首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
We consider the classical problem of the theory of elastic plates, namely, the problem on the torsion of a square isotropic plane by forces applied at the corners. The traditional solution of this problem based on the classical theory of plates and Kirchhoff and Thomson–Tait transformations is compared with the solution obtained in the improved theory of plates and with experimental results. The solution, which does not exist in the classical theory of plates, of the problem on the torsion of a plate by torques uniformly distributed over the plate contour is presented as well.  相似文献   

3.
We examine the boundary layer on a plate upon which a circular cylinder is mounted. In investigations of this problem, the solution has successfully been found by numerical methods [1–3] only outside a certain domain whose location depends on the selection of the coordinate system, the spacings of the difference mesh [1], and, possibly, the computation method. Hence, a question arises as to whether it is impossible to solve the problem in a broader domain by modifying the algorithm; in other words, what is the maximum domain in which the solution of the boundary-layer equation can be found if the flow in the separation zone ahead of the obstacle is unknown? Application of the influence principle permitted the work set forth below to provide an answer to this question. The influence of cooling a section of surface on the boundary-layer characteristic was studied in [4] for parabolic external flow streamlines. The influence of cooling strips near the plane of symmetry on separation of a three-dimensional boundary layer is investigated numerically in the present paper. Experimental results that agree qualitatively with the flow singularities in the boundary layer exposed in the computation during boundary-layer control on a section of the surface are presented.  相似文献   

4.
An exact analytical solution is presented for the laminar boundary-layer flow over a semi-infinite flat plate subjected to a type of similarity preserving suction. The solution is developed for the case of a plate immersed in either a uniform compressible stream with viscosity proportional to temperature or a uniform incompressible stream with constant viscosity. The problem is formulated in Crocco's variables. It is described by a second-order, non-linear, ordinary differential (and singular) boundary-value problem for the shear stress as a function of the velocity in the boundary layer. A unique solution is shown to exist and to possess a power series representation for all magnitudes of suction. The series is constructed explicitly and provides a transcendental equation for the shear stress at the plate (the important skin friction) which can be solved to any desired accuracy. Examples of upper and lower bounds for the wall shear are presented for several magnitudes of suction and confirm the reasonable accuracy of results obtained heretofore only by numerical solutions of the problem. In addition to the intrinsic value of the technique developed, it can be the basis of accurate checks for the numerical solution of more complex problems.  相似文献   

5.
Based on the first-order shear deformation plate theory with von Karman non-linearity, the non-linear axisymmetric and asymmetric behavior of functionally graded circular plates under transverse mechanical loading are investigated. Introducing a stress function and a potential function, the governing equations are uncoupled to form equations describing the interior and edge-zone problems of FG plates. This uncoupling is then used to conveniently present an analytical solution for the non-linear asymmetric deformation of an FG circular plate. A perturbation technique, in conjunction with Fourier series method to model the problem asymmetries, is used to obtain the solution for various clamped and simply supported boundary conditions. The material properties are graded through the plate thickness according to a power-law distribution of the volume fraction of the constituents. The results are verified by comparison with the existing results in the literature. The effects of non-linearity, material properties, boundary conditions, and boundary-layer phenomena on various response quantities in a solid circular plate are studied and discussed. It is found that linear analysis is inadequate for analysis of simply supported FG plates which are immovable in radial direction even in the small deflection range. Furthermore, the responses of FG materials under a positive load and a negative load of identical magnitude are not the same. It is observed that the boundary-layer width is approximately equal to the plate thickness with the boundary-layer effect in clamped FG plates being stronger than that in simply supported plates.  相似文献   

6.
In this paper, we obtain the asymptotic solution of the general equation for laminar boundary-layer flows with suction. Formulae for calculating the displacement thickness, momentum thickness, an’d skin friction are then derived. Furthermore, the problem of determining the separation point is dealt with. Finally, as a numerical example, we compute certain characteristic boundary-layer parameters for the case of uniform flow over flat plate with constant suction. Our numerical results obtained are in good agreement with those of Iglisch.  相似文献   

7.
In this paper the steady free convection boundary-layer along a semi-infinite, slightly inclined (both positive and negative) to the horizontal plate embedded in a porous medium with the flow generated by Newtonian heating has been investigated. The asymptotic solution near the leading edge and the full numerical solution along the whole plate domain have been obtained numerically, whilst the asymptotic solution far downstream along the plate has been obtained analytically. For a positive inclination the full numerical solution is in agreement with the asymptotic solutions. However, for a negatively inclined plate, only the small asymptotic solution near the leading edge of the plate can be predicted giving an insight that the model for a negatively inclined plate, whilst mathematically interesting, is not physically realistic.  相似文献   

8.
We consider a problem which arises in the numerical solution of the compressible two-dimensional or axisymmetric boundary-layer equations. Numerical methods for the compressible boundary-layer equations are facilitated by transformation from the physical (x, y) plane to a computational (ξ, η) plane in which the evolution of the flow is ‘slow’ in the time-like ξ direction. The commonly used Levy-Lees transformation results in a computationally well-behaved problem, but it complicates interpretation of the solution in physical space. Specifically, the transformation is inherently non-linear, and the physical wall-normal velocity is transformed out of the problem and is not readily recovered. Conventional methods extract the wall-normal velocity in physical space from the continuity equation, using finite-difference techniques and interpolation procedures. The present spectrally accurate method extracts the wall-normal velocity directly from the transformation itself, without interpolation, leaving the continuity equation free as a check on the quality of the solution. The present method for recovering wall-normal velocity, when used in conjunction with a highly accurate spectral collocation method for solving the compressible boundary-layer equations, results in a discrete solution which satisfies the continuity equation nearly to machine precision. As demonstration of the utility of the method, the boundary layers of three prototypical high-speed flows are investigated and compared: the flat plate, the hollow cylinder, and the cone. An important implication for classical linear stability theory is also briefly discussed.  相似文献   

