from the oxidation of 4NOP. Moreover, while in neutral and acidic solutions the formation rate of 2NP is slightly higher than that of 4NP, in the pH interval 8–12 the formation of 4NP is much more rapid than that of 2NP. This indicates that the pH of natural waters influences the ratio of nitroisomers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号