首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A clathrate compound [MnPy4(NO3)2]·2Py was synthesized and studied by single-crystal X-ray diffraction analysis (KM-4 diffractometer, CuKα,ω/2? scan mode,? max=78°). The unit cell is base-centered orthorhombic, space group Ccca, a=12.097(4), b=15.197(4), c=17.213(4) Å, V=3164(2) Å3, Z=4, R=0.072, for 632 reflections and 107 parameters in the least-squares analysis. The host molecule has 222 symmetry. Two monodentate nitrato groups and four pyridine ligands are coordinated to Mn(II) along the symmetry axes (the former via O). The pyridine guest molecules lie in the cavities of the crystal framework. For [MnPy3(NO3)2)], only unit cell parameters were determined: a=12.467(5), b=9.514(2), c=16.383(5) Å,β=108.93(4), V=1838(1) Å3 space group C2/c or Cc (according to extinctions). The pyridine-manganese nitrate system is shown to be analogous to the previously investigated Co, Ni, Cu, Zn, and Cd systems.  相似文献   

2.
The structure of [Co3(CN)2 {(OH)4} (NH3)8] [Co2(NO2)6 {(OH)2, NO2}] · H2O has been determined by X-ray methods. The compound crystallizes in the monoclinic space group C2h5–P21/n with a = 7.21, b = 12.38, c = 33.13 Å, β = 94°, Z = 4. The crystals contain trinuclear cations in which three Co(III) atoms are bound to two pairs of oxygen atoms. At the central Co atom there are two CN ligands in the cis position. The cation is of symmetry C2. The anion is found to be a binuclear Co(III) complex. The two Co atoms are bound to two OH and one NO2 groups.  相似文献   

3.
X-ray diffraction study of [Co(NH3)5NO2]I2 needle crystals was carried out at 293 and 150 K: an automatic diffractometer, MoKα radiation, λ=0.71073 Å, space group C2/m, Z=8. The unit cell parameters are a=24.047(5), b=7.648(2), c=17.599(4) Å, β=132.48(3)°, Vcell=2387.0910) Å3, dcalc=2.479 g/cm3 at 293 K and a=23.763(5), b=7.577(2), c=17.551(4), Å, β=132.12(3)°, Vcell=2343.9(1) Å3, dcalc=2.516 g/cm3 at 150 K, respectively. The RF values are 11.93% (at 293 K) and 12.30% (at 150 K) for 2032 and 2948 observed reflections, respectively. The structure is of the ionic-island type. [Co(NH3)5NO2]2+ complex cations are clustered in [Co(NH3)5NO2]4 “supercations,” which are linked by N(NH 3)...O(NO 2) hydrogen bonds and have 2/m symmetry. A shortening of the distances between certain I ions is indicative of their noticeable interaction. Short contacts also exist between the iodine anions and the ammonia molecules of the complex cations, suggesting the possible formation of NH3...I hydrogen bonds. The structure investigated is compared with the structures of the orthorhombic and tetragonal modifications of [Co(NH3)5NO2]I2 along with the structures of α-AgI and transition-metal hexaammoniate polyiodides.  相似文献   

4.
Crystalline cesium nitratometalates(II), Cs2[M(NO3)4] (M = Mn ( I ), Co ( II ), Ni ( III ), and Zn ( IV )) were synthesized from M(NO3)2 · n H2O and CsNO3 by heating at 80–120 °C over 10–12 h. According to X-ray crystal structure analysis, the compounds are built from Cs+ cations and [M(NO3)4]2– anions. The latter differ by the type of metal coordination: a dodecahedron for Mn in I (CN = 8, rMn–O 2.24–2.37 Å), a seven coordination for Co in II (CN = 4 + 3, rCo–O 2.03–2.16 Å and 2.21–2.35 Å) and a tetrahedral distorted dodecahedron for Zn in IV (CN = 4 + 4, rZn–O 1.98–2.15 Å and 2.38–2.72 Å). Ni atom in III has a distorted octahedral NiO6 environment provided by two unidentate and two bidentate NO3 groups with Ni–O distances of 2.01–2.14 Å. The differences in metal coordination are discussed in terms of valence electron configurations, ionic radii, and the packing effects.  相似文献   

