首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 381 毫秒
1.
A system is subject to shocks that arrive according to a non-homogeneous Poisson process. As shocks occur a system has two types of failures: type I failure (minor failure) is rectified by a minimal repair, whereas type II failure (catastrophic failure) is removed by replacement. The probability of a type II failure is permitted to depend on the number of shocks since the last replacement. This paper proposes a generalized replacement policy where a system is replaced at the nth type I failure or first type II failure or at age T, whichever occurs first. The cost of the minimal repair of the system at age t depends on the random part C(t) and deterministic paper c(t). The expected cost rate is obtained. The optimal n1 and optimal T1 which would minimize the cost rate are derived and discussed. Various special cases are considered and detailed.  相似文献   

2.
An operating system is subject to shocks that arrive according to a non-homogeneous Poisson process. As shocks occur the system has two types of failure: type I failure (minor) or type II failure (catastrophic). A generalization of the age replacement policy for such a system is proposed and analyzed in this study. Under such a policy, if an operating system suffers a shock and fails at age y (⩽t), it is either replaced by a new system (type II failure) or it undergoes minimal repair (type I failure). Otherwise, the system is replaced when the first shock after t arrives, or the total operating time reaches age T (0  t  T), whichever occurs first. The occurrence of those two possible actions occurring during the period [0, t] is based on some random mechanism which depends on the number of shocks suffered since the last replacement. The aim of this paper is to find the optimal pair (t1, T1) that minimizes the long-run expected cost per unit time of this policy. Various special cases are included, and a numerical example is given.  相似文献   

3.
Availability measures are given for a repairable system under minimal repair with constant repair times. A new policy and an existing replacement policy for this type of system are discussed. Each involves replacement at the first failure after time T, with T representing total operating time in the existing model and total elapsed time (i.e. operating time + repair time) in the new model. Optimal values of T are found for both policies over a wide range of parameter values. These results indicate that the new and administratively easier policy produces only marginally smaller optimal availability values than the existing policy.  相似文献   

4.
An optimal replacement policy for a multistate degenerative simple system   总被引:1,自引:0,他引:1  
In this paper, a degenerative simple system (i.e. a degenerative one-component system with one repairman) with k + 1 states, including k failure states and one working state, is studied. Assume that the system after repair is not “as good as new”, and the degeneration of the system is stochastic. Under these assumptions, we consider a new replacement policy T based on the system age. Our problem is to determine an optimal replacement policy T such that the average cost rate (i.e. the long-run average cost per unit time) of the system is minimized. The explicit expression of the average cost rate is derived, the corresponding optimal replacement policy can be determined, the explicit expression of the minimum of the average cost rate can be found and under some mild conditions the existence and uniqueness of the optimal policy T can be proved, too. Further, we can show that the repair model for the multistate system in this paper forms a general monotone process repair model which includes the geometric process repair model as a special case. We can also show that the repair model in the paper is equivalent to a geometric process repair model for a two-state degenerative simple system in the sense that they have the same average cost rate and the same optimal policy. Finally, a numerical example is given to illustrate the theoretical results of this model.  相似文献   

5.
In this paper, a cold standby repairable system consisting of two dissimilar components and one repairman is studied. In this system, it is assumed that the working time distributions and the repair time distributions of the two components are both exponential and component 1 is given priority in use. After repair, component 2 is “as good as new” while component 1 follows a geometric process repair. Under these assumptions, using the geometric process and a supplementary variable technique, some important reliability indices such as the system availability, reliability, mean time to first failure (MTTFF), rate of occurrence of failure (ROCOF) and the idle probability of the repairman are derived. A numerical example for the system reliability R(t) is given. And it is considered that a repair-replacement policy based on the working age T of component 1 under which the system is replaced when the working age of component 1 reaches T. Our problem is to determine an optimal policy T such that the long-run average cost per unit time of the system is minimized. The explicit expression for the long-run average cost per unit time of the system is evaluated, and the corresponding optimal replacement policy T can be found analytically or numerically. Another numerical example for replacement model is also given.  相似文献   

6.
In this paper, a geometric process maintenance model with preventive repair is studied. A maintenance policy (TN) is applied by which the system will be repaired whenever it fails or its operating time reaches T whichever occurs first, and the system will be replaced by a new and identical one following the Nth failure. The long-run average cost per unit time is determined. An optimal policy (TN) could be determined numerically or analytically for minimizing the average cost. A new class of lifetime distribution which takes into account the effect of preventive repair is studied that is applied to determine the optimal policy (TN).  相似文献   

