首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 303 毫秒
1.
《Electroanalysis》2017,29(3):739-747
Most commercially available fluorous polymers are ill suited for the fabrication of ion‐selective electrode (ISE) membranes. Therefore, we synthesized semifluorinated polymers for this purpose. Ionophore‐free ion‐exchanger electrodes made with these polymers show a selectivity range (≈14 orders of magnitude) that is nearly as wide as found previously for liquid fluorous ion‐exchanger electrodes. These polymers were also used to construct ISE membranes doped with fluorophilic silver ionophores. While the resulting ISEs were somewhat less selective than their fluorous counterparts, the semifluorinated polymers offer the advantage that they can be doped both with fluorophilic ionophores and traditional lipophilic ionophores, such as the silver ionophore Cu(II)‐I (o ‐xylylenebis[N,N ‐diisobutyldithiocarbamate]). We also cross‐linked these polymers, producing very durable membranes that retained broad selectivity ranges. K+ ISEs made with the cross‐linked semifluorinated polymer and the ionophore valinomycin showed selectivities similar to those of PVC membrane ISEs but with a superior thermal stability, the majority of the electrodes still giving a theoretical (Nernstian) response after exposure to a boiling aqueous solution for 10 h.  相似文献   

2.
《Electroanalysis》2006,18(11):1055-1062
The potentiometric response characteristics of electrodes based on PVC membranes containing novel polyethylene glycols (PEGs) with tributyltin carboxylate end groups as ionophores for chloride ions were studied in 0.1 M HEPES solution, at the spontaneous pH. The effects of solvent mediator, amount of cationic additive, amount of ionophore and PEG chain length on the behavior of the sensors were investigated. The membranes with the best composition responded to chloride concentration in a linear range from 10?4 to 10?1 M Cl? with a nearly Nernstian slope and a detection limit of 6.5×10?5 M. The sensor showed a short response time (<25 s) in the whole concentration range and an operational lifetime of about one week for the most performing PVC membranes. In comparison with ISEs based on anion exchangers the interferences from the more lipophilic anions were greatly reduced, as inferable by the selectivity coefficients determined with the matched potential method at chloride concentration of 3.0×10?3 M.  相似文献   

3.
We report the synthesis and analytical application of the first Cu2+‐selective synthetic ion channel based on peptide‐modified gold nanopores. A Cu2+‐binding peptide motif (Gly‐Gly‐His) along with two additional functional thiol derivatives inferring cation‐permselectivity and hydrophobicity was self‐assembled on the surface of gold nanoporous membranes comprising of about 5 nm diameter pores. These membranes were used to construct ion‐selective electrodes (ISEs) with extraordinary Cu2+ selectivities, approaching six orders of magnitude over certain ions. Since all constituents are immobilized to a supporting nanoporous membrane, their leaching, that is a ubiquitous problem of conventional ionophore‐based ISEs was effectively suppressed.  相似文献   

4.
The synthesis of a novel covalently immobilized crown ether based potassium ionophore is presented. Apart from previously proposed methods for the preparation of PVC linked ionophores based on the chemical modification of functionalized PVC polymers, the hereby proposed procedure involves the direct copolymerization of a suitable derivative of the bis-crown ether type potassium ionophore (BME 44) and vinyl chloride monomer. The analytical performance of the potentiometric ion selective electrodes incorporating the PVC bound ionophore were optimized and determined. Compared with electrodes based on other bis-crown ether type immobilized potassium selective ionophores a slightly improved logK(K, Na)(Pot) and a longer lifetime was found. Spectral imaging and chronoamperometry were used to study the mobility of different bis-crown ether derivatives in plasticized PVC membranes.  相似文献   

