首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
New Heteropolyanions of Tungsten with Vanadium(IV) as a Heteroatom The syntheses of two new heteropolyanions with vanadium as heteroatom are presented. They are characterized by X‐ray structure analysis and vibrational spectra. ((CH3)4N)6Na4[(VO(H2O)2)2(WO2)2(BiW9O33)2]·18H2O (1) crystallises in the triclinic crystal system (P1¯) with a = 13.299(3)Å, b = 13.554(3)Å, c = 18.620(4)Å and α = 90.22(3)°, β = 91.99(3)°, γ = 119.16(3)°. Na5.4K6.6[(VO)3(AsW9O33)2]·29H2O ( 2 ) crystallises in the hexagonal space group P63/mmc with a = 15.124(3)Å and c = 24.209(5)Å. The polyanion in 1 is isostructural to anions of the M2X2W20‐typ with other heteroatoms. They are built up by two β‐B‐[SbW9O33] fragments, which are derived from defect structures of the Keggin anion. These subunits are connected by two formal WO2 groups with further stabilisation by addition of two M(H2O)3 groups leading to the M2X2W20‐type heteropolytungstates. The anion in 2 is a new example of the M3X2W18‐type, which contains two α‐B‐[XW9O33]‐units connected via a belt of three transition metal atoms.  相似文献   

2.
The imidazole covalently coordinated sandwich‐type heteropolytungstates Na9[{Na(H2O)2}3{M(C3H4N2)}3‐ (SbW9O33)2xH2O (M=NiII, x=32; M=CoII, x=32; M=ZnII, x=33; M=MnII, x=34) were obtained by the reaction of Na2WO4·2H2O, SbCl3·6H2O, NiCl2·6H2O [MnSO4·H2O, Co(NO3)2·6H2O, ZnSO4·7H2O] and imidazole at pH≈7.5. The structure of Na9[{Na(H2O)2}3{Ni(C3H4N2)}3(SbW9O33)2]·32H2O was determined by single crystal X‐ray diffraction. Polyanion [{Na(H2O)2}3{Ni(C3H4N2)}3(SbW9O33)2}3]9? has approximate C3v symmetry, imidazole coordinated six‐nuclear cluster [{Na(H2O)2}3{Ni(C3H4N2)}3]9+ is encapsulated between two (α‐SbW9O33)9?, the three rings of imidazole in the polyanion are perpendicular to the horizontal plane formed by six metals (Na‐Ni‐Na‐Ni‐Na‐Ni) in the central belt, and π‐stacking interactions exist between imidazoles of neighboring polyanions with dihedral angel of 60°. The compounds were also characterized by IR, UV‐Vis spectra, TG and DSC, and the thermal decomposition mechanism of the four compounds was suggested by TG curves.  相似文献   

3.
Rational self‐assembly of Sb2O3 and Na2WO4, or (NH4)18[NaSb9W21O86] with transition‐metal ions (Mn2+, Cu2+, Co2+), in aqueous solution under controlled conditions yield a series of sandwich type complexes, namely, Na2H2[Mn2.5W1.5(H2O)8(B‐β‐SbW9O33)2]?32 H2O (1) , Na4H7[Na3(H2O)6Mn3(μ‐OAc)2(B‐α‐SbW9O33)2]?20 H2O (OAc=acetate anion) (2) , NaH8[Na2Cu4Cl(B‐α‐SbW9O33)2]?21 H2O (3) , Na8K[Na2K(H2O)2{Co(H2O)}3(B‐α‐SbW9O33)2]? 10 H2O (4) , and Na5H[{Co(H2O)2}3W(H2O)2(B‐β‐SbW9O33)2]?11.5 H2O (5) . These structures are determined by using the X‐ray diffraction technique and further characterized by obtaining IR spectra and performing elemental analysis. Structure analysis reveals that polyoxoanions in 1 and 5 comprise of two [B‐β‐SbW9O33]9? building units, whereas 2 , 3 , and 4 consist of two isomerous [B‐α‐SbW9O33]9? building blocks, which are all linked by different transition‐metal ions (Mn2+, Cu2+, or Co2+) with different quantitative nuclearity. It should be noted that compound 2 represents the first one‐dimensional sinusoidal chain based on sandwich like tungstoantimonate building blocks through the carboxylate‐bridging ligands. Additionally, 3 is constructed from sandwiched anions [Na2Cu4Cl(B‐α‐SbW9O33)2]9? linked to each other to form an infinitely extended 2D network, whereas 5 shows an interesting 3D framework built up from offset sandwich type polyoxoanion [{Co(H2O)2}3W(H2O)2(B‐β‐SbW9O33)2]6? linked by Co2+ and Na+ ions. EPR studies performed at 110 K and room temperature reveal that the metal cations (Mn2+, Cu2+, Co2+) reside in a square‐pyramidal geometry in 2 , 3 , and 4 . The magnetic behavior of 1 – 4 suggests the presence of weak antiferromagnetic coupling interactions between magnetic metal centers with the exchange integral J=?0.552 cm?1 in 2 .  相似文献   