5.
The structure of [Co(NH3)5NO2]C2O4 is solved and refined (space group Immm, a=7.428(2), b=9.790(3), c=6.568(1) Å, V=477.6(2) Å3, Z=2; R1=0.0177, wR2=0.0279 for F2>4σ(F2); R1=0.1177, wR2=0.0643 for all data; residual electron density from 0.125 to ?0.140 e/Å3). Specific contacts in the structure are analyzed. Crystal chemical interpretation is suggested to explain the occurrence of photodecomposition rather than photochemical bond isomerization under the action of light in cobalt(III) nitropentammoniate oxalate crystals, in contrast to all previously investigated cobalt(III) nitropentammoniates.  相似文献   

6.
[Cu(NH3)2](NO3)2 ( I ) and [Cu(NH3](NO3)2 ( II ) were synthesized by interaction of molten NH4NO3 with [Cu(NH3)4](NO3)2 and Cu(NO3)2 · 3 H2O, respectively, at 180 to 195°C for 24 hr. According to X-Ray single crystal analysis, I is orthorhombic (sp. gr. Pbca) with a = 5.678(1), b = 9.765(2), c = 11.596(2) Å, Z = 4, R = 0.060; II is monoclinic (sp. gr. P21/c) with a = 6.670(1), b = 8.658(2), c = 9.661(2) Å, β = 101.78(2)°, Z = 4, R = 0.027. In both structures, the nearest coordination environment of Cu is a slightly distorted square formed by N (from NH3) and O atoms (from NO3 groups). The structure of I consists of centrosymmetrical [Cu(NH3)2](NO3)2 molecules linked by hydrogen bonds. The Cu? N and Cu? O distances are 1.98 and 2.01 Å, respectively. In II , the Cu? N distance is 1.95 Å, the Cu? O distances are 1.96, 2.02, and 2.03 Å. The [CuO3NH3] squares are connected by NO3 bridges into zigzag chains, which are linked into layers by longer Cu? O interactions (2.31 Å). Obviously, the layers are additionally strengthened and held together by hydrogen bonds.  相似文献   

7.
Abstract

A cobalt(III) complex containing (R)-2-methylaziridine (R-meaz), [Co(R-meaz)(NH3)5]3+, was prepared and the two diastereomers arising from the presence of the chiral nitrogen atom (N(R) and N(S)) were separated by column chromatography. Molecular mechanics calculations estimated the N(R)-isomer to be more stable. This result was supported by the x-ray structure determination of the more abundant (ca. 94%) isomer, N(R)-[Co(R-meaz)(NH3)5]Br3H2O. Crystal data: monoclinic, P21, a = 7.357(1), b = 9.780(1), c = 10.426(1) Å, μ = 93.58(1)°, V= 748.7(3) Å3, Z= 2. Kinetic studies of isomerization (epimerization) between the two isomers revealed that inversion at the nitrogen center was very slow (5 × 10?2 M?1 S?1at 25 °C). The small rate constant seems to be related to the strained three-membered structure of the meaz ligand. The reaction of Na3[Co(N02)6] and R-meaz yielded a complex containing two dimerized R-meaz chelates, trans-[Co(NO2)2(di-R-meaz)2] (di-R-meaz =RR)-α,2-dimethyl-l-aziridineethanamine). The crystal strucrure of trans-[Co(NO2)2 (di-R-meaz)2]C1O4H2O was established by x-ray crystallography. Crystal data: orthorhombic, P212121, a = 11.784(6), b = 21.023(9), c = 8.608(7) Å, V = 2133(2) Å3, Z = 4.  相似文献   

8.
Blue crystals of metal nitratocuprates(II), M3[Cu(NO3)4](NO3) (M = K ( I ), NH4 ( II ), Rb ( III )) and Cs2[Cu(NO3)4] ( IV ) were synthesized from Cu(NO3)2 · 3 H2O and MNO3 by heating at 100–140 °C during 3–12 h. X-ray single crystal structures for isotypic I and II reveal the presence of the [Cu(NO3)4]2– and NO3 anions and M+ cations. Structure IV contains [Cu(NO3)4]2– and Cs+. In structures I , II , and IV , Cu atoms have a square-planar coordination [CuO4] with short Cu–O distances of 1.92–2.00 Å, the oxygen atoms belonging to four different NO3 groups. Each coordinated NO3 group is a nonsymmetrical bidentate ligand with the second, longer Cu–O distance from 2.38 to 2.74 Å. Rubidium derivative III was shown to be isotypic to I on the basis of unit cell dimensions and symmetry. Eight-coordinate metal(II) environment in tetranitrates is compared for transition metals with different electronic configurations.  相似文献   

