首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
《Electroanalysis》2005,17(24):2260-2265
A new Cu(II) ion‐selective PVC membrane sensor based on 6‐methyl‐4‐(1‐phenylmethylidene)amino‐3‐thioxo‐1,2,4‐triazin‐5‐one (MATTO) as an excellent sensing material was developed. The electrode exhibits a Nernstian slope of 29.2±0.4 mV per decade over a very wide concentration range between 1.0×10?1 and 1.0×10?6 M, with a detection limit of 4.8×10?7 M (30.5 ng/mL). The sensor possesses the advantages of short conditioning time, fast response time (<10 s), and especially, very good selectivity towards transition and heavy metal, and some mono, di and trivalent cations. The proposed electrode was successfully applied to the determination of copper in wastewater of copper electroplating samples and as an indicator electrode in potentiometric titration of Cu(II) ions with EDTA.  相似文献   

2.
《Electroanalysis》2003,15(19):1561-1565
A highly selective membrane electrode for the determination of ultratrace amounts of lead was prepared. The PVC membrane electrode based on 2‐(2‐ethanoloxymethyl)‐1‐hydroxy‐9,10‐anthraquinone (AQ), directly coated on graphite, exhibits a good Nernstian response for Pb(II) ions over a very wide concentration range (1.0×10?7–1.0×10?2 M) with a limit of detection of 8.0×10?8 M. It has a fast response time of ca. 10 s and can be used over a period 2 months with good reproducibility (SD=±0.2 mV). The electrode revealed a very good selectivity respect to common alkali, alkaline earth, transition and heavy metal ions and could be used in the pH range of 3.5–6.8. It was used as an indicator electrode in potentiometric titration of lead ions with chromate and oxalate, and in indirect determination of lead in spring water samples.  相似文献   

3.
《Electroanalysis》2005,17(22):2032-2036
We found that bis(thiophenal) pyridine‐2,6‐diamine (BPD) can be used as an excellent ion carrier to prepare a gadolinium‐selective PVC‐based membrane sensor. The use of oleic acid (OA) and potassium tetrakis(p‐chlorophenyl borate)(KTKpClPB), as anionic additives, and dibutyl phthalate (DBP), acetophenone (AP) and nitrobenzene (NB), as plasticizing solvent mediators was investigated. The best performance was observed with a membrane having the composition of 30% PVC; 62% BA; 5% BPD; and 3% KTKpClPB. The resulting sensor works well over a relatively wide concentration range (1.0×10?6–1.0×10?1 M) with a Nernstian slope of 19.4±0.4 mV per decade of gadolinium activity over a wide pH range (3.5–8.0). The limit of detection of the sensor is 7.0×10?7 M (ca. 110 ng mL?1). The proposed electrode shows excellent discriminating ability toward gadolinium ions with regard to common alkali, alkaline earth, transition, heavy metal ions, and specially, lanthanide ions. The proposed sensor was applied as an indicator electrode for titration of gadolinium ions with EDTA.  相似文献   

4.
《Electroanalysis》2006,18(11):1091-1096
N‐(2‐Pyridyl)‐N′‐(4‐methoxyphenyl)‐thiourea (PMPT) was found to be a suitable neutral ion carrier for the construction of a highly selective and sensitive La(III) membrane sensor. Poly(vinyl chloride) (PVC) based membranes of PMPT with potassium tetrakis (p‐chlorophenyl) borate (KTpClPB) as an anionic excluder and oleic acid (OA), dibutyl phthalate (DBP), benzyl acetate (BA) and o‐nitrophenyloctyl ether (NPOE) as plasticizing solvent mediators were constructed and investigated as La(III) membrane sensors. A membrane composed of PMPT‐PVC‐KTpClPB‐BA with the ratio 8.0 : 35.0 : 3.0 : 54.0 works well over a very wide concentration range (4.0×10?8 to 1.0×10?1 M) with a Nernstian slope of 19.6±0.2 mV per decade of activity between pH values of 4.0 and 9.0. The detection limit of the sensor was calculated to be 2.0×10?8 M (ca. 3.0 ppb). The sensor displays very good discrimination toward La(III) ions with regard to most common metal ions and lanthanide ions. The proposed sensor shows a short response time for whole concentration range (ca. 12 s). For evaluation of the analytical applicability of the La(III) sensor, it was successfully used as an indicator electrode for the titration of La(III) ions with EDTA. It was also applied to the determination of fluoride content of two mouth wash preparation samples and monitoring of La(III) ions in some binary and ternary mixtures.  相似文献   