5.
Fabrication of PVC membrane electrodes incorporating selective neutral carriers for Cd(2+) was reported. The ionophores were designed to have different topologies, donor atoms and lipophilicity by attaching tripodal amine (TPA) units to the lipophilic anthracene (ionophore I) and p-tert-butylcalix[4]arene (ionophores II, III and IV). The synthesized ionophores were incorporated to the plasticized PVC membranes to prepare Cd(II) ion selective electrodes (ISEs). The membrane electrodes were optimized by changing types and amounts of ionic sites and plasticizers. The selectivity of the membranes fabricated from the synthesized ionophores was evaluated, the relationship between structures of ionophores and membrane characteristics were explored. The ionophore IV which composed of two opposites TPA units on the calix[4]arene compartment showed the best selectivity toward Cd(2+). The best membrane electrode was fabricated from ionophore IV (10.2 mmol kg(-1)) with KTpClPB (50.1 mol% related to the ionophore) as an ion exchanger incorporated in the DOS plasticized PVC membrane (1:2; PVC:DOS). The Cd-ISE fabricated from ionophore IV exhibited good properties with a Nernstian response of 29.4±0.6 mV decade(-1) of activity for Cd(2+) ions and a working concentration range of 1.6×10(-6)-1.0×10(-2)M. The sensor has a fast response time of 10s and can be used for at least 1 week without any divergence in potential. The electrode can be used in the pH range of 6.0-9.0. The proposed electrodes using ionophores III and IV were employed as a probe for determining Cd(2+) from the oxidation of CdS QDs solution and the real treatment waste water sample with excellent results.  相似文献   

6.
Manganese(III) complexes of three fluorophilic salen derivatives were used to prepare ion-selective electrodes (ISEs) with ionophore-doped fluorous sensing membranes. Because of their extremely low polarity and polarizability, fluorous media are not only chemically very inert but also solvate potentially interfering ions poorly, resulting in a much improved discrimination of such ions. Indeed, the new ISEs exhibited selectivities for CO(3)(2-) that exceed those of previously reported ISEs based on nonfluorous membranes by several orders of magnitude. In particular, the interference from chloride and salicylate was reduced by 2 and 6 orders of magnitude, respectively. To achieve this, the selectivities of these ISEs were fine-tuned by addition of noncoordinating hydrophobic ions (i.e., ionic sites) into the sensing membranes. Stability constants of the anion-ionophore complexes were determined from the dependence of the potentiometric selectivities on the charge sign of the ionic sites and the molar ratio of ionic sites and the ionophore. For this purpose, a previously introduced fluorophilic tetraphenylborate and a novel fluorophilic cation with a bis(triphenylphosphoranylidene)ammonium group, (R(f6)(CH(2))(3))(3)PN(+)P(R(f6)(CH(2))(3))(3), were utilized (where R(f6) is C(6)F(13)). The optimum CO(3)(2-) selectivities were found for sensing membranes composed of anionic sites and ionophore in a 1:4 molar ratio, which results in the formation of 2:1 complexes with CO(3)(2-) with stability constants up to 4.1 × 10(15). As predicted by established theory, the site-to-ionophore ratios that provide optimum potentiometric selectivity depend on the stoichiometries of the complexes of both the primary and the interfering ions. However, the ionophores used in this study give examples of charges and stoichiometries previously neither explicitly predicted by theory nor shown by experiment. The exceptional selectivity of fluorous membranes doped with these carbonate ionophores suggests their use not only for potentiometric sensing but also for other types of sensors, such as the selective separation of carbonate from other anions and the sequestration of carbon dioxide.  相似文献   

7.
Cross GG  Fyles TM  Suresh VV 《Talanta》1994,41(9):1589-1596
Polymers containing covalently attached 18-crown-6 or 2.2.2 cryptand units were incorporated into plasticized PVC membranes and the composite membranes were examined as potassium ion sensor elements. Ionophores were linked to carboxy-PVC and to poly(acrylic acid) via amide linkages to an alkyl spacer unit. Coated-wire electrodes (CWEs) from the immobilized ionophores gave acceptable responses, but conventional ion-selective membrane electrodes (ISEs) prepared by solvent casting were inactive. Dip-cast membranes did give active ISEs. Potassium electrode performance was independent of the loading of the ionophore within the acrylate support polymer, but depended upon the spacer length. Ion selectivity varied with the ionophore loading within the support polymer. Selectivity is a composite of the ionophore selectivity and ion-exchange interactions with the acrylate backbone, giving selectivities akin to carboxylate substituted crown ethers, notably enhanced monovalent/divalent ion discrimination relative to the ionophore in solution. Polymer immobilization extended the lifetime of active electrodes.  相似文献   