9.
The crystals of four amine‐templated uranyl oxoselenates(VI), [C3H12N2][(UO2)(SeO4)2(H2O)2](H2O) ( 1 ), [C5H16N2]2[(UO2)(SeO4)2(H2O)](NO3)2 ( 2 ), [C4H12N][(UO2)(SeO4)(NO3)] ( 3 ), and [C4H14N2][(UO2)(SeO4)2(H2O)] ( 4 ) were prepared by evaporation from aqueous solution of uranyl nitrate, selenic acid and the respective amine. The crystal structures of all four compounds have been solved by direct methods from X‐ray diffraction data. The structure of 1 (triclinic, , a = 7.5611(16), b = 7.7650(17), c = 12.925(3) Å, α = 94.605(18), β = 94.405(17), γ = 96.470(17)°, V = 748.8(3) Å3, R1 = 0.029 for 2769 unique observed reflections) is based upon 0D‐units of the composition [(UO2)2(SeO4)4(H2O)4]4?. These discrete units are composed from two pentagonal [UO7]8? bipyramids linked via [SeO4]2? tetrahedra and are unknown in structural chemistry of uranium so far. The structure of 2 (monoclinic, C2/c, a = 28.916(5), b = 8.0836(10), c = 11.9856(16) Å, β = 110.909(11)°, V = 2617.1(6) Å3, R1 = 0.035 for 2578 unique observed reflections) contains [(UO2)(SeO4)2(H2O)]2? chains of corner‐sharing pentagonal [UO7]8? bipyramids and [SeO4]2? tetrahedra. The chains run parallel to the c axis and are arranged into layers parallel to (100). In the structure of 3 (monoclinic, C2/m, a = 21.244(5), b = 7.1092(11), c = 8.6581(18) Å, β = 97.693(17)°, V = 1295.8(4) Å3, R1 = 0.027 for 1386 unique observed reflections), pentagonal [UO7]8? bipyramids share corners with three [SeO4]2? tetrahedra each and an edge with a [NO3]? anion to form [(UO2)(SeO4)(NO3)]? chains parallel to the b axis. In the structure of 4 (triclinic, , a = 6.853(2), b = 10.537(3), c = 10.574(3) Å, α = 99.62(3), β = 94.45(3), γ = 100.52(3)°, V = 735.6(4) Å3, R1 = 0.045 for 2713 unique observed reflections), one symmetrically independent pentagonal [UO7]8? bipyramid shares corners with four [SeO4]2? tetrahedra to form the [(UO2)(SeO4)2(H2O)]2? chains parallel to the a axis. A comparison to related uranyl compounds is given.  相似文献   

10.
Synthesis and Structure of the Ternary Ammonium Nitrates (NH4)2[M(NO3)5] (M = Tb? Lu, Y) Single crystals of the ternary ammonium nitrates (NH4)2[M(NO3)5] (M = Tb? Lu, Y) are obtained from the solution of the sesquioxides in a melt of NH4NO3 and sublimation of the excess NH4NO3. In the crystal structure of (NH4)2[Tm(NO3)5] (trigonal, P31, Z = 3; a = 1 123.76(8), c = 930.1(1) pm; R = 0.062; Rw = 0.034) Tm3+ is surrounded by five bidentate nitrate ligands. The isolated [Tm(NO3)5]2? groups are held together by ammonium ions.  相似文献   

