首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
A new graphite-epoxy composite electrode (GECE) containing Bi(NO(3))(3) as a built-in bismuth precursor for simultaneous and individual anodic stripping analysis of heavy trace metals like lead and cadmium is reported. The developed Bi(NO(3))(3)-GECE is compatible with bismuth film electrodes reported previously including the composite electrodes (Bi-GECE) recently reported by our group. Bi(NO(3))(3)-GECE displays the ability for the detection of both individual and simultaneous determination of heavy trace metals and exhibits well defined, reproducible and sharp stripping signals. The sensitive response is combined with the minimal toxicity of Bi(NO(3))(3). This novel sensor would be an appropriate alternative tool to sensors using bismuth in solution during their utilization in environmental quality monitoring as well as other applications.  相似文献   

2.
In this article a sensitive differential pulse stripping voltammetry technique on Nafion‐coated bismuth‐film electrode (NCBFE) was studied for the simultaneous determination of zinc, cadmium, and lead ions in blood samples at ultra trace levels. The measurement results were in excellent agreement with those obtained from atomic absorption spectroscopy. Various operational parameters were investigated and discussed in terms of their effect on the measurement signals. Under optimal conditions, calibration curves for the simultaneous determination of zinc, cadmium, and lead ions were achieved, based on three times the standard deviation of the baseline, the limits of detection were 0.09 μg L?1 for Cd(II), 0.13 μg L?1 for Pb(II), and 0.97 μg L?1 for Zn(II) respectively.  相似文献   

3.
Stripping analysis has been widely recognised as a powerful tool for trace metal analysis. Its remarkable sensitivity is attributed to the combination of a preconcentration step coupled with differential measurements that generate an extremely favourable signal-to-noise ratio. Mercury electrodes have been traditionally employed for achieving high reproducibility and sensitivity of the stripping technique. However, because of the toxicity of mercury, new alternative electrode materials are highly desired, particularly for on-site environmental monitoring of trace pollutants. Bismuth is an electrode material characterized by its low toxicity and its ability to form alloys with some metals of interest like cadmium, lead or zinc, allowing their preconcentration at the electrode surface. We present here the preparation of Cu/Nafion/Bi electrodes and their application to heavy metal analysis by anodic stripping voltammetry. First, the main limitations of the basic Cu/Bi electrode for on-site monitoring in natural waters are highlighted. Then the modification of the Cu/Bi electrode by a Nafion membrane is presented. The analytical performances of this new electrode for trace cadmium and lead analysis were evaluated in non-deaerated solutions. Linear calibration curves were obtained in synthetic solutions for concentrations ranging from 2 to 12 and 2 to 18 μg L−1 for cadmium and lead, respectively, with relative standard deviations lower than 5% (n = 15). The analytical methodology was then successfully applied to monitor the Cd2+ and Pb2+ content in real samples such as ground water and aquatic plant extracts. The results favourably compared to those obtained using a mercury drop electrode and were validated by ICP-MS.  相似文献   

4.
This work presents a disposable bismuth‐antimony film electrode fabricated on screen‐printed electrode (SPE) substrates for lead(II) determination. This bismuth‐antimony film screen‐printed electrode (Bi‐SbSPE) is simply prepared by simultaneously in situ depositing bismuth(III) and antimony(III) with analytes on the homemade SPE. The Bi‐SbSPE can provide an enhanced electrochemical stripping signal for lead(II) compared to bismuth film screen‐printed electrodes (BiSPE), antimony film screen‐printed electrodes (SbSPE) and bismuth‐antimony film glassy carbon electrodes (Bi‐SbGC). Under optimized conditions, the Bi‐SbSPE exhibits attractive linear responses towards lead(II) with a detection limit of 0.07 µg/L. The Bi‐SbSPE has been demonstrated successfully to detect lead in river water sample.  相似文献   

5.
A simple procedure for the chemical synthesis of bismuth nanoparticles and subsequent adsorption on commercial screen-printed carbon electrodes offer reliable quantitation of trace zinc, cadmium and lead by anodic stripping square-wave voltammetry in nondeareated water samples. The influence of two hydrodynamic configurations (convective cell and flow cell) and the effect of various experimental variables upon the stripping signals at the bismuth-coated sensor are explored. The square-wave peak current signal is linear over the low ng mL−1 range (120 s deposition), with detections limits ranging from 0.9 to 4.9 ng mL−1 and good precision. Applicability to waste water certified reference material and drinking water samples is demonstrated. The attractive behaviour of the new disposable Bi nanoparticles modified carbon strip electrodes, coupled with the negligible toxicity of bismuth, hold great promise for decentralized heavy metal testing in environmental and industrial effluents waters.  相似文献   

