首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
BaFe2As2 is the parent compound of the ‘122’ iron arsenide superconductors and crystallizes with the tetragonal ThCr2Si2-type structure, space group I4/mmm. A spin-density-wave transition at 140 K is accompanied by a symmetry reduction to space group Fmmm and simultaneously by antiferromagnetic ordering. Hole-doping induces superconductivity in Ba1?xKxFe2As2 with a maximum Tc of 38 K at x  0.4. The upper critical fields approach 75 T with rather small anisotropy of Hc2. At low potassium concentrations (x ? 0.2), superconductivity apparently co-exists with the orthorhombically distorted and magnetically ordered phase. At doping levels x ? 0.3, the structural distortion and antiferromagnetic ordering is completely suppressed and the Tc is maximized. No magnetically ordered domains could be detected in optimally doped Ba1?xKxFe2As2 (x ? 0.3) by 57Fe Mössbauer spectroscopy in contrast μSR results obtained with single crystals. The magnetic hyperfine interactions investigated by 57Fe Mössbauer spectroscopy are discussed and compared to the ZrCuSiAs-type materials.  相似文献   

2.
High-quality Bi2Te3 microcrystals have been grown by physical vapor transport (PVT) method without using a foreign transport agent. The microcrystals grown under optimal temperature gradient are well facetted and they have dimensions up to ~100 μm. The phase composition of grown crystals has been identified by X-ray single crystal structure analysis in space group R3?m, a=4.3896(2) Å, b=30.5019(10) Å, Z=3 (R=0.0271). Raman microspectrometry has been used to describe the vibration parameters of Bi2Te3 microcrystals. The FWHM parameters obtained for representative Raman lines at 61 cm?1 and 101 cm?1 are as low as 3.5 cm?1 and 4.5 cm?1, respectively.  相似文献   

3.
The hydrostatic pressure effect on the dielectric properties of (NH4)2H2P2O6 ferroelectric crystal was studied for pressures from 0.1 MPa to 360 MPa and for temperatures from 100 to 190 K. The pressure–temperature phase diagram obtained is linear with increasing pressure. The paraelectric–ferroelectric phase transition temperature decreases with increasing pressure with the pressure coefficient dTc/dp=?5.16×10?2 K MPa?1. Additionally, the pressure dependences of Curie–Weiss constants for the crystal in paraelectric (C+) and ferroelectric (C?) phases are evaluated and discussed. The possible mechanism of paraelectric–ferroelectric phase transition is also discussed.  相似文献   

4.
Time-resolved infrared spectra of firings from a 152 mm howitzer were acquired over an 1800–6000 cm?1 spectral range using a Fourier-transform spectrometer. The instrument collected primarily at 32 cm?1 spectral and 100 Hz temporal resolutions. Munitions included unsuppressed and chemically flash suppressed propellants. Secondary combustion occurred with unsuppressed propellants resulting in flash emissions lasting ~100 ms and dominated by H2O and CO2 spectral structure. Non-combusting plume emissions were one-tenth as intense and approached background levels within 20–40 ms. A low-dimensional phenomenological model was used to reduce the data to temperatures, soot absorbances, and column densities of H2O, CO2, CH4, and CO. The combusting plumes exhibit peak temperatures of ~1400 K, areas of greater than 32 m2, low soot emissivity of ~0.04, with nearly all the CO converted to CO2. The non-combusting plumes exhibit lower temperatures of ~1000 K, areas of ~5 m2, soot emissivity of greater than 0.38 and CO as the primary product. Maximum fit residual relative to peak intensity are 14% and 8.9% for combusting and non-combusting plumes, respectively. The model was generalized to account for turbulence-induced variations in the muzzle plumes. Distributions of temperature and concentration in 1–2 spatial regions demonstrate a reduction in maximum residuals by 40%. A two-region model of combusting plumes provides a plausible interpretation as a ~1550 K, optically thick plume core and ~2550 K, thin, surface-layer flame-front. Temperature rate of change was used to characterize timescales and energy release for plume emissions. Heat of combustion was estimated to be ~5 MJ/kg.  相似文献   