11.
The reaction of the nitrates M(NO3)3·6H2O (M = La, Pr) and (H3O)2PtCl6 led to yellow single crystals of [M(NO3)2(H2O)6]2[PtCl6]·2H2O (M = La, Pr) (monoclinic, P21/c, Z = 2, La/Pr: a = 697.4(3)/695.5(1), b = 1654.5(1)/1652.5(2), c = 1317.7(6)/1318.5(3) pm, β = 93.97°(7)/93.93°(2), Rall = 0.0169/0.0659) while the reaction of M(NO3)3·5H2O (M = Gd, Dy) and (H3O)2PtCl6 yielded yellow single crystals of [M(NO3)(H2O)7][PtCl6]·4H2O (monoclinic, P21/n, Z = 4, Gd/Dy: a = 838.72(3)/838.40(2), b = 2131.98(6)/2139.50(7), c = 1142.63(3)/1143.10(3) pm, β = 95.670(4)/95.698(3), Rall = 0.0475/0.0337). The crystal structures consist of octahedral [PtCl6]2? anions and complex [M(NO3)2(H2O)6]2+ and [M(NO3)(H2O)7]2+ cations, respectively. The thermal decomposition of both types of compounds leads via various steps to elemental platinum and the oxide chlorides MOCl (M = La, Pr, Gd, Dy).  相似文献   

12.
The Reactions of M[BF4] (M = Li, K) and (C2H5)2O·BF3 with (CH3)3SiCN. Formation of M[BFx(CN)4—x] (M = Li, K; x = 1, 2) and (CH3)3SiNCBFx(CN)3—x, (x = 0, 1) The reaction of M[BF4] (M = Li, K) with (CH3)3SiCN leads selectively, depending on the reaction time and temperature, to the mixed cyanofluoroborates M[BFx(CN)4—x] (x = 1, 2; M = Li, K). By using (C2H5)2O·BF3 the synthesis yields the compounds (CH3)3SiNCBFx(CN)3—x x = 0, 1. The products are characterized by vibrational and NMR‐spectroscopy, as well as by X‐ray diffraction of single‐crystals: Li[BF2(CN)2]·2Me3SiCN Cmc21, a = 24.0851(5), b = 12.8829(3), c = 18.9139(5) Å V = 5868.7(2) Å3, Z = 12, R1 = 4.7%; K[BF2(CN)2] P41212, a = 13.1596(3), c = 38.4183(8) Å, V = 6653.1(3) Å3, Z = 48, R1 = 2.5%; K[BF(CN)3] P1¯, a = 6.519(1), b = 7.319(1), c = 7.633(2) Å, α = 68.02(3), β = 74.70(3), γ = 89.09(3)°, V = 324.3(1) Å3, Z = 2, R1 = 3.6%; Me3SiNCBF(CN)2 Pbca, a = 9.1838(6), b = 13.3094(8), c = 16.840(1) Å, V = 2058.4(2) Å3, Z = 8, R1 = 4.4%  相似文献   

13.
Crystalline NO2[Fe(NO3)4] was obtained by dehydration of a solution of Fe(NO3)3 in 100 % HNO3 and subsequent sublimation. NO2[Zr(NO3)5] was synthesized by reaction of ZrCl4 with N2O5 followed by sublimation in vacuum. X‐ray single crystal structure determination showed both compounds to consist of nitronium cations, NO2+, and nitratometalate anions. N‐O distances in the linear NO2+ cations are in the range of 1.08—1.13Å. In both [Fe(NO3)4] and [Zr(NO3)5] anions, all nitrate groups are coordinated bidentately with average M‐O distances 2.134 and 2.293Å, respectively. Taking into account the position of N atoms around the M atoms, the arrangement of nitrate groups can be described as tetrahedral for the Fe complex and trigonal‐bipyramidal for the Zr complex. There are four shortest N(nitronium)····O(nitrate group) contacts with average distances of 2.705 and 2.726Å in NO2[Fe(NO3)4] and 2.749Å in NO2[Zr(NO3)5]. Nitronium pentanitratohafnate is isotypic to the zirconium complex.  相似文献   

14.
Two novel lanthanide complexes with the formula [Er4(tp)6(H2O)6] ( 1 ) and [Lu(tp)1.5(H2O)3] ( 2 ) (tp = terephthalate) were synthesized by treating Er(NO3)3, Lu(NO3)3 with terephthalic acid under hydrothermal conditions, respectively. The structures were determined by X‐ray crystallography. The crystal 1 is of orthorhombic, space group Pbca(61) with a = 9.6656(2) Å, b = 26.2338(5) Å, c = 37.9022(7) Å, C48H36Er4O30, M = 1761.81, Z = 8, V = 9610.69(32) Å3, F(000) = 6688, R1 = 0.0326 and ωR = 0.0650. The crystal of 2 is of triclinic, space group with a = 7.8204(1) Å, b = 9.5355(1) Å, c = 10.6348(1) Å, α = 68.869(1)°, β = 71.081(1)°, γ = 75.151(1)°, C24H24Lu2O18, M = 475.19, Z = 2, V = 690.98(1) Å3, F(000) = 454, R1 = 0.0215 and ωR = 0.0474. Both of the two coordination polymers exhibit sandwich‐like packing structures.  相似文献   

