首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Preparation, Structure, and Quantum Chemical Calculation of [C(NMe2)3]2[(CO)4FeInCl3] The title compound ( 1 ) has been obtained as colorless crystals by reacting InCl3 with [C(NMe2)3][(CO)4FeC(O)NMe2] in THF solution. The crystal structure determination (monoclinic, C2/c) shows the presence of separate ions with one disordered and one non disordered cation. In the dianion the CO groups of the trigonal bipyramidal coordinated iron atom and the Cl atoms of the tetrahedral coordinated indium atom form a staggered conformation with a relatively short In–Fe bond distance of 252 pm. Quantum Chemical DFT calculations of [CO)4FeInCl3]2– show that the Fe–In bond has a strong ionic character and that it should be considered as an adduct of [Fe(CO)4]2– and InCl3.  相似文献   

2.
The carbamoyl complex [C(NMe2)3][(CO)4Fe{C(O)NMe2}] ( 1 ) reacts with InMe3 under loss of the methyl groups to produce a variety of compounds from which only the anionic cluster complexes [C(NMe2)3]3[Fe2(CO)6(μ‐CO){μ‐InFe(CO)4(μ‐O2CNMe2)InFe(CO)4}] ([C N 3]3[ 2 ]) and [C(NMe2)3]2[{(CO)4Fe}2In(O2CNMe2)]·THF ([C N 3]2[ 3 ]·THF) could be crystallized and characterized by X‐ray analyses. The anion [ 2 ]3? has a Fe2(CO)9‐like structure and both anions contain the carbaminato ligand either in a bridging or in a chelating function.  相似文献   

3.
The reaction between the salt like iron carbamoyl complex [C(NMe2)3][(CO)4FeC(O)NMe2] ( 1 ) and InBr3 proceeds with formation of an iron indium bond to give the salt [C(NMe2)3]2[(CO)4FeInBr3] ( 2 ). InI3, however, acts as an oxidation agent to produce with 1 the intercalation compound [FeI2]2 · [MeN=C(NMe2)2] ( 3 ) as main product. Minor amounts of the penta‐metallic neutral complex [{(CO)3Fe(μ‐C(NMe2)O)2Fe(CO)2C(NMe2)O}2Fe] ( 4 ) and the indium containing salt [C(NMe2)3][(CO)4Fe(μ‐InI2)2NMe2] ( 5 ) were also isolated and characterized by X‐ray analyses.  相似文献   

4.
The Reactions of CH2=P(NMe2)3 with Fe(CO)5, Cr(CO)6, and CS2; Molecular Structures of [MeP(NMe2)3][(CO)5CrC(O)CH=P(NMe2)3], and (CO)4Fe=C(OMe)CH=P(NMe2)3 The ylide CH2=P(NMe2)3 ( 1 ) reacts with several binary transition metal carbonyls M(CO)x to produce the corresponding salt like compounds [MeP(NMe2)3][(CO)x–1MC(O)CH=P(NMe2)3] (M = Fe ( 3 ), Cr ( 4 )). The related reaction with CS2 leads to the salt [MeP(NMe2)3][SC(S)CH=P(NMe2)3] ( 2 ). While 4 is thermally stable, 3 rapidly decomposes at room temperature with formation of [MeP(NMe2)3]2[Fe2(CO)8] ( 8 ). Alkylation of 3 (at –50 °C) and 4 with MeSO3CF3 produces the related carbene complexes (CO)x–1M=C(OMe)CH=P(NMe2)3 ( 5 ) and ( 6 ); the reaction of 3 with Me3SiCl results in the formation of the carbene complex (CO)4Fe=C(OSiMe3)CH=P(NMe2)3 ( 7 ). 4 crystallizes in the space group P212121 (No. 19) with a = 1111.1(2), b = 1476.1(3), c = 1823.1(4) pm and Z = 4. 5 crystallizes in the space group P21/n (No. 14) with a = 1303.6(3), b = 910.5(4), c = 1627.0(4) pm, β = 96.06(2)° and Z = 4. The compounds have been characterized by elemental analyses, NMR (1H, 13C, 31P) and IR spectroscopy.  相似文献   