6.
The cyclic voltammetric behaviour of 8 metal ions at solid silver amalgam electrodes prepared by aging of a thin silver based mercury film electrode (SBMFE) and by deposition of silver and mercury on platinum were investigated. It was established that such electrodes behave in relation to some metals (Pb, Bi, Sn) similarly as silver electrodes i.e. the cyclic curves obtained with these electrodes at concentration 10?3M range show a prepeak-postpeak system corresponding to deposition and dissolution of the monolayer of deposit. On the other hand under the same conditions no prepeaks were observed for cadmium, zinc and thallium. In all cases investigated the heights of anodic stripping peaks were lower on curves obtained with aged SBMFE than on those obtained with fresh SBMFE having a mercury layer 1 μm thick.  相似文献   

7.
A promising modified electrode was fabricated by polymerization a conductive polymer film of dipicolinic acid (DPA) onto gold nanoparticle (AuNP)‐cysteine‐gold electrode (Au). The morphology of poly(DPA)‐AuNP‐Au electrode was investigated by scanning electron microscopy (SEM). This chemically modified electrode was used for electrochemical determination of cadmium and zinc in aqueous media using differential pulse anodic stripping voltammetry. The result showed that the modified electrode could clearly resolve the anodic stripping peaks of zinc and cadmium. The linear analytical curves were obtained in the ranges of 0.020–25.0 and 0.045–17.0 µM for zinc and cadmium respectively. The limit of detections (S/N=3) were 0.008 µM for zinc and 0.015 µM for cadmium.  相似文献   

8.
A high‐sensitivity sensing platform for lead(II) and cadmium(II) based on the bismuth modified carbon nanotubes (CNTs)‐poly(sodium 4‐styrenesulfonate) composite film electrode (CNTs‐PSS/Bi) was fabricated. The composite film CNTs‐PSS/Bi provided remarkably improved sensitivity and reproducibility compared with previously reported CNTs‐modified electrodes. The detection limits were estimated to be 0.04 ppb for lead(II) and 0.02 ppb for cadmium(II) with a preconcentration time of 120 s, respectively. The linear responses of Cd2+ and Pb2+ were over the ranges of 0.5–50 ppb and 0.5–90 ppb, respectively. Finally, the practical application of the proposed method was verified in the real water sample with satisfactory results.  相似文献   

9.
We examined the use of a bismuth-glassy carbon (Bi/C) composite electrode for the determination of trace amounts of lead and cadmium. Incorporated bismuth powder in the composite electrode was electrochemically dissolved in 0.1 M acetate buffer (pH 4.5) where nanosized bismuth particles were deposited on the glassy carbon at the reduction potential. The anodic stripping voltammetry on the Bi/C composite electrode exhibited well-defined, sharp and undistorted peaks with a favorable resolution for lead and cadmium. Comparing a non-oxidized Bi/C composite electrode with an in-situ plated bismuth film electrode, the Bi/C composite electrode exhibited superior performance due to its much larger surface area. The limit of detection was 0.41 μg/L for lead and 0.49 μg/L for cadmium. Based on this study, we are able to conclude that various types of composite electrodes for electroanalytical applications can be developed with a prudent combination of electrode materials.  相似文献   

10.
《Electroanalysis》2003,15(17):1369-1376
Silver‐gold alloy electrodes have been studied for the purpose of the quantitative determination of heavy metals by subtractive anodic stripping voltammetry, (SASV). The results have been compared with those obtained with the silver and gold electrodes. The 50/50 a/o Ag/Au alloy electrode is the most suitable for quantifying thallium in the presence of lead and cadmium. The separation of its peak from those of lead and cadmium is 200 mV, which is about twice the separation obtained on the pure metal electrodes and is also better than on mercury. The silver electrode is suitable for the simultaneous determination of thallium, lead and cadmium. The peaks of lead and cadmium overlap on the 50/50 alloy. Pure silver or pure gold can be used for simultaneous quantification of these two metals. The use of gold for quantifying lead and cadmium is more limited because the peak potential of cadmium is shifted in the negative direction as its concentration increases and at [Cd2+]>200 nM, the two peaks merge. SASV enables correction for background currents and is of utmost importance for obtaining well‐defined peaks. The peaks of lead, cadmium and thallium appear over a relatively narrow potential range (ca. 200 mV) on all the electrodes presented in this work. For this reason, the quantifying of a peak is based on the derivative at the inflection point of only one of its branches (ascending or descending). All SASV measurements were carried out without removal of oxygen.  相似文献   