8.
《Electroanalysis》2003,15(20):1598-1605
It is well known that non‐ionic surfactants (NIS) influence remarkably the potentiometric measurements with liquid membrane ion selective electrodes (ISEs), interfering particularly on performance of ISEs for earth‐alkali metals, for which the loss of selectivity with regard to alkali metals has been documented. These studies indicate that such interferences are due to the extraction of surfactants within the membrane, where a competition takes place between the originally present ionophore and the surfactant which also acts as a ligand for alkali metals. The interpretation of such phenomena enabled one to exploit this interference for analytical purposes by membrane/solution extraction experiment monitored by UV measurements and by impedance FRA analysis on coated wire electrodes. Using Ca/Mg ISEs based on the neutral ionophore ETH 4030, it has been established that the logarithm of the Ca/Mg over Na potentiometric selectivity constant is linearly correlated with the concentration of NIS like Tegopren 5863 and Triton X‐100. The proposed method has been applied for the development of a new potentiometric analytical procedure for the determination of Tegopren 5863 in synthetic seawater (SSW), ranging from 0.25 to 5 ppm. Our procedure consists in the exposure of the electrode to stirred SSW containing the surfactant; the progressive extraction of Tegopren 5863 causes a growth in electrode's sensitivity to Na+ and K+, losing selectivity for Ca2+ and Mg2+. In turn this induces an increase of EMF, as all these ions are present in the studied matrix. The potential drift was monitored for 15 hours, showing that the process reaches thermodynamic equilibrium after about 12 hours of exposure. This method presents a value of 210 ppb of Tegopren 5863 as detection limit.  相似文献   

9.
A series of polymeric nitrite‐selective electrodes containing a new lipophilic ionophore Co(II) tert‐butyl‐salophen is reported. The stability of Co(II) ionophores within a PVC‐based membrane was investigated by leaching experiments. Different membrane compositions were explored in order to reach the lowest possible limit of detection for a PVC‐based nitrite selective polymeric membrane electrode containing this ionophore. The optimal electrode showed a limit of detection of 2×10?6 M and exhibited four orders of magnitude of discrimination over nitrate, chloride and bromide. The electrodes were evaluated in undiluted human urine and attest to the robustness of the ionophore.  相似文献   

10.
《Electroanalysis》2006,18(1):7-18
Conducting polymers, i.e., electroactive conjugated polymers, are useful both as ion‐to‐electron transducers and as sensing membranes in solid‐state ion‐selective electrodes. Recent achievements over the last few years have resulted in significant improvements of the analytical performance of solid‐contact ion‐selective electrodes (solid‐contact ISEs) based on conducting polymers as ion‐to‐electron transducer combined with polymeric ion‐selective membranes. A significant amount of research has also been devoted to solid‐state ISEs based on conducting polymers as the sensing membrane. This review gives a brief summary of the progress in the area in recent years.  相似文献   

11.
Calix[4,8]arenes bearing adamantyl substituents in the upper rim and ethoxycarbonylmethoxy groups in the lower rim of the macrocycle were proposed as ionophores in membranes of ion-selective electrodes (ISEs) for determining alkali cations. Depending on the number of phenolic fragments (n) in the calixarene molecule, ISEs respond to either sodium (n = 4) or cesium (n = 8) ions. Sensors based on membranes that, along with ionophores, contain tetraphenyl borate ions as a lipophilic additive are selective for Na and Cs ions in the presence of other alkali metals. They exhibit almost theoretical responses over the concentration range from 1 × 10–4 to 1 × 10–1 M at pH 5.5–12 for Na-SE and pH 3–11 for Cs-SE, respectively.  相似文献   