5.
Concerning the Reaction of Cp2TiCl2 with [C(NMe2)3][(CO)4FeC(O)NMe2] – Crystal Structure of [C(NMe2)3]2[FeCl4] The title compound forms by the reaction of Cp2TiCl2 with [C(NMe2)3][(CO)4FeC(O)NMe2] in THF solution. It crystallizes in the space group Pbcn with a = 1 566.6(3); b = 976.4(2); c = 1 580.4(4) pm; Z = 4; R = 3.8%. Each [FeCl4]2? in is surrounded by eight cations. Two cations each are connected with one Cl atom by relatively short H …? Cl contacts leading to a distortion of the tetrahedral geometry of the anion.  相似文献   

6.
Reaction of C(NMe2)4 with Ni(CO)4 – Syntheses and Structures of [C(NMe2)3][(CO)3NiC(O)NMe2], [C(NMe2)3]2[Ni5(CO)12], and [C(NMe2)3]3[Ni6(CO)12][O2CNMe2] The reaction of C(NMe2)4 with Ni(CO)4 in THF produces the carbamoyl complex [C(NMe2)3][(CO)3NiC(O)NMe2] ( 1 ); side products are the purple cluster compound [C(NMe2)3]2[Ni5(CO)12] · THF ( 2 · THF) and the red cocristallization product [C(NMe2)3]3[Ni6(CO)12][O2CNMe2] ( 3 ). All compounds were studied by X‐ray diffraction analyses. The cations of 3 are all disordered but not those of 1 and 2 . The unit cell of 1 contains two crystallographically independent anions (I and II) which differ in the dihedral angle between the plane of the carbamoyl ligand and the plane defined by the atoms CCarbamoyl–Ni–CO amounting 0° in the anion I and 18° in the anion II.  相似文献   

7.
Reaction of the carbamoyl complex [C(NMe2)3][(CO)4FeC(O)NMe2] ( 1 ) with silver salts gives the dinuclear μ‐carbamoyl complex [(CO)3Fe(μ‐Me2NCO)2Fe(CO)2(HNMe2)] ( 2 ). Depending on the solvent, crystals of 2a with an asymmetrical or of 2b with a symmetrical internal NH···O bridge are formed. The dimethylamino group is originated from a further molecule of 1 from which an amino group is transferred to the “α‐CO” ligand of an intermediate oxidation product while the H+ ion probably comes from deprotonation of a guanidinium cation. The HNMe2 ligand cannot be replaced by CO but easily by PPh3 to give [(CO)3Fe(μ‐Me2NCO)2Fe(CO)2(PPh3)] ( 3 ). All complexes were studied by X‐ray diffraction analyses and the usual spectroscopic methods.  相似文献   

8.
The reaction of Na2[Fe(CO)4] with Br2CF2 in n‐pentane generates a mixture of the compounds (CO)3Fe(μ‐CO)3–n(μ‐CF2)nFe(CO)3 ( 2 , n = 2; 3 , n = 1) in low yields with 3 as the main product. 3 is obtained free from 2 by reacting Br2CF2 with Na2[Fe2(CO)8]. The non‐isolable monomeric complex (CO)4Fe=CF2 ( 1 ) can probably considered as the precursor for 2 . 3 reacts with PPh3 with replacement of two CO ligands to form Fe2(CO)6(μ‐CF2)(PPh3)2 ( 4 ). The complexes 2 – 4 were characterized by single crystal X‐ray diffraction. While the structure of 2 is strictly similar to that of Fe2(CO)9, the structure of 3 can better be described as a resulting from superposition of the two enantiomers 3 a and 3 b with two semibridging CO groups. Quantum chemical DFT calculations for the series (CO)3Fe(μCO)3–n(μ‐CF2)nFe(CO)3 (n = 0, 1, 2, 3) as well as for the corresponding (μ‐CH2) derivatives indicate that the progressively larger σ donor and π acceptor properties for the bridging ligands, in the order CO < CF2 < CH2, favor a stronger Fe–Fe bond.  相似文献   