4.
Coordination-chemistry of cis-Trioxotungsten(VI) Complexes. Crystal Structures of LWO3 · 3 H2O, [L′WO2(OH)]Br, [LWO2Br]Br, [L2W2O5](S2O6) · 4 H2O and [LWO2(μ-O)WO(O2)2(OH2)] (L = 1,4,7-Triazacyclonane; L′ = 1,4,7-Trimethyl-1,4,7-triazacyclononane) The cyclic triamines 1,4,7-triazacyclononane (L; C6H15N3) and 1,4,7-trimethyl-1,4,7-triazacyclononane (L′; C9H21N3) react in aqueous solution with WO3 affording LWO3 · 3 H2O, 1 , and L′WO3 · 3 H2O, respectively, which yield [L′WO2(OH)]Br, 2 , and [LWO2Br]Br, 3 , in concentrated HBr solutions. In aqueous CH3SO3H solution 1 dimerizes. The iodide and dithionate 4 salts of [L2W2O5]2+ have been isolated. In 35% H2O2 complex 1 yields the neutral species [LWO2(μ-O)WO(O2)2(H2O)] 5 . The crystal structures of 1 – 5 have been determined by X-ray analysis. Crystal data: 1 : P21/c; a = 7.729(2), b = 14.887(3), c = 10.774(2) Å, β = 90.77(2)°, Z = 4; 2 : Cc; 8.910(3), b = 12.220(6), c = 13.279(6) Å, β = 101.31(3)°, Z = 4; 3 : Cmc21, a = 8.857(5), b = 12.062(7), c = 11.218(7) Å, Z = 4; 4 : Cc, a = 17.601(7), b = 12.906(7), c = 14.107(8) Å, β = 124.08(4)°, Z = 4; 5 : P212121; a = 8.452(4), b = 11.301(6), c = 13.750(6) Å, Z = 4.  相似文献   

5.
6.
Sandwich‐like Polyoxotungstates with Indium(III) as a Heteroatom — Synthesis and Characterization of the First Examples of a New Type of Anions The syntheses of three novel polyoxometalates containing indium as heteroatom are presented. The compounds are characterized by X‐ray structure analysis and vibrational spectra Na5nH2n[(In(H2O)2)1, 5(Na(H2O)2)0, 5(In(H2O)2)2(SbW9O33)2]n · 28n H2O ( 1 ) crystallizes in the monoclinic crystal system (C2/c) with a = 19.370(4), b = 17.852(4), c = 30.015(6) Å and β = 97.38(3)°. Na2K2H2[(In(H2O)3)2(In(H2O)2)2(AsW9O33)2] · 37 H2O ( 2 ) crystallizes in the monoclinic crystal system (space group C2/m) with a = 20.323(4), b = 15.269(3), c = 16.014(3) Å and β = 94.06(3)°. Na10H2[In4(H2O)2(CoW9O34)2] · 43 H2O ( 3 ) shows lattice constants of a = 13.047(3), b = 17.735(4), c = 21.054(4) Å and β = 93.38(3)° in monoclinic crystal system (space group P21/n). The heteropolyanions in 1 and 2 are examples of the so called M2X2M20‐type. They are built up of two β‐B‐[XW9O33] fragments, which are derived from defect structures of the Keggin anion. These subunits are connected by four MO6‐groups (with M = InIII or Na for 1 and InIII for 2 ). The heteropolyanion in 3 belongs to the M4X2W18‐type, which contains two α‐B‐[XW9O33]‐units connected via a belt of four InO6‐polyhedra.  相似文献   