5.
The A2Mo3O12 family, where A3+ is a large trivalent cation, can show interesting thermal properties such as negative thermal expansion. One member of this family, HfMgMo3O12, where the two A3+ cations have been replaced by Hf4+ and Mg2+, has been shown to have a low positive coefficient of thermal expansion above room temperature. This property makes HfMgMo3O12 an attractive candidate as a component for solid solutions with near-zero thermal expansion. However, its properties below room temperature were unexplored. In this work we report the phase transition from orthorhombic Pnma to monoclinic P21/a at T~175 K with an enthalpy change of 0.27 kJ mol?1. Relaxation calorimetry, from 5 K to 300 K, show only the small anomaly associated with this transition. The thermal conductivity, determined from 2 K to 300 K, was low, but not as low as some other materials exhibiting negative thermal expansion. Analysis of the low-temperature heat capacity indicates the presence of low-energy phonon modes in HfMgMo3O12, consistent with the low thermal conductivity. The upper bound of the Young's modulus, estimated from the effective Debye temperature derived from the low-temperature heat capacity, is 20 GPa, a relatively low value due to the flexibility of the framework structure.  相似文献   

6.
We examined the electric field-assisted thermionic emission of atomic oxygen radical anion (O?) in a vacuum from fluorine-substituted derivatives of 12CaO·7Al2O3 (C12A7) with a composition of (12 ? x)CaO·7Al2O3·xCaF2 (0  x  0.8). Unsubstituted C12A7 easily decomposed into 5CaO?3Al2O3 (C5A3) and 3CaO?Al2O3 (C3A) above 830 °C during the emission experiment in a vacuum. The decomposition temperature range became narrower as the amount of F? ion substitution increased, e.g. the sample with x = 0.4 kept a single phase after the emission experiment at 900 °C. The emitted anionic species from the x = 0.4 sample were dominated by O? ions (~ 92%) together with a small amount of O2? ions (~ 4%) and F? ions (~ 4%). The absence of an O2 gas supply to the opposite side of the emission surface led to a nearly steady co-emission of O? ions and electrons with a ratio of < 1/1. The O2 gas supply markedly enhanced the O? ion emission, and suppressed the electron emission. A sustainable and high-purity O? ion emission with a current density of 11 nA cm? 2 was achieved at 830 °C with the supply of 40 Pa O2 gas. The similarity in these emission features to the unsubstituted C12A7, together with the improved thermal stability demonstrates that the F? ion-substituted C12A7 is a promising material for higher intensity O? ion emission at higher temperatures.  相似文献   

7.
New line lists for isotopically substituted water are presented. Most line positions were calculated from experimentally determined energy levels, while all line intensities were computed using an ab initio dipole moment surface. Transitions for which experimental energy levels are unavailable use calculated line positions. These line lists cover the range 0.05–20 000 cm?1 and are significantly more complete and potentially more accurate than the line lists available via standard databases. All lines with intensities (scaled by isotopologue abundance) greater than 10?29 cm/molecule at 296 K are included, augmented by weaker lines originating from pure rotational transitions. The final line lists contain 39 918 lines for H218O and 27 546 for H217O and are presented in standard HITRAN format. The number of experimentally determined H218O and H217O line positions is, respectively, 32 970 (83% of the total) and 17 073 (62%) and in both cases the average estimated uncertainty is 2×10?4 cm?1. The number of ab initio line intensities with an estimated uncertainty of 1% is 16 621 (42%) for H218O and 13 159 (48%) for H217O.  相似文献   

8.
Ferroelectric lead zirconate titanate–lead cobalt niobate ceramics with the formula (1  x)Pb(Zr1/2Ti1/2)O3xPb(Co1/3Nb2/3)O3 where x = 0.0–0.5 were fabricated using a high temperature solid-state reaction method. The formation process, the structure and homogeneity of the obtained powders have been investigated by X-ray diffraction method as well as the simultaneous thermal analysis of both differential thermal analysis (DTA) and thermogravimetry analysis (TGA). It was observed that for the binary system (1  x)Pb(Zr1/2Ti1/2)O3xPb(Co1/3Nb2/3)O3, the change in the calcination temperature is approximately linear with respect to the PCoN content in the range x = 0.0–0.5. In addition, X-ray diffraction indicated a phase transformation from a tetragonal to a pseudo-cubic phase when the fraction of PCoN was increased. The dielectric permittivity is remarkably increased by increasing PCoN concentration. The maximum value of remnant polarization Pr (25.3 μC/cm2) was obtained for the 0.5PZT–0.5PCoN ceramic.  相似文献   