7.
A generalization of the block replacement policy (BRP) is proposed and analysed for a multi-unit system which has the specific multivariate distribution. Under such a policy an operating system is preventively replaced at times kT (k = 1, 2, 3,...), as in the ordinary BRP, and the replacement of the failed system at failure is not mandatory; instead, a minimal repair to the component of the system can be made. The choice of these two possible actions is based on some random mechanism which is age-dependent. The cost of the ith minimal repair of the component at age y depends on the random part C(y) and the deterministic part Ci(y). The aim of the paper is to find the optimal block interval T which minimizes the long-run expected cost per unit time of the policy.  相似文献   

8.
This paper considers a combined block and repair limit replacement policy. The policy is defined as follows:
  • (i) The unit is replaced preventively at times kT(k=1, 2…
  • (ii) For failures in [(k - 1)T, kT) the unit undergoes minimal repair if the estimated repair cost is less than x. Otherwise it is replaced by a new one.
The optimal policy is to select T* and x* to minimize the expected cost per unit time for an infinite time span. A numerical example is given to illustrate the method.  相似文献   

9.
An operating system is subject to random shocks that arrive according to a non-homogeneous Poisson process and cause the system failed. System failures experience to be divided into two categories: a type-I failure (minor), rectified by a minimal repair; or a type-II failure (catastrophic) that calls for a replacement. An age-replacement model is studied by considering both a cumulative repair-cost limit and a system’s entire repair-cost history. Under such a policy, the system is replaced at age T, or at the k-th type-I failure at which the accumulated repair cost exceeds the pre-determined limit, or at any type-II failure, whichever occurs first. The object of this article is to study analytically the minimum-cost replacement policy for showing its existence, uniqueness, and the structural properties. The proposed model provides a general framework for analyzing the maintenance policies, and presents several numerical examples for illustration purposes.  相似文献   

10.
In this paper an integral equation technique is used to evaluate the expected cost for the period (0, t] of a policy involving minimal repair at failure with replacement after N failures. This cost function provides an appropriate criterion to determine the optimal replacement number N* for a system required for use over a finite time horizon. In an example, it is shown that significant cost savings can be achieved using N* from the new finite time horizon model rather than the value predicted by the usual asymptotic model.  相似文献   

11.
In this paper, the optimal replacement problem is investigated for a system with two types of failures. One type of failure is repairable, which is conducted by a repairman when it occurs, and the other is unrepairable, which leads to a replacement of the system at once. The repair of the system is not “as good as new”. The consecutive operating times of the system after repair form a decreasing geometric process, while the repair times after failure are assumed to be independent and identically distributed. Replacement policy N is adopted, where N is the number of repairable failures. The system will be replaced at the Nth repairable failure or at the unrepairable failure, whichever occurs first. Two replacement models are considered, one is based on the limiting availability and the other based on the long-run average cost rate of the system. We give the explicit expressions for the limiting availability and the long-run average cost rate of the system under policy N, respectively. By maximizing the limiting availability A(N) and minimizing the long-run average cost rate C(N), we theoretically obtain the optimal replacement policies N in both cases. Finally, some numerical simulations are presented to verify the theoretical results.  相似文献   

12.
In this paper, the repair-replacement problem for a deteriorating cold standby repairable system is investigated. The system consists of two dissimilar components, in which component 1 is the main component with use priority and component 2 is a supplementary component. In order to extend the working time and economize the running cost of the system, preventive repair for component 1 is performed every time interval T, and the preventive repair is “as good as new”. As a supplementary component, component 2 is only used at the time that component 1 is under preventive repair or failure repair. Assumed that the failure repair of component 1 follows geometric process repair while the repair of component 2 is “as good as new”. A bivariate repair-replacement policy (TN) is adopted for the system, where T is the interval length between preventive repairs, and N is the number of failures of component 1. The aim is to determine an optimal bivariate policy (TN) such that the average cost rate of the system is minimized. The explicit expression of the average cost rate is derived and the corresponding optimal bivariate policy can be determined analytically or numerically. Finally, a Gamma distributed example is given to illustrate the theoretical results for the proposed model.  相似文献   