7.
In the isostructural title complexes, [M(C9H6N3O2)2(H2O)2] [M = CoII, (I), CdII, (II), and CuII, (III); the metal centres reside on a twofold axis in the space group C2/c for (I) and (II)], the metal centres are surrounded by four O atoms from two O,O′‐bidentate carboxyl­ate groups and by two trans‐coordinated aqua ligands, forming a distorted octa­hedral environment. The mol­ecules possess four hydrogen‐bond donor (two aqua ligands) and four hydrogen‐bond acceptor sites (two triazole groups), and aggregate by self‐association, forming two‐dimensional hydrogen‐bonded frameworks [via O—H⋯N inter­actions; O⋯N = 2.749 (3)–2.872 (3) Å]. The layers are parallel and are tightly packed with short inter­layer distances of 4.93, 4.95 and 5.01 Å for (I), (II) and (III), respectively.  相似文献   

8.
The first selenite chloride hydrates, Co(HSeO3)Cl · 3 H2O and Cu(HSeO3)Cl · 2 H2O, have been prepared from solution and characterised by single‐crystal X‐ray diffraction. The cobalt phase adopts an unusual “one‐dimensional” structure built up from vertex‐sharing pyramidal [HSeO3]2–, and octahedral [CoO2(H2O)4]2– and [CoO2(H2O)2Cl2]4– units. Inter‐chain bonding is by way of hydrogen bonds or van der Waals' interactions. The atomic arrangement of the copper phase involves [HSeO3]2– pyramids and Jahn‐Teller distorted [CuCl2(H2O)4] and [CuO4Cl2]8– octahedra, sharing vertices by way of Cu–O–Se and Cu–Cl–Cu bonds. Crystal data: Co(HSeO3)Cl · 3 H2O, Mr = 276.40, triclinic, space group P 1 (No. 2), a = 7.1657(5) Å, b = 7.3714(5) Å, c = 7.7064(5) Å, α = 64.934(1)°, β = 68.894(1)°, γ = 71.795(1)°, V = 337.78(7) Å3, Z = 2, R(F) = 0.036, wR(F) = 0.049. Cu(HSeO3)Cl · 2 H2O, Mr = 263.00, orthorhombic, space group Pnma (No. 62), a = 9.1488(3) Å, b = 17.8351(7) Å, c = 7.2293(3) Å, V = 1179.6(2) Å3, Z = 8, R(F) = 0.021, wR(F) = 0.024.  相似文献   

9.
Light‐yellow single crystals of the mixed‐valent mercury‐rich basic nitrate Hg8O4(OH)(NO3)5 were obtained as a by‐product at 85 °C from a melt consisting of stoichiometric amounts of (HgI2)(NO3)2·2H2O and HgII(OH)(NO3). The title compound, represented by the more detailed formula HgI2(NO3)2·HgII(OH)(NO3)·HgII(NO3)2·4HgIIO, exhibits a new structure type (monoclinic, C2/c, Z = 4, a = 6.7708(7), b = 11.6692(11), c = 24.492(2) Å, β = 96.851(2)°, 2920 structure factors, 178 parameters, R1[F2 > 2σ(F2)] = 0.0316) and is made up of almost linear [O‐HgII‐O] and [O‐HgI‐HgI‐O] building blocks with typical HgII‐O distances around 2.06Å and a HgI‐O distance of 2.13Å. The Hg22+ dumbbell exhibits a characteristic Hg‐Hg distance of 2.5079(7) Å. The different types of mercury‐oxygen units form a complex three‐dimensional network exhibiting large cavities which are occupied by the nitrate groups. The NO3? anions show only weak interactions between the nitrate oxygen atoms and the mercury atoms which are at distances > 2.6Å from one another. One of the three crystallographically independent nitrate groups is disordered.  相似文献   