9.
Ferrimagnetism has been extensively studied in garnets, whereas it is rare to find the antiferromagnet. Present work will demonstrate antiferromagnetism in the two Mn–V-garnets. Antiferromagnetic phase transition in AgCa2Mn2V3O12 and NaPb2Mn2V3O12 has been found, where the magnetic Mn2+ ions locate only on octahedral A site. The heat capacity shows sharp peak due to antiferromagnetic order with the Néel temperature TN=23.8 K for AgCa2Mn2V3O12 and TN=14.2 K for NaPb2Mn2V3O12. The magnetic entropy change over a temperature range 0–50 K is 13.9 J K?1 mol-Mn2+-ions?1 for AgCa2Mn2V3O12 and 13.6 J K?1 mol-Mn2+-ions?1 for NaPb2Mn2V3O12, which are in good agreement with calculated value of Mn2+ ion with spin S=5/2. The magnetic susceptibility shows the Curie–Weiss behavior over the range 29–350 K. The effective magnetic moment μeff and the Weiss constant θ are μeff=6.20 μB Mn2+-ion?1 and θ=?34.1 K (antiferromagnetic sign) for AgCa2Mn2V3O12 and μeff=6.02 μB Mn2+-ion?1 and θ=?20.8 K for NaPb2Mn2V3O12.  相似文献   

10.
Aiming at the development of new proton conducting solids, recent studies of the NaH2PO4·H2O–NaH2AsO4·H2O system have lead to the synthesis of a new compound NaH2(PO4)0.48(AsO4)0.52·H2O (NDAP). Calorimetric studies have confirmed the presence of four reversible phase transitions (abbreviated by PhT), at 257/270 (PhT, IV), 261/290 (PhT, III), 267/301 (PhT, II) and 317/317.5 K (PhT, I) (for cooling/heating processes, respectively). It is shown that the III and IV phase transitions are of a first order type, with a “order-disorder and displacive” character, accompanied by specific dielectric anomalies. The behavior of the dielectric constant εr and of tan δ shows that, at 272 K, the (PhT, IV) could be ferroelectric–paraelectric. As for the (PhT, III) at 296 K, it leads to a superionic–protonic phase; a jump in the conductivity is associated to this transition with an unusual high value of conductivity 1.07×10?4 Ω?1 cm?1 and a low activation energy 0.39 eV (Kh. Jarraya et al.). Quandratic nonlinear (NLO) properties of NDAP powder was confirmed efficiency of the grown crystal by the Kurtz and Perry second harmonic generation (SHG) technique.  相似文献   

11.
Annealing effects of FeSe1?xTex (0.6  x  1) single crystals have been investigated from measurements of the powder X-ray diffraction and specific heat. Through the annealing, several peaks of powder X-ray diffraction have become sharp and a clean jump of the specific-heat at the superconducting (SC) transition temperature, Tc, has been observed for x = 0.6–0.9, indicating bulk superconductivity. For annealed single-crystals of x = 0.6–0.8, the SC condensation energy, U0, and the SC gap, Δ0, at 0 K have been estimated as ~1.8 J/mol and 2.3–2.5 meV, respectively. The value of 2Δ0/kBTc is 3.9–4.5, indicating a little strong-coupling superconductivity. Both the electronic specific-heat coefficient in the normal state, γn, and the residual electronic specific-heat coefficient in the SC state, γ0, have been found to show significant x dependence. The values of γn are much larger than those estimated from the band calculation.  相似文献   

12.
The crystal structure and physical properties of BaFe2As2, BaCo2As2, and BaNi2As2 single crystals are surveyed. BaFe2As2 gives a magnetic and structural transition at TN = 132(1) K, BaCo2As2 is a paramagnetic metal, while BaNi2As2 has a structural phase transition at T0 = 131 K, followed by superconductivity below Tc = 0.69 K. The bulk superconductivity in Co-doped BaFe2As2 below Tc = 22 K is demonstrated by resistivity, magnetic susceptibility, and specific heat data. In contrast to the cuprates, the Fe-based system appears to tolerate considerable disorder in the transition metal layers. First principles calculations for BaFe1.84Co0.16As2 indicate the inter-band scattering due to Co is weak.  相似文献   