13.
A system is subject to shocks that arrive according to a non-homogeneous pure birth process. As shocks occur, the system has two types of failures. Type-I failure (minor failure) is removed by a general repair, whereas type-II failure (catastrophic failure) is removed by an unplanned replacement. The occurrence of the failure type is based on some random mechanism which depends on the number of shocks occurred since the last replacement. Under an age replacement policy, a planned (or scheduled) replacement happens whenever an operating system reaches age T. The aim of this note is to derive the expected cost functions and characterize the structure of the optimal replacement policy for such a general setting. We show that many previous models are special cases of our general model. A numerical example is presented to show the application of the algorithm and several useful insights.  相似文献   

14.
This paper considers a periodical replacement model based on a cumulative repair‐cost limit, whose concept uses the information of all repair costs to decide whether the system is repaired or replaced. The failures of the system can be divided into two types. One is minor failure that is assumed to be corrected by minimal repair, while the other is serious failure where the system is damaged completely. When a minor failure occurs, the corresponding repair cost is evaluated and minimal repair is then executed if this accumulated repair cost is less than a pre‐determined limit L, otherwise, the system is replaced by a new one. The system is also replaced at scheduled time T or at serious failure. Long‐run expected cost per unit time is formulated and the optimal period T* minimizing that cost is also verified to be finite and unique under some specific conditions. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

15.
In this paper we show how the technique of smoothed perturbation analysis (SPA) can be applied to optimize threshold values in a maintenance model. We do so for a particular model in which a single component is minimally repaired up to an age threshold t and preventively replaced at age tp, where tp>t. With each maintenance action, such as minimal repair, replacement after failure or preventive replacement, costs are associated. These costs may depend on the sample path history of the component. We derive an estimator for the derivative of the cost performance with respect to t and tp.  相似文献   

16.
An extended warranty model that includes a free repair period and an extended warranty period will be discussed. Consumers have choices to renew or not to renew at the end of free repair period. Different choices will have different cost implications for consumers and manufacturers. The exact expressions of the total expected discounted cost, and the long-run average cost per unit time for a consumer and the manufacturer are derived. Then the optimal policies for the consumers are obtained. Under the assumption that a consumer has applied his/her optimal policy, an optimal policy or an ε-optimal policy for the manufacturer is then determined analytically.  相似文献   

17.
18.
A new policy, called stocking policy for ease of reference, has been advanced for joint optimization of age replacement and spare provisioning. It combines age replacement policy with continuous review (s, S) type inventory policy, where s is the stock reorder level and S is the maximum stock level. The policy is generally applicable to any operating situation having either a single item or a number of identical items. A simulation model has been developed to determine the optimal values of the decision variables by minimizing the total cost of replacement and inventory. The behaviour of the stocking policy has been studied for a number of case problems specifically constructed by 5-factor second order rotatory design and the effects of different cost elements and item failure characteristics have been highlighted. For all case problems, optimal (s, S) policies to-support the Barlow-Proschan age policy have also been determined. Simulation results clearly indicate that the optimal stocking policy is, in general, more cost-effective than the Barlow-Proschan policy.  相似文献   

19.
We consider the problem of optimally maintaining a periodically inspected system that deteriorates according to a discrete-time Markov process and has a limit on the number of repairs that can be performed before it must be replaced. After each inspection, a decision maker must decide whether to repair the system, replace it with a new one, or leave it operating until the next inspection, where each repair makes the system more susceptible to future deterioration. If the system is found to be failed at an inspection, then it must be either repaired or replaced with a new one at an additional penalty cost. The objective is to minimize the total expected discounted cost due to operation, inspection, maintenance, replacement and failure. We formulate an infinite-horizon Markov decision process model and derive key structural properties of the resulting optimal cost function that are sufficient to establish the existence of an optimal threshold-type policy with respect to the system’s deterioration level and cumulative number of repairs. We also explore the sensitivity of the optimal policy to inspection, repair and replacement costs. Numerical examples are presented to illustrate the structure and the sensitivity of the optimal policy.  相似文献   

20.
In this paper, the maintenance problem for a cold standby system consisting of two dissimilar components and one repairman is studied. Assume that both component 1 and component 2 after repair follow geometric process repair and component 1 is given priority in use when both components are workable. Under these assumptions, using geometric process repair model, we consider a replacement policy N under which the system is replaced when the number of failures of component 1 reaches N. Our purpose is to determine an optimal replacement policy N1 such that the average cost rate (i.e. the long-run average cost per unit time) of the system is minimized. The explicit expression for the average cost rate of the system is derived and the corresponding optimal replacement policy N1 can be determined analytically or numerically. Finally, a numerical example is given to illustrate some theoretical results and the model applicability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号