12.
Mercury ion-selective electrodes (ISEs) were prepared with a polymeric membrane based on heterocyclic systems: 2-methylsulfanyl-4-(4-nitro-phenyl)-l-p-tolyl-1H-imidazole (I) and 2,4-diphenyl-l-p-tolyl-1H-imidazole (II) as the ionophores. Several ISEs were conditioned and tested for the selection of common ions. The electrodes based on these ionophores showed a good potentiometric response for Hg2+ ions over a wide concentration range of 5.0 x 10(5-) - 1.0 x 10(-1)M with near-Nernstian slopes. Stable potentiometric signals were obtained within a short time period of 20 s. The detection limits, the working pH range of the electrodes were 1.0 x 10(-5) M and 1.6-4.4 respectively. The electrodes showed better selectivity for Hg2+ ions over many of the alkali, alkaline-earth and heavy metal ions. Also sharp end points were obtained when these sensors were used as indicator electrodes for the potentiometric titration of Hg2+ ions with iodide ions.  相似文献   

13.
Electrochemical properties of membranes based on macrocyclic compounds containing two sulfur atoms in a polyether ring were studied. The use of these compounds as ionophores of membranes of ion-selective electrodes (ISEs) reversible with respect to mercury(II) was examined. The ISEs developed were used for the determination of mercury in samples of fish and soil.  相似文献   

14.
《Electroanalysis》2006,18(6):551-557
Aluminum(III) porphyrins are examined as potential fluoride selective ionophores in polymeric membrane type ion‐selective electrodes. Membranes formulated with Al(III) tetraphenyl (TPP) or octaethyl (OEP) porphyrins are shown to exhibit enhanced potentiometric selectivity for fluoride over more lipophilic anions, including perchlorate and thiocyanate. However, such membrane electrodes display undesirable super‐Nernstian behavior, with concomitant slow response and recovery times. By employing a sterically hindered Al(III) picket fence porphyrin (PFP) complex as the membrane active species, fully reversible and Nernstian response toward fluoride is achieved. This finding suggests that the super‐Nernstian behavior observed with the nonpicket fence metalloporphyrins is due to the formation of aggregate porphyrin species (likely dimers) within the membrane phase. The steric hindrance of the PFP ligand structure eliminates such chemistry, thus leading to theoretical response slopes toward fluoride. Addition of lipophilic anionic sites into the organic membranes enhances response and selectivity, indicating that the Al(III) porphyrin ionophores function as charged carrier type ionophores. Optimized membranes formulated with Al(III)‐PFP in an o‐nitrophenyloctyl ether plasticized PVC film exhibit fast response to fluoride down to 40 μM, with very high selectivity over SCN?, ClO4?, Cl?, Br? and NO3? (kpot<10?3 for all anions tested). With further refinements in the membrane chemistry, it is anticipated that Al(III) porphyrin‐based membrane electrodes can exhibit potentiometric fluoride response and selectivity that approaches that of the classical solid‐state LaF3 crystal‐based fluoride sensor.  相似文献   

15.
《Electroanalysis》2002,14(24):1691-1698
Three different recently synthesized aza‐thioether crowns containing a 1,10‐phenanthroline sub‐unit (L1–L3) and a corresponding acyclic ligand (L4) were studied to characterize their abilities as silver ion ionophores in PVC‐membrane electrodes. Novel conventional silver‐selective electrodes with internal reference solution (CONISE) and coated graphite‐solid contact electrodes (SCISE) were prepared based on one of the 15‐membered crowns containing two donating S atoms and two phenanthroline‐N atoms (L1). The electrodes reveal a Nernstian behavior over wide Ag+ ion concentration ranges (1.0×10?5?1.0×10?1 M for CONISE and 5.0×10?8?4.0×10?2 M for SCISE) and very low limits of detection (8.0×10?6 M for CONISE and 3.0×10?8 M for SCISE). The potentiometric response is independent from pH of the solution in the pH range 3.0–8.0. The electrodes manifest advantages of low resistance, very fast response and, most importantly, good selectivities relative to a wide variety of other cations. The electrodes can be used for at least 2 months (for CONISE) and 4 months for (SCISE) without any appreciable divergence in potentials. The electrodes were used as an indicator electrode in the potentiometric titration of Ag+ ion and in the determination of silver in photographic emulsions and in radiographic and photographic films.  相似文献   