13.
Sr(Zr0.84Y0.16)0.91O3 ? δ (SZY) and Ba(Zr0.84Y0.16)0.96O3 ? δ (BZY) protonic conductor coatings were co-sputter deposited from metallic targets in argon–oxygen reactive gas mixtures. The chemical and structural features were investigated by energy dispersive X-ray spectroscopy and X-ray diffraction, and their morphology was assessed by scanning electron microscopy of the surface and of brittle fracture cross sections. The electrical properties of the coating were determined by complex impedance spectroscopy as a function of temperature in air. Relationships are established between the electrical properties and the morphology of the coatings. The SZY as deposited coatings is amorphous and crystallises under the convenient perovskite structure after annealing treatment at 873 K under air. The BZY as deposited coatings is crystallised at 523 K in situ under perovskite structure and a further annealing treatment increases the grain size. Conductivities and activation energies of crystallised coatings were 3.1 · 10? 5 S cm? 1/2 · 10? 5 S cm? 1 and 0.65 eV/0.71 eV after stabilization at 773 K for strontium and barium zirconate, respectively.  相似文献   

14.
Hydrogen peroxide (H2O2) and hydroperoxy (HO2) reactions present in the H2O2 thermal decomposition system are important in combustion kinetics. H2O2 thermal decomposition has been studied behind reflected shock waves using H2O and OH diagnostics in previous studies (Hong et al. (2009) [9] and Hong et al. (2010) [6,8]) to determine the rate constants of two major reactions: H2O2 + M  2OH + M (k1) and OH + H2O2  H2O + HO2 (k2). With the addition of a third diagnostic for HO2 at 227 nm, the H2O2 thermal decomposition system can be comprehensively characterized for the first time. Specifically, the rate constants of two remaining major reactions in the system, OH + HO2  H2O + O2 (k3) and HO2 + HO2  H2O2 + O2 (k4) can be determined with high-fidelity.No strong temperature dependency was found between 1072 and 1283 K for the rate constant of OH + HO2  H2O + O2, which can be expressed by the combination of two Arrhenius forms: k3 = 7.0 × 1012 exp(550/T) + 4.5 × 1014 exp(?5500/T) [cm3 mol?1 s?1]. The rate constants of reaction HO2 + HO2  H2O2 + O2 determined agree very well with those reported by Kappel et al. (2002) [5]; the recommendation therefore remains unchanged: k4 = 1.0 × 1014 exp(?5556/T) + 1.9 × 1011+exp(709/T) [cm3 mol?1 s?1]. All the tests were performed near 1.7 atm.  相似文献   

15.
We have prepared a series of bulk polycrystalline samples with the nominal compositions (YBa2Cu3O7)1?x(Nd0.7Sr0.3MnO3)x (x = 0–1) by a conventional solid-state reaction method using the larger difference in sintering temperature of the two constituent oxides and a well conceived sintering sequence. XRD patterns show that the samples are composites consisting of YBa2Cu3O7 and Nd0.7Sr0.3MnO3 particles with average grain size of ~65 nm. For x ? 0.55, with increasing x, the zero-resistance superconducting transition temperature, TC0, measured at zero magnetic field decreases and the normal state resistivity increases rapidly. The TC0 for the sample with x  0.48 is estimated to be 0 K. The MH hysteresis loops indicate the coexistence of ferromagnetism and superconductivity in the samples. The depression of TC0 can be attributed to the proximity effect between ferromagnetism and superconductivity.  相似文献   

16.
《Solid State Ionics》2006,177(26-32):2363-2368
The mechanism and kinetics of water incorporation in the double perovskites Ва4Ca2Nb2O11 and Sr6Ta2O11 has been investigated (T = 300÷500 °C and aH2O = 1 · 10 3÷2.2 · 10 2). The formation of hydration products Ba4Ca2Nb2O11·xH2O and Sr6Ta2O11·xH2O (0.2 < x < 0.50) was limited by the diffusion of H2O. It has been found that the concentration dependences of H2O are the same for both samples: small increasing of H2O with increasing x. The temperature dependences of the chemical diffusion coefficients of water for compositions of Ba4Ca2Nb2O11·0.35H2O and Sr6Ta2O11·0.35H2O could be described with close activation energies of Ea = 0.38 ± 0.03 eV and Ea = 0.49 ± 0.03 eV, respectively. The chemical diffusion coefficients of water are nearly one order of magnitude smaller for tantalate Sr6Ta2O11. This result correlates with lower oxygen and proton conductivities in Sr6Ta2O11 as the consequence of lower mobilities.  相似文献   