10.
The crystal structures of tris(2‐methyl­quinolin‐8‐olato‐N,O)­iron(III), [Fe­(C10­H8­NO)3], (I), and aqua­bis(2‐methyl­quinolin‐8‐olato‐N,O)­copper(II), [Cu­(C10­H8NO)2­(H2O)], (II), have been determined. Compound (I) has a distorted octahedral configuration, in which the central Fe atom is coordinated by three N atoms and three O atoms from three 2‐methylquinolin‐8‐olate ligands. The three Fe—O bond distances are in the range 1.934 (2)–1.947 (2) Å, while the three Fe—N bond distances range from 2.204 (2) to 2.405 (2) Å. In compound (II), the central CuII atom and H2O group lie on the crystallographic twofold axis and the coordination geometry of the CuII atom is close to trigonal bipyramidal, with the three O atoms in the basal plane and the two N atoms in apical positions. The Cu—N bond length is 2.018 (5) Å. The Cu—O bond length in the basal positions is 1.991 (4) Å, while the Cu—O bond length in the apical position is 2.273 (6) Å. There is an intermolecular OW—H?O hydrogen bond which links the mol­ecules into a linear chain along the b axis.  相似文献   

11.
Nine new coordination compounds have been synthesized by the reaction of salts of bivalent metal ions (a=ZnII, b=CuII, c=NiII, d=CoII) with the bis(benzoylhydrazone) derivative of 4,6‐diacetylresorcinol (H4L). Three kinds of complexes have been obtained: homodinuclear compounds [M2(H2L)2]?nH2O ( 1 a , 1 b , 1 c , and 1 d ), homotetranuclear compounds [M4(L)2]?n(solv) ( 2 a and 2 c ), and heterotetranuclear compounds [Zn2M2(L)2]?n(solv) ( 2 ab , 2 ac , and 2 ad ). The structures of the free ligand H4L?2 DMSO and its complexes [Zn2(H2L)2(DMSO)2] ( 1 a* ), [Zn4(L)2(DMSO)6] ( 2 a* ), and [Zn0.45Cu3.55(L)2(DMSO)6]?2 DMSO ( 2 ab* ) were elucidated by single‐crystal X‐ray diffraction. The ligand shows luminescence properties and its fluorimetric behavior towards MII metals (M=Zn, Cu, Ni and Co) has been studied. Furthermore, the solid‐state luminescence properties of the ligand and compounds have been determined at room temperature. 1H NMR spectroscopic monitoring of the reaction of H4L with ZnII showed the deprotonation sequence of the OH/NH groups upon metal coordination. Heteronuclear reactions have also been monitored by using ESI‐MS and spectrofluorimetric techniques.  相似文献   

12.
The crystal structures of hexa‐μ‐propionato‐1:2κ6O:O′;1:3κ6O:O′‐di­quinoline‐2κN,3κN‐calcium(II)­dizinc(II), [Ca­Zn2(C3H5O2)6(C9H7N)2], and hexa‐μ‐pivalato‐1:2κ6O:O′;1:3κ6O:O′‐di­quinoline‐2κN,3κN‐calcium(II)­dicobalt(II), [Ca­Co2(C5H9O2)6(C9H7N)2], are described. Both contain a linear array of one CaII ion and two MII (M = Zn, Co) ions connected by two sets of three carboxyl­ate ligands in synsyn bridging modes. The distorted tetrahedral geometry around the MII ion is completed by a quinoline N atom. The central CaII ion occupies a crystallographic inversion centre and is octahedrally coordinated by six carboxyl O atoms in each structure. The ZnII?CaII and CoII?CaII distances are 3.8504 (9) and 3.7929 (5) Å, respectively.  相似文献   