5.
《Electroanalysis》2006,18(9):888-893
A poly(vinyl chloride)‐based membrane of dimethyl 1‐acetyl‐8‐oxo‐2,8‐dihydro‐1H‐pyra‐zolo[5,1‐a]isoindole‐2,3‐dicarboxylate as a neutral carrier with sodium tetraphenylborate (NaTPB) as an anion excluder and 2‐nitrophenyl octyl ether (NPOE) as plasticizer was prepared and investigated as a Ba(II)‐selective electrode. The electrode exhibits a Nernstian slope of 29.7±0.4 mV per decade over a wide concentration range (1.0×10?6 to 1.0×10?1 M) with a detection limit of 7.6×10?7 M between pH 3.0 and 11.0. The response time of the sensor is about 10 s and it can be used over a period of 2 months without any divergence in potential. The proposed membrane sensor revealed good selectivity for Ba(II) over a wide variety of other metal ions. It was successfully used in direct determination of barium ions in industrial wastewater samples.  相似文献   

6.
《Electroanalysis》2005,17(17):1534-1539
The construction, performance, and applications of a novel ytterbium(III) sensor based on N‐(2‐pyridyl)‐N′‐(2‐methoxyphenyl)‐thiourea (PMT), as an excellent carrier, in plasticized poly(vinyl chloride) PVC matrix, is described. The influences of membrane composition and pH on the potentiometric response of the sensor were investigated. The sensor exhibits a nice Nernstian response for Yb(III) ion over a wide concentration range of 4 decades of concentration (1.0×10?6–1.0×10?2 M), and a detection limit of 5.0×10?7 M. The response time of the electrodes is between 8 and 10 s, depending on the concentration of ytterbium(III) ions. The proposed sensor can be used for about 8 weeks without any considerable divergence in potential. The sensor revealed very good selectivity for Yb(III) in the presence of several metal ions. The best performance was observed for the membrane containing; 30% PVC, 59% o‐nitrophenyloctyl ether (NPOE) as solvent mediator, 7% PMT, and 4% sodium tetraphenyl borate (NaTPB). It was successfully applied as indicator electrodes in the potentiometric titration of Yb(III) with EDTA and for the determination of fluoride ion in two mouth wash formulations. The proposed La(III) sensor was found to work well under laboratory conditions. It was also used as an indicator electrode in titration of a 1.0×10?4 M of Yb(III) with a standard EDTA solution (1.0×10?2 M). It was also used for determination of Yb(III) ion in Xenotime .  相似文献   

7.
A potentiometric sensor for lead(II) ions based on the use of 1,4,8,11‐tetrathiacyclotetradecane (TTCTD) as a neutral ionophore and potassium tetrakis‐(p‐chlorophenyl)borate as a lipophilic additive in plasticized PVC membranes is developed. The sensor exhibits linear potentiometric response towards lead(II) ions over the concentration range of 1.0×10?5–1.0×10?2 mol L?1 with a Nernstian slope of 29.9 mV decade?1 and a lower limit of detection of 2.2×10?6 mol L?1 Pb(II) ions over the pH range of 3–6.5. Sensor membrane without a lipophilic additive displays poor response. The sensor shows high selectivity for Pb(II) over a wide variety of alkali, alkaline earth and transition metal ions. The sensor shows long life span, high reproducibility, fast response and long term stability. Validation of the method by measuring the lower limit of detection, lower limit of linear range, accuracy, precision and sensitivity reveals good performance characteristics of the proposed sensor. The developed sensor is successfully applied to direct determination of lead(II) in real samples. The sensor is also used as an indicator electrode for the potentiometric titration of Pb(II) with EDTA and potassium chromate. The results obtained agree fairly well with data obtained by AAS.  相似文献   