9.
Coordinatively Unsaturated Diiron Complexes: Synthesis and Crystal Structures of [Fe2(CO)4(μ‐H)(μ‐PtBu2)(μ‐Ph2PCH2PPh2)] and [Fe2(CO)4(μ‐CH2)(μ‐H)(μ‐PtBu2)(μ‐Ph2PCH2PPh2)] [Fe2(μ‐CO)(CO)6(μ‐H)(μ‐PtBu2)] ( 1 ) reacts spontaneously with dppm (dppm = Ph2PCH2PPh2) to give [Fe2(μ‐CO)(CO)4(μ‐H)(μ‐PtBu2)(μ‐dppm)] ( 2 c ). By thermolysis or photolysis, 2 c loses very easily one carbonyl ligand and yields the corresponding electronically and coordinatively unsaturated complex [Fe2(CO)4(μ‐H)(μ‐PtBu2)(μ‐dppm)] ( 3 ). 3 exhibits a Fe–Fe double bond which could be confirmed by the addition of methylene to the corresponding dimetallacyclopropane [Fe2(CO)4(μ‐CH2)(μ‐H)(μ‐PtBu2)(μ‐dppm)] ( 4 ). The reaction of 1 with dppe (Ph2PC2H4PPh2) affords [Fe2(μ‐CO)(CO)4(μ‐H)(μ‐PtBu2)(μ‐dppe)] ( 5 ). In contrast to the thermolysis of 2 c , yielding 3 , the heating of 5 in toluene leads rapidly to complete decomposition. The reaction of 1 with PPh3 yields [Fe2(CO)6(H)(μ‐PtBu2)(PPh3)] ( 6 a ), while with tBu2PH the compound [Fe2(μ‐CO)(CO)5(μ‐H)(μ‐PtBu2)(tBu2PH)] ( 6 b ) is formed. The thermolysis of 6 b affords [Fe2(CO)5(μ‐PtBu2)2] and the degradation products [Fe(CO)3(tBu2PH)2] and [Fe(CO)4(tBu2PH)]. The molecular structures of 3 , 4 and 6 b were determined by X‐ray crystal structure analyses.  相似文献   

10.
On the Reactivity of the Ferriophosphaalkene (Z)‐[Cp*(CO)2Fe‐P=C(tBu)NMe2] towards Propiolates HC≡C‐CO2R (R=Me, Et) and Acetylene Dicarboxylates RO 2C‐C≡C‐CO2R (R=Me, Et, tBu) The reaction of equimolar amounts of (Z)‐[Cp*(CO)2Fe‐P=C(tBu)NMe2] 3 and methyl‐ and ethyl‐propiolate ( 2a, b ) or of 3 and dialkyl acetylene dicarboxylates 1a (R=Me), 1b (Et), 1c (tBu) afforded the five‐membered metallaheterocycles [Cp*(CO) =C(tBu)NMe2] ( 4a, b ) and [Cp*(CO) =C(tBu)NMe2] ( 5a—c ). The molecular structures of 4b and 5a were elucidated by single crystal X‐ray analyses. Moreover, the reactivity of 4b towards ethereal HBF4 was investigated.  相似文献   

11.
The betain‐like SOC2(PPh3)2 ( 1a ) reacts with [Mn2(CO)10] in THF to produce the salt‐like complex [(CO)4Mn(SOC2{PPh3}2)2][Mn(CO)5] ( 2 ). 1a is bonded via the sulfur atoms which are arranged in trans position in the octahedral environment of the manganese atom. With InCl3 from CH2Cl2 solution the addition product [Cl3In(SOC2{PPh3}2)] ( 3 ) is obtained along with the salt (H2C{PPh3}2)[InCl4]2 ( 4 ), which is the result of proton abstraction from the solvent. The crystal structures of 2· 0.5THF and 4· CH2Cl2 are reported. The compounds are further characterized by IR and 31P NMR spectroscopy.  相似文献   