13.
The title complex of [Ni2(µ‐Sal)4(Dena)2]H2O, [( µ‐tetrakissalicylato‐κ‐O,O)(bis‐N,N‐diethylnicotinamide‐κ‐N)(binickel(II))]hydrate, C48H52Ni2N4O16, has been synthesized and explained as structural using some elemental analysis, FT‐IR spectra, UV‐Vis reflectance, magnetic measurements, thermal analysis and x‐ray diffraction methods. The analysis results showed that the unit cell of complex includes two molecules NiII cation, four molecules salicylates as bridge and two molecules N,N‐diethylnicotinamide ligands, also there is one molecule hydrated aqua. The compound crystallizes in the monoclinic space group P21/c with the following unit‐cell parameters: a =13.6776(6) Å, b =10.5238(3) Å, c =21.8165(9), α=90.00°, β=126.546(3)°, γ=90.00º and Z=2. The compound [Ni2(µ‐Sal)4(Dena)2]H2O is a typical paddle‐wheel complex structure. Two NiII ions are bridged by four salicylate ligands (O2, O2i, O3, O3i, O5, O5i, O6 and O6i) using a µ‐COO? coordination mode [symmetry code: (i) 1‐x, 1‐y, 1‐z]. Each NiII also coordinates to one nitrogen atom (N1 and N1i) from one N,N‐diethylnicotinamide ligand molecule in the axial position. The complex has strong paramagnetic properties.  相似文献   

14.
Cubic [Ta6Br12(H2O)6][CuBr2X2]·10H2O and triclinic [Ta6Br12(H2O)6]X2·trans‐[Ta6Br12(OH)4(H2O)2]·18H2O (X = Cl, Br, NO3) cocrystallize in aqueous solutions of [Ta6Br12]2+ in the presence of Cu2+ ions. The crystal structures of [Ta6Br12(H2O)6]Cl2·trans‐[Ta6Br12(OH)4(H2O)2]·18H2O ( 1 ) and [Ta6Br12(H2O)6]Br2·trans‐[Ta6Br12(OH)4(H2O)2]·18H2O ( 3 )have been solved in the triclinic space group P&1macr; (No. 2). Crystal data: 1 , a = 9.3264(2) Å, b = 9.8272(2) Å, c = 19.0158(4) Å, α = 80.931(1)?, β = 81.772(2)?, γ = 80.691(1)?; 3 , a = 9.3399(2) Å, b = 9.8796(2) Å, c = 19.0494(4) Å; α = 81.037(1)?, β = 81.808(1)?, γ = 80.736(1)?. 1 and 3 consist of two octahedral differently charged cluster entities, [Ta6Br12]2+ in the [Ta6Br12(H2O)6]2+ cation and [Ta6Br12]4+ in trans‐[Ta6Br12(OH)4(H2O)2]. Average bond distances in the [Ta6Br12(H2O)6]2+ cations: 1 , Ta‐Ta, 2.9243 Å; Ta‐Bri , 2.607 Å; Ta‐O, 2.23 Å; 3 , Ta‐Ta, 2.9162 Å; Ta‐Bri , 2.603 Å; Ta‐O, 2.24 Å. Average bond distances in trans‐[Ta6‐Br12(OH)4(H2O)2]: 1 , Ta‐Ta, 3.0133 Å; Ta‐Bri, 2.586 Å; Ta‐O(OH), 2.14 Å; Ta‐O(H2O), 2.258(9) Å; 3 , Ta‐Ta, 3.0113 Å; Ta‐Bri, 2.580 Å; Ta‐O(OH), 2.11 Å; Ta‐O(H2O), 2.23(1) Å. The crystal packing results in short O···O contacts along the c axes. Under the same experimental conditions, [Ta6Cl12]2+ oxidized to [Ta6Cl12]4+ , whereas [Nb6X12]2+ clusters were not affected by the Cu2+ ion.  相似文献   