16.
The role of lipophilic anionic and cationic additives on the potentiometric anion selectivities of polymer membrane electrodes prepared with various metalloporphyrins as anion selective ionophores is examined. The presence of lipophilic anionic sites (e.g. tetraphenylborate derivatives) is shown to enhance the non-Hofmeister anion selectivities of membranes doped with In(III) and Sn(IV) porphyrins. In contrast, membranes containing Co(III) porphyrins require the addition of lipophilic cationic sites (e.g. tridodecylmethylammonium ions) in order to achieve optimal anion selectivity (for nitrite and thiocyanate) as well as rapid and reversible Nernstian response toward these anionic species. These experimental results coupled with appropriate theoretical models that predict the effect of lipophilic anion and cation sites on the selectivities of membranes doped with either neutral or charged carrier type ionophores may be used to determine the operative ionophore mechanism of each metalloporphyrin complex within the organic membrane phase.  相似文献   

17.
Kim BH  Hong HP  Cho KT  On JH  Jun YM  Jeong IS  Cha GS  Nam H 《Talanta》2005,66(3):794-804
Tweezer-type and non-tweezer-type ionophores containing dithiocarbamoyl groups on a 7-deoxycholic amide or cholane derivatives were designed and synthesized. Potentiometric evaluation of the poly(vinyl chloride) (PVC) membranes containing those deoxycholic amides/cholanes linked with tweezer-type dithiocarbamoyl moieties showed excellent affinity and selectivity to silver(I) ion over alkali, alkaline earth and other transition metal cations. On the other hand, deoxycholic amides/cholanes substituted with one dithiocarbamoyl group, i.e., non-tweezer-type ionophores, resulted in relatively poor potentiometric sensitivity and detection limits. The enhanced potentiometric properties of newly synthesized tweezer-type dithiocarbamoyl containing ionophores have been further improved by employing silver ion complexing reagent in the internal reference solution, which resulted in greatly reduced detection limit (∼100 ppt) for the electrodes based on them.  相似文献   

18.
A potentiometric sensor for studying charge based adsorption of proteins was created using a single‐piece polyaniline‐PVC ion‐selective electrode (ISE). Three different ISEs, two for Na+ and one for Cl? ion determination, were studied. The Na+‐ISEs consisted of a neutral calixarene‐based ionophore and one with a charged carrier dinonylnapthalenesulfonic acid (DNNSA) whereas for the Cl? ISE, an anion exchanger tridodecylmethylammonium chloride (TDDMA+Cl?), was used. The Na+ ISE with DNNSA as the charged carrier was successfully able to discriminate the binding of two different proteins (bovine serum albumin and lysozyme) based on their intrinsic charge.  相似文献   

19.
Functional thin layers based on polypyrrole were used in electrochemical sensors as mixed conducting interfaces between ion‐selective membranes and the wiring. In particular, new types of ion‐selective electrodes for potentiometric measurement of pH value and concentration of sulfate ions in solutions were developed. The resulting electrodes do not need any inner liquid junction. First determinations of the sensor parameters sensitivity, selectivity and long term stability indicate a good performance of the prepared sensors. The results imply that interfaces, containing polypyrrole, could be an interesting basis for the construction of a new type of all‐solid‐state ion‐selective electrodes.  相似文献   

20.
The use of solid-contact ion-selective electrodes (ISEs) is of interest to many clinical, environmental, and industrial applications. However, upon extended exposure to samples and under thermal and mechanical stress, adhesion between these membranes and underlying substrates often weakens gradually. Eventually, this results in the formation of a water layer at the interface to the underlying electron conductor and in delamination of the membrane from the electrode body, both major limitations to long-term monitoring. To prevent these problems without increasing the complexity of design with a mechanical attachment, we use photo-induced graft polymerization to simultaneously attach ionophore-doped crosslinked poly(decyl methacrylate) sensing membranes covalently both to a high surface area carbon as ion-to-electron transducer and to inert polymeric electrode body materials (i.e., polypropylene and poly(ethylene-co-tetrafluoroethylene)). The sensors provide high reproducibility (standard deviation of E0 of 0.2 mV), long-term stability (potential drift 7 μV h−1 over 260 h), and resistance to sterilization in an autoclave (121 °C, 2.0 atm for 30 min). For this work, a covalently attached H+ selective ionophore was used to prepare pH sensors with advantages over conventional pH glass electrodes, but similar use of other ionophores makes this approach suitable to the fabrication of ISEs for a variety of analytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号