17.
Nb2xV2 ? 2xO5 (0  x  1) powders were prepared by a synthetic route based on the inorganic polymerization of alkoxy-choride precursors and characterized by a combination of X-ray diffraction, 51V and 93Nb NMR and Raman spectroscopy. Amorphous mesoporous thin films of similar compositions were successfully prepared by a modified Evaporation Induced Self Assembly method using polystyrene-b-polyethyleneoxide diblock copolymer as structuring agent. The electrochemical properties of the mesoporous films upon lithium insertion–deinsertion are investigated by cyclic voltammetry. This study highlights the advantages of such nanoarchitecture in terms of increased capacity to insert lithium.  相似文献   

18.
The absorption spectrum of water vapor in “natural” isotopic abundance has been recorded by high sensitivity CW-Cavity Ring Down Spectroscopy (CW-CRDS) between 6885.79 and 7405.91 cm?1. This strong absorbing region includes the first hexad of interacting vibrational bands which was previously studied by Fourier Transform Spectroscopy. The achieved sensitivity of the recordings varies from αmin~2×10–11 to 2×10?10 cm?1 allowing us to use a sample pressure of 0.1 Torr, making pressure broadening of the line profile mostly negligible. Weak lines in the vicinity of much stronger lines could then be accurately measured. The weakest lines have intensity on the order of 5×10–28 cm/molecule at 296 K. A set of 4471 lines were assigned to 4916 transitions of five water isotopologues (H2 16O, H2 18O, H2 17O, HD16O and HD18O). A small number of new energy levels was determined mostly for the H2 17O isotopologue. The previous investigations and existing databases are critically evaluated. In particular, a number of corrections and new assignments are proposed for the water list provided by the HITRAN database in the considered region. As a result, a complete list of 12,700 transitions for water in “natural” isotopic abundance is provided as Supplementary Material for the 6885–7408 cm?1 region.  相似文献   

19.
Single crystalline films of Lu3Al5O12:Bi and Y3Al5O12:Bi have been studied at 4.2–450 K by the time-resolved luminescence spectroscopy method. Their emission spectrum consists of two types of bands with strongly different characteristics. The ultraviolet band consists of two components, arising from the electronic transitions which correspond to the 3P1  1S0 and 3P0  1S0 transitions in a free Bi3+ ion. At T < 80 K, mainly the lower-energy component with the decay time ~10?3 s is observed, arising from the metastable 3P0 level. At T > 150 K, the higher-energy component prevails, arising from the thermally populated emitting 3P1 level. The visible emission spectrum consists of two dominant strongly overlapped broad bands with large Stokes shifts. At 4.2 K, their decay times are ~10?5 s and ~10?4 s and decrease with increasing temperature. Both of the visible emission bands are assumed to be of an exciton origin. The lower-energy band is ascribed to an exciton, localized near a single Bi3+ ion. The higher-energy band, showing a stronger intensity dependence on the Bi3+ content, is assumed to arise from an exciton, localized near a dimer Bi3+ center. The structure of the corresponding excited states is considered, and the processes, taking place in these states, are discussed.  相似文献   

20.
In this paper we investigate the properties of polycrystalline series of Ru1?xCrxSr2Eu1.5Ce0.5Cu2O10?δ (0.0 ? x ? 0.40) by resistivity, XRD and dc magnetization measurements. EuRu-1222 is a reported magneto superconductor with Ru spins magnetic ordering at temperatures near 100 K and superconductivity occurs in Cu–O2 planes below Tc ? 40 K. The exact nature of Ru spins magnetic ordering is still being debated and no conclusion has been reached yet. In this work, we found the superconducting transition temperature Tc = 20 K from resistivity and dc magnetization measurements for pristine sample. DC magnetization measurements exhibited ferromagnetic like transition for all samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号