12.
[Fe2sb‐CO)(CO)3(NO)(μ‐PtBu2)(μ‐Ph2PCH2PPh2)]: Synthesis, X‐ray Crystal Structure and Isomerization Na[Fe2(μ‐CO)(CO)6(μ‐PtBu2)] ( 1 ) reacts with [NO][BF4] at —60 °C in THF to the nitrosyl complex [Fe2(CO)6(NO)(μ‐PtBu2)] ( 2 ). The subsequent reaction of 2 with phosphanes (L) under mild conditions affords the complexes [Fe2(CO)5(NO)L(μ‐PtBu2)], L = PPh3, ( 3a ); η‐dppm (dppm = Ph2PCH2PPh2), ( 3b ). In this case the phosphane substitutes one carbonyl ligand at the iron tetracarbonyl fragment in 2 , which was confirmed by the X‐ray crystal structure analysis of 3a . In solution 3b loses one CO ligand very easily to give dppm as bridging ligand on the Fe‐Fe bond. The thus formed compound [Fe2(CO)4(NO)(μ‐PtBu2)(μ‐dppm)] ( 4 ) occurs in solution in different solvents and over a wide temperature range as a mixture of the two isomers [Fe2sb‐CO)(CO)3(NO)(μ‐PtBu2)(μ‐dppm)] ( 4a ) and [Fe2(CO)4(μ‐NO)(μ‐PtBu2)(μ‐dppm)] ( 4b ). 4a was unambiguously characterized by single‐crystal X‐ray structure analysis while 4b was confirmed both by NMR investigations in solution as well as by means of DFT calculations. Furthermore, the spontaneous reaction of [Fe2(CO)4(μ‐H)(μ‐PtBu2)(μ‐dppm)] ( 5 ) with NO at —60 °C in toluene yields a complicated mixture of products containing [Fe2(μ‐CO)(CO)4(μ‐H)(μ‐PtBu2)(μ‐dppm)] ( 6 ) as main product beside the isomers 4a and 4b occuring in very low yields.  相似文献   

13.
tBu2P‐P=P(Me)tBu2 reacts with [Fe2(CO)9] to give [μ‐(1, 2, 3:4‐η‐tBu2P1‐P2‐P3‐P4tBu2){Fe(CO)3}{Fe(CO)4}] ( 1 ) and [trans‐(tBu2MeP)2Fe(CO)3]( 2 ). With [(η2‐C8H14)2Fe(CO)3] in addition to [μ‐(1, 2, 3:4‐η‐tBu2P1‐P2‐P3‐P4tBu2){Fe(CO)2PMetBu2}‐{Fe(CO)4}] ( 10 ) and 2 also [(μ‐PtBu2){μ‐P‐Fe(CO)3‐PMetBu2}‐{Fe(CO)3}2(Fe‐Fe)]( 9 ) is formed. 1 crystallizes in the monoclinic space group P21/c with a = 875.0(2), b = 1073.2(2), c = 3162.6(6) pm and β = 94.64(3)?. 2 crystallizes in the monoclinic space group P21/c with a = 1643.4(7), b = 1240.29(6), c = 2667.0(5) pm and β = 97.42(2)?. 9 crystallizes in the monoclinic space group P21/n with a = 1407.5(5), b = 1649.7(5), c = 1557.9(16) pm and β = 112.87(2)?.  相似文献   