15.
Starting from the tripodal tetradentate ligands ‐(3,5‐dibromo‐2‐hydroxybenzyl)(2‐hydroxybenzyl)(2‐pyridyl)methylamine (H2L1), (3,5‐dibromo‐2‐hydroxybenzyl)(2‐hydroxy‐5‐nitrobenzyl)(2‐pyridyl)methylamine (H2L2), and (3,5‐dichloro2‐hydroxybenzyl)(2‐hydroxy‐5‐nitrobenzyl)(2‐pyridyl)methylamine (H2L3) the new isostructural dinuclear zinc compounds [Zn2(L1)2]·N(CH2CH3)3 ( 1 ), [Zn2(L2)2]·2CH3OH ( 2 ) and [Zn2(L3)2]·C4H10O ( 3 ) were synthesized. Due to their enzyme‐like trigonal bipyramidal N2O3 coordination environment of the zinc ions and the similar Zn···Zn distances the complexes can be considered to be structural models for the active sites in phospholipase C and nuclease P1. With H2L3 also the dinuclear complex [Co2(L2)2(CH3OH)]·2CH3OH·0.5C4H10O ( 4 ) could be prepared. The new compounds were isolated and characterized by single crystal X‐ray crystallography as well as infrared spectroscopy. The cobalt compound 4 was additionally characterized by UV‐Vis spectroscopy and magnetic measurements. 1 crystallizes in the monoclinic space group P21/n with a = 11.2814(2), b = 28.6154(2), c = 13.1866(3) Å, β = 96.995(1)°, V = 4225.2(2) Å3, Z = 4. 2 and 3 are monoclinic, space group C2/c with a = 23.084(5), b = 9.232(2), c = 21.849(4) Å, &β; = 96.83(3)°, V = 4623(2) Å3, Z = 4, and a = 22.7834(3), b = 9.2463(1), c = 21.6351(3) Å, &β; = 97.592(1)°, V = 4517.7(2) Å3, Z = 4, respectively. 4 crystallizes in the monoclinic space group I2/a with a = 22.4680(4), b = 20.5517(4), c = 22.8910(6) Å, &β; = 111.938(1)°, V = 9804.7(4) Å3, Z = 8. 4 shows an effective magnetic moment of 6.72 μB at 300 K which clearly indicates the presence of two cobalt(II) high spin ions with Curie‐Weiss behaviour above 80 K. At lower temperatures a decrease of the effective magnetic moment was observed.  相似文献   

16.
The title complex, [BaZn(C3H2O4)2(H2O)4]n, is polymeric, due to the connectivity brought about by each malonate dianion bonding to two different ZnII cations and two different BaII cations. The BaII cations, on crystallographic twofold axes, have slightly distorted square‐anti­prismic coordination, with Ba—O distances ranging from 2.795 (2) to 2.848 (2) Å. The ZnII cations, which lie on crystallographic centres of symmetry, have distorted octa­hedral coordination, with Zn—O bonds in the range 2.0364 (19)–2.3248 (18) Å. The water mol­ecules participate in extensive O—H⋯O hydrogen bonding. The structure comprises alternating layers along [100], with one type containing ZnII cations and malonate dianions, while the other is primarily composed of BaII cations and water mol­ecules.  相似文献   

17.
Polypyridyl multidentate ligands based on ethylenediamine backbones are important metal‐binding agents with applications in biomimetics and homogeneous catalysis. The seemingly hexadentate tpena ligand [systematic name: N,N,N′‐tris(pyridin‐2‐ylmethyl)ethylenediamine‐N′‐acetate] reacts with zinc chloride and zinc bromide to form trichlorido[μ‐N,N,N′‐tris(pyridin‐2‐ylmethyl)ethylenediamine‐N′‐acetato]dizinc(II), [Zn2(C22H24N5O2)Cl3], and tribromido[μ‐N,N,N′‐tris(pyridin‐2‐ylmethyl)ethylenediamine‐N′‐acetato]dizinc(II), [Zn2Br3(C22H24N5O2)]. One ZnII ion shows the anticipated N5O coordination in an irregular six‐coordinate site and is linked by an anti carboxylate bridge to a tetrahedral ZnX3 (X = Cl or Br) unit. In contrast, the CuII ions in aquatribromido[μ‐N,N,N′‐tris(pyridin‐2‐ylmethyl)ethylenediamine‐N′‐acetato]dicopper(II)–tribromido[μ‐N,N,N′‐tris(pyridin‐2‐ylmethyl)ethylenediamine‐N′‐acetato]dicopper(II)–water (1/1/6.5) [Cu2Br3(C22H24N5O2)][Cu2Br3(C22H24N5O2)(H2O)]·6.5H2O, occupy two tpena‐chelated sites, one a trigonal bipyramidal N3Cl2 site and the other a square‐planar N2OCl site. In all three cases, electrospray ionization mass spectra were dominated by a misleading ion assignable to [M(tpena)]+ (M = Zn2+ and Cu2+).  相似文献   