15.
The crystal structures of Co3[Co(CN)6]2, 12 H2O (a, = 10.210 ± 0.005 Å) and Cd3[Co(CN)6]2, 12 H2O (a = 10.590 ± 0.005 Å) have been determined by X-ray powder methods. According to the measured density the unit cell contains 1 1/3 formula units with 4 Co2+ (Cd2+) in 4a, 2 2/3 Co3+ in 4b, 16 C and 16 N in 24e, 8 H2OI near 24e, (96k) and 8 H2OII near 8 c (192 l). Structure factor calculations based on the space group Oh5 - F m 3 m lead to the following final values of the reliability index R: 0.038 (Co3[Co(CN)6]2, 12 H2O) and 0.037 (Cd3[Co(CN)6]2, 12 H2O). The interatomic distances for the cobaltous compound (in parentheses for the cadmium compound) are: Co3+-C: 1.88 Å (1.89); C-N: 1.15 Å (1.17); Co2+-N: 2.08 Å (2.24); Co2+-OI: 2.10 Å (2.27); shortest OI-H-OII-bonds: 2.89 Å (2.82). Co3+ is octahedrally coordinated by six carbon atoms, the divalent metal ion by four nitrogen atoms and two water molecules. The two different metal ions are connected by M2+-N-C-Co3-bonds to a threedimensional network. The infrared and electronic spectra are shown to be in agreement with the results of the structure analyses of these compounds. The observed positions of the OH-stretching vibrations lead to a hydrogenbond-length of 2.8–2.95 Å.  相似文献   

16.

The reaction of MX2 (M = Co(II), Ni(II); X = Cl, Br) with 2-aminopyrimidine in aqueous acid yields compounds [(2-apmH)2MX4], (2-apmH)2[MX4], or (2-apmH2) [MX2(H2O)4]X2 (2-apmH = 2-aminopyrimidinium; 2-apmH2 = 2-aminopyrimidinium(2+)). All compounds have been characterized by single crystal X-ray diffraction. The compounds [(2-apmH)2MX4] with M = Co, X = Cl (1); M = Ni, X = Cl (3); and M = Ni, X = Br (4) are isomorphous and crystallize as nearly square planar MX4 units with the 2-apmH cations coordinated in the axial sites through the unprotonated ring nitrogen. (2-ApmH)2[CoBr4] (2) crystallizes as the salt with a nearly tetrahedral CuBr4 2- anion. (2-ApmH2)[NiBr2(H2O)4]Br2 (5) forms as a cocrystal of the neutral, six-coordinate nickel complex and (2-ampH2)Br2, stabilized by extensive hydrogen bonding. Crystal data (1): monoclinic, P21/c, a = 7.540(4), b = 12.954(4), c = 7.277(3) Å, β = 110.09(6), V = 667.4(5) Å3, Z = 2, Dcalc = 1.955 Mg/m3, μ = 2.079 mm-1, R = 0.0501 for [|I|≥2(I)]. For (2): triclinic, P-1, a = 7.720(2), b = 7.916(2), c = 14.797(3) Å, α = 97.264(3), β = 104.788(3), γ = 105.171(3)°, V = 825.3(3) Å3, Z = 2, Dcalc = 2.296 Mg/m3, μ = 10.715 mm-1, R = 0.0308 for [|I|≥2(I)]. For (3): monoclinic, P21/c, a = 7.595(3), b = 12.891(4), c = 7.204(3) Å, β = 111.07(3)°, V = 658.2 Å3, Z = 2, Dcalc = 1.982 Mg/m3, μ = 2.279 mm-1, R = 0.0552 for [|I|≥2(I)]. For (4): monoclinic, P21/c, a = 7.840(2), b = 13.358(4), c = 7.518(2) Å, β = 110.923(3)°, V = 938.6(3) Å3, Z = 2, Dcalc = 2.577 Mg/m3, μ = 12.18 mm-1, R = 0.0280 for [|I|≥2(I)]. For (5): orthorhombic, Pnma, a = 16.776(6), b = 11.943(4), c = 7.079(3) Å, V = 1418.2(9) Å3, Z = 4, Dcalc = 2.564 Mg/m3, μ = 12.639 mm-1, R = 0.0381 for [|I|≥2σ(I)].  相似文献   