14.
Whereas reaction of [PhCH2NMe3]2|Te6Fe8(CO)24] (1) in refluxing CH2CI2 forms Fe2(CO)6(μ0-) TeCH2Te), treatment of 1 with Ph2SnCl 2 or Mel gave the oxidation product Te2Fe3(CO)9. Oxidation of 1 with [Cu(CH3CN)4]BF4 afforded Te2Fe3(CO)9 in good yield. Cluster 1 was converted to [PhCH2NMe3][Te4Fe5(CO)14] (2) in MeOH/CH2Cl2 solution. Cluster 2 was structurally characterized by single-crystal X-ray diffraction and spectral methods. Complex 2 is composed of two Te2Fe2(CO)6 fragments linked by one Fe(CO)2 group. 2 crystallizes in the orthorhombic space group Pbcn with a = 13.351 (4) Å, b = 13.417 (4) Å, c = 26.077 (3) Å, V = 4671 (2) Å 3, Z = 4.  相似文献   

15.
New Organometallic Indium Nitrogen Compounds. Synthesis and Crystal Structures of [{Cp(CO)3Mo}2InN(SiMe3)2] and [{Cp(CO)3Mo}In{N(SiMe3)2}2] The reaction of [{Cp(CO)3Mo}2InCl] with LiN · (SiMe3)2 leads to the formation of [{Cp(CO)3Mo}2InN · (SiMe3)2] ( 1 ). 1 is monomeric and it contains an indium atom which is coordinated in a trigonal planar manner by two {Cp(CO)3Mo} fragments and a N(SiMe3)2 group. The corresponding bis-amide [{Cp(CO)3Mo}In{N(SiMe3)2}2] ( 2 ) is prepared by the reaction of [{Cp(CO)3Mo}InCl2] with two equivalents of LiN(SiMe3)2. In analogy to 1, 2 is monomeric and it contains an indium atom in a trigonal planar coordination.  相似文献   

16.
Synthesis, Structure, and Reactivity of the Ferrioarsaalkene [(η5‐C5Me5)(CO)2FeAs=C(Ph)NMe2] Reaction of equimolar amounts of the carbenium iodide [Me2N(Ph)CSMe]I and LiAs(SiMe3)2 · 1.5 THF afforded the thermolabile arsaalkene Me3SiAs = C(Ph)NMe2 ( 1 ), which in situ was converted into the black crystalline ferrioarsaalkene [(η5‐C5Me5)(CO)2FeAs=C(Ph)NMe2)] ( 2 ) by treatment with [(η5‐C5Me5)(CO)2FeCl]. Compound 2 was protonated by ethereal HBF4 to yield [(η5‐C5Me5)(CO)2FeAs(H)C(Ph)NMe2]BF4 ( 3 ) and methylated by CF3SO3Me to give [(η5‐C5Me5)(CO)2FeAs(Me)C(Ph)NMe2]‐ SO3CF3 ( 4 ). [(η5‐C5Me5)(CO)2FeAs[M(CO)n]C(Ph)NMe2] ( 5 : [M(CO)n] = [Fe(CO)4]; 6 : [Cr(CO)5]) were isolated from the reaction of 2 with [Fe2(CO)9] or [{(Z)‐cyclooctene}Cr(CO)5], respectively. Compounds 2 – 6 were characterized by means of elemental analyses and spectroscopy (IR, 1H, 13C{1H}‐NMR). The molecular structure of 2 was determined by X‐ray diffraction analysis.  相似文献   

17.
Pt[In–C(SiMe3)3]4 – a Pt(CO)4 Analogous Compound with a Platinum Atom Tetrahedrally coordinated by Four InR Ligands The reaction of the tetrahedral alkylindium(I) compound In4[C(SiMe3)3]4 ( 1 ) with bis(cyclooctadiene)platinum(0) afforded the compound Pt[InC(SiMe3)3]4 ( 2 ), which is an analogue of the thermally unstable carbonyl complex Pt(CO)4 and possesses a platinum atom tetrahedrally coordinated by four InR ligands.  相似文献   