8.
《Electroanalysis》2002,14(23):1621-1628
Copper phthalocyanine was used as ion carrier for preparing polymeric membrane selective sensor for detection of iodide. The electrode was prepared by incorporating the ionophore into plasticized poly(vinyl chloride) (PVC) membrane, coated on the surface of graphite electrode. This novel electrode shows high selectivity for iodide with respect to many common inorganic and organic anions. The effects of membrane composition, pH and the influence of lipophilic cationic and anionic additives and also nature of plasticizer on the response characteristics of the electrode were investigated. A calibration plot with near‐Nernestian slope for iodide was observed over a wide linear range of five decades of concentration (5×10?6?1×10?1 M). The electrode has a fast response time, and micro‐molar detection limit (ca. 1×10?6 M iodide) and could be used over a wide pH range of 3.0–8.0. Application of the electrode to the potentiometric titration of iodide ion with silver nitrate is reported. This sensor is used for determination of the minute amounts of iodide in lake water samples.  相似文献   

9.
A highly selective PVC‐membrane electrode based on 2,6‐diphenylpyrylium fluoroborate is presented. The electrode reveals a Nernstian potentiometric response for sulfate ion over a wide concentration range (5.0 × 10?6‐1.0 × 10?1 M). The electrode has a response time of about 10 s and can be used for at least 2 months without any divergence. The proposed sensor revealed very good selectivities for sulfate over a wide variety of common organic and inorganic anions and could be used over a wide pH range (2.5–9.5). The detection limit of the sensor is 3.0 × 10?6 M. It was successfully applied to the direct determination of salbutamol, paramomycin tablets, and as an indicator electrode for potentiometric titration of sulfate ions with barium ions.  相似文献   

10.
New polymeric membrane cadmium‐ion selective sensors have been prepared by incorporating nitrogen and sulfur containing tridentate ligands as the ionophores into the plasticized PVC membranes. Poly(vinyl chloride) (PVC) based membranes of potassium hydrotris[N‐(2,6‐xylyl)thioimdazolyl) borate] (KTt2,6‐xylyl) and potassium hydrotris(3‐phenyl‐5‐methylpyrazolyl) borate (KTpPh,Me) with sodium tetraphenyl borate (NaTPB) as an anionic excluder and dibutylphthalate (DBP), tributylphthalate (TBP), dioctylsebacate (DOS), and o‐nitrophenyloctyl ether (o‐NPOE) as plasticizing solvent mediators were investigated in different compositions. KTt2,6‐xylyl was found to be a selective and sensitive ion carrier for Cd(II) membrane sensor. A membrane composed of KTt2,6‐xylyl:NaTPB:PVC:DBP with the % mole ratio 2.3 : 1.1 : 34.8 : 61.8 (w/w) works well over a very wide concentration range (7.8×10?8–1.0×10?2 M) with a Nernstian slope of 29.4±0.2 mV/decades of activity between pH values of 3.5 to 9.0 with a detection limit of 4.37×10?8 M. The sensor displays very good discrimination toward Cd(II) ions with regard to most common cations. The proposed sensor shows a short response time for whole concentration range (ca. 8 s). The effects of the cationic (tetrabutylammonium chloride, TBC), anionic (sodium dodecyl sulfate, SDS) and nonionic (Triton X‐100) surfactants were investigated on the potentiometric properties of proposed cadmium‐selective sensor. The proposed sensor based on KTt2,6‐xylyl ionophore has also been used for the direct determination of cadmium ions in different water samples and human urine samples.  相似文献   

11.
A dichromate‐selective PVC‐membrane electrode based on Quinaldine Red (an acridinium derivative) is described. The electrode exhibits rapid (< 30 s) and linear response to the activity of Cr(VI) anions in the range of 5.2 × 10?6 ?1.0 × 10?1 M dichromate with the limit of detection 2.5 × 10?6 Mof Cr2O72?. The sensor is used as an indicator electrode in potentiometric determination of Cr(VI) anions and is also suitable for end‐point indication in the titrations of proper metal ions with dichromate under laboratory conditions. The proposed electrode has been applied to the direct potentiometric determination of Cr(VI) anions in water samples with satisfactory results.  相似文献   