11.
Mercury-coated microcylindrical carbon-fiber electrodes (7-μm diameter) are suitable for anodic-stripping voltammetric quantitation of trace metals in non-aqueous solvents. The stripping voltammograms show no distortion resulting from uncompensated ohmic drops when traces of lead, cadmium, and zinc are quantified in acetonitrile, methanol or ethylene glycol. In contrast, analogous measurements at macro-sized electrodes exhibit severe ohmic effects. Organic solutions containing extremely dilute electrolyte (or no deliberately added electrolyte) can be assayed. A two-electrode configuration yields virtually undistorted stripping voltammograms in methanol and acetonitrile. High sensitivity and good precision are obtained by using quiescent solutions.  相似文献   

12.
We present a simplified approach for the trace screening of toxic heavy metals utilizing bismuth oxide screen printed electrodes. The use of bismuth oxide instead of toxic mercury films facilitates the reliable sensing of lead(II), cadmium(II) and zinc(II). A linear range over 5 to 150 μg L?1 with detection limits of 2.5 and 5 μg L?1 are readily observed for cadmium and lead in 0.1 M HCl, respectively. Conducting a simultaneous multi‐elemental voltammetric detection of zinc, cadmium and lead in a higher pH medium (0.1 M sodium acetate solution) exhibited a linear range between 10 and 150 μg L?1 with detection limits of 5, 10 and 30 μg L?1 for cadmium, lead and zinc respectively. The sensor is greatly simplified over those recently reported such as bismuth nanoparticle modified electrodes and bismuth film coated screen printed electrodes. The scope of applications of this sensor with the inherent advances in electroanalysis coupled with the negliable toxicity of bismuth is extensive allowing high throughput electroanalysis.  相似文献   

13.
《Electroanalysis》2004,16(3):175-182
Parts‐per‐billion levels of cadmium and lead were detected using square‐wave anodic stripping voltammetry with a boron‐doped diamond electrode. Calibration plots (10‐minute deposition time) in KCl and KNO3 were non‐linear at low concentrations (1–5 ppb) due to the deposition mechanism of these metals. The preferred electrolyte for cadmium was KCl, while lead could be measured in either electrolyte. The lowest concentrations included in the linear portion of the calibration plot (5 minute deposition time) for cadmium were 10 ppb and 50 ppb in KCl and KNO3, respectively, and 10 ppb for lead in KNO3. The presence of either lead or copper suppressed the cadmium stripping peak, but the lead stripping peak was unaffected by cadmium, and enhanced by the addition of copper. A river water sample was analyzed for cadmium and lead, and the cadmium results were confirmed using ICP‐AES spectrometry. It was determined electrochemically that a fraction of lead in the river sample was bound by complexing material in the sample.  相似文献   

14.
《Electroanalysis》2005,17(7):549-555
Carbon film disk electrodes with Nafion coatings have been characterized by electrochemical impedance spectroscopy (EIS) with a view to a better understanding of their advantages and limitations in electroanalysis, particularly in anodic stripping voltammetry of metal ions. After initial examination by cyclic voltammetry, spectra were recorded over the full potential range in acetate buffer solution at the bare electrodes, electrodes electrochemically pretreated in acid solution, and Nafion‐coated pretreated electrodes in the presence and absence of dissolved oxygen. EIS equivalent circuit analysis clearly demonstrated the changes between these electrode assemblies. In order to simulate anodic stripping voltammetry conditions, spectra were also obtained in the presence of cadmium and lead ions in solution at Nafion‐coated electrodes, both after metal ion deposition and following re‐oxidation. Permanent changes to the structure of the Nafion film occurred, which has implications for use of these electrode assemblies in anodic stripping voltammetry at relatively high trace metal ion concentrations.  相似文献   