18.
(PPh4)2[(SN)ReCl3(μ‐N)(μ‐NSN)ReCl3(THF)] – a Nitrido‐Thionitrosyl‐Dinitridosulfato‐Complex of Rhenium The title compound has been prepared from PPh4[ReVIICl4(NSCl)2] with excess N(SiMe3)3 in dichloromethane solution to give red‐brown single crystals after recrystallisation from acetonitrile/THF solutions. As a by‐product PPh4[ReNCl4] is formed. (PPh4)2[(SN)ReCl3(μ‐N)(μ‐NSN)ReCl3(THF)] ( 1 ): Space group P21/n, Z = 4, lattice dimensions at –80 °C: a = 1024.1(1), b = 2350.2(1), c = 2315.4(2) pm, β = 94.09(1)°, R1 = 0.0403. In the complex anion of 1 the rhenium atoms are connected by an asymmetric Re≡N–Re bridge as well as by a (NSN)4–‐bridge to form a planar Re2N(NSN) six‐membered heterocycle. Both rhenium atoms are coordinated by three chlorine atoms, one of them by a thionitrosyl ligand, the other one by the oxygen atom of a thf molecule.  相似文献   

19.
Reaction of a new type of bidentate ligand PhPQu [PhPQu = 2‐diphenylphosphino‐4‐methylquinoline] with Fe(CO)5 in butanol gave trans‐Fe(FpPQu‐P)(CO)3 (1). Compound 1, which can act as a neutral tridentate organometallic ligand, was reacted with I B, II B metal compounds and a rhodium complex to give six binuclear complexes with Fe? M bonds, Fe(CO)3 (μ‐Ph2PQu)MXn (2–7) [M= Zn(II), Cd(II), Hg(II), Cu(I), Ag(I), Rh(I)], and an ion‐pair complex [Fe(CO)3 (μ‐Ph2PQu)2HgI][HgI3]? (8). The structure of 8 was determined by X‐ray crystallography. Complex 8 crystallizes in the space group P‐1 with a = 1.0758(3), b = 1.6210(4), c=1.7155(4)nm; a=75.60(2), β=71.81(2), γ=81.78(2)° and Z = 2 and its structure was refined to give agreement factors of R=0.050 and Rw = 0.057. The Fe‐Hg bond distance is 0.2536nm.  相似文献   

20.
Heterobinuclear Complexes: Synthesis and X‐ray Crystal Structures of [RuRh(μ‐CO)(CO)4(μ‐PtBu2)(tBu2PH)], [RuRh(μ‐CO)(CO)3(μ‐PtBu2)(μ‐Ph2PCH2PPh2)], and [CoRh(CO)4(μ‐H)(μ‐PtBu2)(tBu2PH)] [Ru3Rh(CO)73‐H)(μ‐PtBu2)2(tBu2PH)(μ‐Cl)2] ( 2 ) yields by cluster degradation under CO pressure as main product the heterobinuclear complex [RuRh(μ‐CO)(CO)4(μ‐PtBu2)(tBu2PH)] ( 4 ). The compound crystallizes in the orthorhombic space group Pcab with a = 15.6802(15), b = 28.953(3), c = 11.8419(19) Å and V = 5376.2(11) Å3. The reaction of 4 with dppm (Ph2PCH2PPh2) in THF at room temperature affords in good yields [RuRh(μ‐CO)(CO)3(μ‐PtBu2)(μ‐dppm)] ( 7 ). 7 crystallizes in the triclinic space group P 1 with a = 9.7503(19), b = 13.399(3), c = 15.823(3) Å and V = 1854.6 Å3. Moreover single crystals of [CoRh(CO)4(μ‐H)(μ‐PtBu2)(tBu2PH)] ( 9 ) could be obtained and the single‐crystal X‐ray structure analysis revealed that 9 crystallizes in the monoclinic space group P21/a with a = 11.611(2), b = 13.333(2), c = 18.186(3) Å and V = 2693.0(8) Å3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号