12.
A novel membrane sensor for selective monitoring of iodide, consisting of a triiodide‐ketoconazole ion pair complex dispersed in a PVC matrix, plasticized with a mixture of 2‐nitrophenyl octyl ether and dioctylphtalate with unique selectivity toward iodide ions, is described. The influence of membrane composition, pH of test solution and foreign ions on the electrode performance were investigated. The optimized membrane demonstrates a near‐Nernstian response for iodide ions over a wide linear range from 1.0 × 10?2 to 1.0 × 10?5 M, at 25 ± 1 °C. The electrode could be used over a wide pH range 3–10 and has the advantages of high selectivity, fast response time and good lifetime (over 4 months). It was successfully used as indicator electrode in potentiometric titrations and direct potentiometric assay of iodide ions.  相似文献   

13.
许文菊  袁若  柴雅琴 《中国化学》2009,27(1):99-104
本文以2,9,16,23-四硝基酞菁铜(II) (Cu(II)TNPc) 和2,9,16,23-四氨基酞菁铜(II) (Cu(II)TAPc) 为载体制备PVC聚合膜,构建了水杨酸根选择性电极,并探讨了该电极的选择性响应性能。研究了增塑剂的性质、载体的含量及阴、阳离子添加剂对电极电位响应的影响。结果表明,基于Cu(II)TNPc为载体的PVC膜电极对水杨酸根 (Sal-) 呈现出优先选择性电位响应。具有最佳电位响应的电极的膜组成是:(w/w) 3.0% Cu(II)TNPc,67.0% o-NPOE,29.5% PVC和0.5% NaTPB。基于该组成的电极的线性响应范围为1.0×10-1-9.0×10-7 mol·L-1,检测下限为7.2×10-7 mol·L-1,斜率为-59.8±0.5 mV/decade;其响应快速,稳定性好,适宜的pH范围是3.0-7.0。并成功运用于了实际样品中水杨酸含量的测定,获得令人满意的结果。  相似文献   

14.
《Electroanalysis》2005,17(20):1828-1834
A recently synthesized azao‐containing Schiff's base N,N′‐adipylbis(5‐phenylazo salicylaldehyde hydrazone) was used as a suitable neutral ion carrier in construction of a highly selective La3+‐PVC membrane electrode. The electrode exhibits a Nernstian response with a slope of 19.4 mV decade?1 over a wide concentration range (1.0×10?6–1.0×10?2 M) and a limit of detection of 4.0×10?7 M (0.05 ppm). The electrode possesses a fast response time of ca. 10 s and can be used for at least 3 months without observing any deviation. The proposed electrode revealed excellent selectivity for La3+ over a wide variety of alkali, alkaline earth, transition and heavy metal ions and could be used in a pH range of 4.0–8.0. The practical utility of the electrode has been demonstrated by its use as an indicator electrode in the potentiometric titration of La3+ ions with EDTA and in determination of F? ion in some pharmaceutical preparations.  相似文献   

15.
《Electroanalysis》2004,16(12):1009-1013
A novel ion‐selective polymeric membrane sensor based on pyrylium‐4,4‐(1,4‐phenylen) bis[2,6‐bis(2‐naphthyl)]‐bis[tetrafluoroborate] (PBGNB) as an excellent sensing material is successfully developed. The electrode possesses the advantages of a very low detection limit (5.0×10?8 M), a wide working concentration range (1.0×10?8?1.0×10?1 M) and specially, a high sulfate selectivity over most common organic and inorganic anions. The sensor displays Nernstian behavior (slope of 29.5±0.5 mV per decade) in a wide pH range (3.0–8.5). It shows a short response time in the whole concentration range (ca. 10 s). The electrode was used as an indicator electrode in the potentiometric titration of sulfate ions with barium ions. The proposed sensor was successfully applied to the direct determination of salbutamol sulfate and paromomycin sulfate.  相似文献   

16.
《Electroanalysis》2004,16(11):910-914
A novel bromide PVC‐based membrane sensor, based on iron(III)‐salen (IS) as an electroactive material, is successfully developed. The sensor possesses the advantages of low detection limit (6.0×10?6), wide working concentration range (7.0×10?6–1.0×10?1 M), Nernstian behavior (slope of 59.0±0.5 mV per decade), low response time (<15 s), wide working pH range (3–9), and specially, high bromide selectivity over a wide variety of organic and inorganic anions, specially iodide, chloride, and hydroxide ions. The electrode was used in the direct potentiometric determination of hyoscine butylbromide, and as an indicator electrode in potentiometric titration of bromide ions with silver ions.  相似文献   