15.
Hwang GH  Han WK  Park JS  Kang SG 《Talanta》2008,76(2):301-308
A bismuth-modified carbon nanotube electrode (Bi-CNT electrode) was employed for the determination of trace lead, cadmium and zinc. Bismuth film was prepared by in situ plating of bismuth onto the screen-printed CNT electrode. Operational parameters such as preconcentration potential, bismuth concentration, preconcentration time and rotation speed during preconcentration were optimized for the purpose of determining trace metals in 0.1M acetate buffer solution (pH 4.5). The simultaneous determination of lead, cadmium and zinc was performed by square wave anodic stripping voltammetry. The Bi-CNT electrode presented well-defined, reproducible and sharp stripping signals. The peak current response increased linearly with the metal concentration in a range of 2-100 microg/L. The limit of detection was 1.3 microg/L for lead, 0.7 microg/L for cadmium and 12 microg/L for zinc (S/N=3). The Bi-CNT electrode was successfully applicable to analysis of trace metals in real environments.  相似文献   

16.
The application of anodic stripping voltammetry, with a hanging mercury drop electrode, to the determination of zinc, cadmium, lead and copper in airborne particulate matter collected by filtration is discussed. This procedure allows for the destruction of the filter material followed by the complete dissolution (including silicates) of the collected particulate matter. A low-temperature ashing process is described and the recovery of cadmium in this procedure is studied. Analytical data obtained by anodic stripping and atomic absorption for zinc, cadmium, lead and copper are compared.  相似文献   

17.
Commercially available carbon‐based screen‐printed electrodes were studied by cyclic voltammetry and electrochemical impedance spectroscopy in their behavior towards electron transfer to the soluble fast redox probes hexacyanoferrate(III), hexaammineruthenium(III) and methyl‐viologen. Semi‐infinite linear diffusion was observed for hexacyanoferrate(III) probe, with heterogeneous electron transfer rate constants significantly favored on nanotubes‐modified surfaces. Finite diffusion was observed for methyl‐viologen on graphene electrodes, which was reflected in the enhancement of the faradic currents by 4‐folds. Hexaammineruthenium(III) showed mixed diffusion behavior. These characteristics are reflected in the voltammetric behavior of lead(II) and cadmium(II) stripping from in‐situ deposited bismuth layer.  相似文献   

18.
Conditions for the formation of a stable and reproducible thin-film mercury microdrop cover on electrodes from carbon glass ceramics, carbon glass, and graphite are proposed. The influence of various factors on the parameters of signals from cadmium (II), lead (II), and copper (II) is studied by stripping voltammetry with linear, differential-pulse, sinusoidal, and square-wave potential sweep. The parameters of the stripping voltammetric experiment are optimized. The value of RSD in determining the specified modeling trace components did not exceed 15%. Approaches to the multicomponent stripping voltammetric analysis of waters are proposed.  相似文献   

19.
The optimum conditions for the preparation, storage, conditioning and renewal of copper-based mercury film electrodes (CBMFEs) are given. The voltammetric results obtained at these electrodes are compared with the predictions of the theory of cyclic and stripping voltammetry at the mercury film electrode, as well as with the results obtained at the silver-based and the platinum-based mercury film electrodes. The advantage of a CBMFE is prolonged life-time, whereas the disadvantages ar the decreased range of usable positive potentials and the possibility of interfering reactions of the electrodeposited metals with the copper substrate or copper dissolved in the mercury phase. The presence of copper has no essential influence on the behaviour of lead and thallium; it affects the behaviour of zinc markedly and that of cadmium and indium slightly. The conditions allowing the minimization of the harmful action of copper on the behaviour of cadmium and indium have been found.  相似文献   

20.
To improve reproducibility, stability and sensitivity, a bismuth (Bi) thin film was coated on glassy carbon (GC) substrates which surfaces were modified with a porous thin layer of polyaniline (PANI) via multipulse potentiostatic electropolymerization to form Bi/PANI/GC electrodes (Bi/PANI/GCEs). The Bi/PANI/GCEs were used successfully for simultaneous detection and determination of Cd2+ and Pb2+ ions, and various parameters were studied with reference to square wave anodic stripping voltammetric (SWASV) signals. The experimental results depicted that the environment‐friendly Bi/PANI/GCEs had the ability to rapidly monitor trace heavy metals even in the presence of surface‐active compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号