18.
Three novel complexes, namely [Zn(CuL)(pzdc)]2 · 5H2O ( 1 ), [Zn(NiL)(pzdc)]2 · 5H2O ( 2 ), and [Gd2(pzdc)2(NiL)6](ClO4)2 · 6H2O ( 3 ) (CuL and NiL, H2L = 2, 3‐dioxo‐5, 6, 14, 15‐dibenzo‐1, 4, 8, 12‐tetraazacyclo‐pentadeca‐7, 13‐dien and H2pzdc = pyrazine‐2, 3‐dicarboxylic acid) were synthesized and structurally determined. Complexes 1 and 2 are tetranuclear [ZnII2MII2] (M = Ni ( 1 ), Cu ( 2 ), respectively) molecules including both oxamide and pzdc2– bridges. The structure of compound 3 consists of pyrazine‐2, 3‐dicarboxylate and oxamido‐bridged, and is arranged in different butterfly‐like octanuclear molecules. The magnetic susceptibility data of 3 were analyzed.  相似文献   

19.
Three adipato bridged mixed ligand catena complexes {[M(phen)(H2O)]‐(C6H8O4)2/2} with M = NiII ( 1 ), CuII ( 2 ), ZnII ( 3 ) were synthesized. Structure determination based on X‐ray diffraction shows that they crystallize isostructurally in the monoclinic space group C2/c (no. 15) with cell dimensions of: 1 a = 22.451(4)Å, b = 9.041(1)Å, c = 17.440(2)Å, β = 103.41(1)°, U = 3443.4(9)Å3, Z = 8; 2 a = 22.479(2)Å, b = 9.067(1)Å, c = 17.494(3)Å, β = 103.67(1)°, U = 3464.6(8)Å3, Z = 8; 3 a = 22.635(3)Å, b = 9.052(1)Å, c = 17.571(3)Å, β = 103.24(1)°, U = 3504.5(9)Å3, Z = 8. The crystal structure consists of 1D {[M(phen)(H2O)]‐(C6H8O4)2/2} zigzag chains, in which the metal atoms are all octahedrally coordinated by two N atoms of one phen ligands and four O atoms of one H2O molecule and two adipato ligands. The zigzag chains are held together by interchain π‐π stacking interactions and interchain hydrogen bonds.  相似文献   

20.
Reactions of a freshly prepared Zn(OH)2‐2x(CO3)x · yH2O precipitate, phenanthroline with azelaic and sebacic acid in CH3OH/H2O afforded [Zn(phen)(C9H15O4)2] ( 1 ) and [Zn2(phen)2(H2O)2(C10H16O4)2] · 3H2O ( 2 ), respectively. They were structurally characterized by X‐ray diffraction methods. Compound 1 consists of complex molecules [Zn(phen)(C9H15O4)2] in which the Zn atoms are tetrahedrally coordinated by two N atoms of one phen ligand and two O atoms of different monodentate hydrogen azelaato groups. Intermolecular C(alkyl)‐H···π interactions and the intermolecular C(aryl)‐H···O and O‐H···O hydrogen bonds are responsible for the supramolecular assembly of the [Zn(phen)(C9H15O4)2] complexes. Compound 2 is built up from crystal H2O molecules and the centrosymmetric binuclear [Zn2(phen)2(H2O)2(C10H16O4)2] complex, in which two [Zn(phen)(H2O)]2+ moieties are bridged by two sebacato ligands. Through the intermolecular C(alkyl)‐H···O hydrogen bonds and π‐π stacking interactions, the binuclear complex molecules are assembled into layers, between which the lattice H2O molecules are sandwiched. Crystal data: ( 1 ) C2/c (no. 15), a = 13.887(2), b = 9.790(2), c = 22.887(3)Å, β = 107.05(1)°, U = 2974.8(8)Å3, Z = 4; ( 2 ) P1¯ (no. 2), a = 8.414(1), b = 10.679(1), c = 14.076(2)Å, α = 106.52(1)°, β = 91.56(1)°, γ = 99.09(1)°, U = 1193.9(2)Å3, Z = 1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号