17.
A polyvinyl chloride (PVC) membrane based Pr(III) selective electrode was constructed using 1,6,7,12‐tetramine‐2,5,8,11‐tetraoxo‐1(12),6(7)‐di(biphenyl)dodecane (TATODBDD) as a neutral carrier. The sensor exhibits a Nernstian response for Pr(III) ions, a wide concentration range of 3.9×10?7?1.0×10?1 mol/L with a detection limit of 5.0×10?8 mol/L and slope of 19.5 mV/decade. The developed sensor revealed relatively good selectivity and high sensitivity for Pr(III) ions over the other lanthanide ions. The potentiometric response of the sensor is independent in the pH range 2.9–9.5. The advantages of sensor are low resistance, very fast response time (<10 s) with good selectivity. This sensor can be used up to 6 weeks without any divergences in potential response.  相似文献   

18.
《Analytical letters》2012,45(6):1075-1086
Abstract

A novel plasticized membrane sensor for Ho(III) ions based on N‐(1‐thien‐2‐ylmethylene)‐1,3‐benzothiazol‐2‐amine (TBA) as a neutral carrier was prepared. The best performance was obtained with a membrane composition of 31% PVC, 61% benzyle acetate, 2% sodium tetra phenyl borate and 6% carrier. The electrode exhibits a Nernstian response for Ho(III) ions over a particular concentration range (1.0×10?5?1.0×10?2 M) with a slope of 19.7±0.2 mV decade?1. The limit of the detection is 7.0×10?6 M. The sensor has a response time of <15 s and a useful working pH range of 4.0–9.5. The proposed sensor discriminates relatively well towards Ho(III) ions with regard to common alkali, alkaline earth, and specially lanthanide ions. It was successfully applied as an indicator electrode in a potentiometric titration of Ho(III) ions with EDTA. It was also applied in determination of fluoride ions in a mouth wash preparation. The proposed sensor was applied for the determination of Ho(III) ion concentration in binary mixtures.  相似文献   

19.
《Electroanalysis》2006,18(12):1186-1192
A PVC membrane electrode using [Bzo2Me2Ph2(16)hexaeneN4] ( I ) as ionophore, oleic acid as lipophilic additive and o‐nitrophenyloctyl ether as plasticizer has been investigated as Zn(II)‐selective electrode. The membrane incorporating 34.9% (w/w) PVC, 2.3% I , 4.7% OA and 58.1% o‐NPOE gave linear response over the concentration range 2.82×10?6?1.0×10?1 M with a Nernstian slope of 28.5±0.2 mV/decade of concentration with a detection limit of 2.24×10?6 M (0.146 ppm) and showed a response time of less than 10 s and could be used in pH range 2.5–8.5. High selectivity was obtained over a wide variety of metal ions. The proposed electrode was successfully used as an indicator electrode in potentiometric titration of zinc ions with EDTA and for determination of zinc in real samples.  相似文献   

20.
《Electroanalysis》2004,16(21):1771-1776
In this work a dysprosium [Dy(III)]‐selective solvent polymeric membrane sensor based on N,N‐bis(pyrrolidene) benzne‐1,2‐diamine, poly(vinyl chloride)(PVC), the plasticizer benzylacetate (BA), and anionic site is described. This sensor responds to Dy(III) activity in a linear range from 1.0×10?5 to 1.0×10?1 M, with a slope of 20.6±0.2 mV per decade and a detection limit of 6.0×10?6 M at the pH range of 3.5–8.0. It has a fast response time of<20 s in the entire concentration range, and can be used for at least 2 months without any considerable divergence in the electrode potentials. The proposed sensor revealed comparatively good selectivity with respect to common alkali, alkaline earth, transition and heavy metal ions. It was used as an indicator electrode in the potentiometric titration of fluoride ions and in determination of concentration of F ions in some mouth washing solutions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号