17.
Synthesis, Crystal Structure, Vibrational Spectra, and Normal Coordinate Analysis of [Co(NH3)6][Os(SCN)6] From the mixture of the linkage isomers [Os(NCS)n(SCN)6–n]3–, n = 0–2, pure [Os(SCN)6]3– has been isolated by ion exchange chromatography on diethylaminoethyl cellulose. The X‐ray structure determination on a single crystal of [Co(NH3)6][Os(SCN)6] (trigonal, space group R 3, a = 12.368(2), c = 11.830(2) Å, Z = 3) reveals that the thiocyanate ligands are exclusively S‐coordinated with the Os–S distance of 2.388 Å and the Os–S–C angle of 108.8°. The IR and Raman spectra of (n‐Bu4N)3[Os(SCN)6] are assigned by normal coordinate analysis based on the molecular parameters of the X‐ray determination. The valence force constant fd(OsS) is 1.42 mdyn/Å.  相似文献   

18.
The new tetracyanamidoaluminate LiBa2[Al(CN2)4] was prepared by solid state metathesis reaction in a fused copper ampoule from a mixture of BaF2, AlF3, and Li2(CN2) at 550 °C. The crystal structure was solved and refined based on single‐crystal X‐ray diffraction data [P212121, Z = 4, a = 6.843(1) Å, b = 11.828(2) Å, c = 11.857(2) Å]. The compound belongs to the known formula type LiM2[Al(CN2)4] (M = Sr, Eu) containing the homoleptic [Al(CN2)4]5– ion. However, LiBa2[Al(CN2)4] forms a distinct crystal structure, containing a two‐dimensional [(NCN)2/2Li(NCN)2Al(NCN)2/2] network with four‐coordinate Li+ and Al3+ ions. Two crystallographically independent Ba2+ ions are situated in eightfold environment of terminal nitrogen atoms of cyanamide ions.  相似文献   

19.
The title compound [La(phen)2(H2O)2(NO3)2](NO3) · 2(phen)(H2O) with phen = 1,10‐phenanthroline was prepared by the stoichiometric reaction of La(NO3)3 · 6 H2O and 1,10‐phenanthroline monohydrate in a CH3OH–H2O solution. The crystal structure (triclinic, P 1 (no. 2), a = 11.052(2), b = 13.420(2), c = 16.300(2) Å, α = 78.12(1)°, β = 88.77(1)°, γ = 83.03(1)°, Z = 2, R = 0.0488, wR2 = 0.1028) consists of [La(phen)2(H2O)2(NO3)2]2+ complex cations, NO3 anions, phen and H2O molecules. The La atom is 10‐fold coordinated by four N atoms of two bidentate chelating phen ligands and six O atoms of two H2O molecules and two bidentate chelating NO32– ligands with d(La–O) = 2.522–2.640 Å and d(La–N) = 2.689–2.738 Å. The intermolecular π‐π stacking interactions play an essential role in the formation of two different 2 D layers parallel to (001), which are formed by complex cations and uncoordinating phen molecules, respectively. The uncoordinated NO3 anions and H2O molecules are sandwiched between the cationic and phen layers.  相似文献   

20.
Tetranitratogold(III) Acid, (H5O2)[Au(NO3)4]·H2O: Synthesis, Crystal Structure, and Thermal Behaviour of the First Acidic Nitrate of Gold Yellow single crystals of (H5O2)[Au(NO3)4]·H2O grow upon cooling of a solution of Au(OH)3 in conc. nitric acid. The crystal structure contains (monoclinic, C2/c, Z = 4, a = 1214.5(2), b = 854.4(1), c = 1225.7(2) pm, β = 117.75(1)°, Rall = 0.0331) the Au3+ ion in coordination of four monodentate NO3 ligands. The [Au(NO3)4] units are linked by H5O2+‐ions. Significant hydrogen bonding is observed in the crystal structure between the H5O2+ ions and the H2O molecules. The thermal analysis reveals a five step decomposition leading to elemental gold.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号