9.
The boundary behavior of a family of hierarchical models of linearly elastic, isotropic plates is studied. The hierarchical models are obtained by spectral semidiscretization of the displacement fields in the transverse direction and strain energy projection. The well known Reissner-Mindlin model is contained in the hierarchy as a special case. A decomposition of the boundary layers of any model in the hierarchy into a bending and a torsion layer, both of which are model dependent, is given. It is shown further that the bending and torsion layers arise as Galerkin approximations of certain (nonlinear) eigenvalue problems in the plate cross section with the subspaces used to derive the hierarchical model. It is shown that the bending layers converge, as the order of the plate model tends to infinity, to the so-called Papkovich functions on an elastic strip.The regularity of the solution on polygonal plates is investigated for the whole hierarchy of plate models and shown to equal the regularity of the plane elasticity problem.Partially supported by AFOSR Grant No. F49620-92-J0100.  相似文献   

10.
We examine the transient forced convection heat transfer from a fixed, semi-infinite, flat plate situated in a fluid which, at large distances, is moving with a constant velocity parallel to the plate. Both the fluid and the plate are initially at a constant temperature and the transients are initiated when the zero heat flux at the plate is suddenly changed to a constant value. The thermal boundary-layer equations are solved using numerical techniques to extend a series which is valid for small times and describe fully the development from the initial unsteady state solution (small times) to the ultimate steady state solution (large time).  相似文献   

11.
The formulation and solution of the stationary problem of heat transfer in the neighborhood of the front point of a body at constant temperature in a stream of dissociated air are given in [1]. In [2], the results are given of numerical solution of this problem in the nonstationary formulation; the establishment of a stationary heat transfer regime was established for all the calculated variants. In the present paper, we investigate the stability of stationary heat transfer regimes at the front stagnation point of a body in a stream of dissociated air using the Lyapunov functional method [3, 4] and the method of [2, 5], which is based on the use of Meksyn's method in boundary-layer theory [6, 7]. It is established that an arbitrarily strong growth of the Damköhler number does not lead to instability and multiplicity of the stationary regimes, in contrast to the case when a hot mixture of gases flows over the front point of a thermostat [2, 5, 8]. Numerical solution of the boundary-layer equations for a wide range of Damköhler numbers confirms the results of the approximate qualitative analysis and shows that in a number of cases the time of establishment of the stationary state is a nonmonotonic function of the Damköhler number.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 5, pp. 97–106, September–October, 1979.  相似文献   

12.
The properties of an elastic half space including a partly embedded twisting shaft of revolution are studied. Without knowing the exact solution of the torsion problem of a given embedded shaft, these properties can indicate some features of the displacement or stress field of the half space and can sometimes be used for checking a numerical solution. An example for checking the correct stress distribution on surfaces of twisted rigid cylindrical shaft embedded in a half space is given. This Work was Supported by the National Science Foundation of China.  相似文献   

13.
I.Introducti0nlncustomarytreatmentofforcedconvectiveboundary-layernowoverahorizontalplate,buoyancyforcecomp0nentn0rmaltothesurfaceisneglectedashigher-0rderterms,withtheresultofn0pressurevariationacrosstheboundarylayer-However,thecrosswisepressuregradient,…  相似文献   

14.
Summary  A Theoretical analysis is carried out to study the boundary-layer flow over a continuously moving surface through an otherwise quiescent micropolar fluid. The transformed boundary-layer equations are solved numerically for a power-law surface velocity using the Keller-box method. The effects of the micropolar K and exponent m parameters on the velocity and microrotation field as well as on the skin-friction group are discussed in a detailed manner. It is shown that there is a near-similarity solution of this problem. The accuracy of the present solution is also discussed. Accepted for publication 1 April 1996  相似文献   

15.
This paper investigates mixed free and forced convection of non-Newtonian fluids from a vertical isothermal plate embedded in a homogenous porous medium. A mathematical model is developed based on the modified Darcy's law and boundary-layer approximations, and the exact similarity solution is obtained as well as an integral solution. These two solutions agree within 3% for aiding flows and 10% for opposing flows. It is found that, non-Newtonian characteristics of fluids have appreciable influences on velocity profiles, temperature distributions and flow regimes.  相似文献   

16.
A one layer model of laminar non-Newtonian fluids (Ostwald-de Waele model) past a semi-infinite flat plate is revisited. The stretching and the suction/injection velocities are assumed to be proportional to x1/(1−2n) and x−1, respectively, where n is the power-law index which is taken in the interval . It is shown that the boundary-layer equations display both similarity and pseudosimilarity reductions according to a parameter γ, which can be identified as suction/injection velocity. Interestingly, it is found that there is a unique similarity solution, which is given in a closed form, if and only if γ=0 (impermeable surface). For γ≠0 (permeable surface) we obtain a unique pseudosimilarity solution for any 0≠γ≥−((n+1)/3n(1−2n))n/(n+1). Moreover, we explicitly show that any pseudosimilarity solution exhibits similarity behavior and it is, in fact, similarity solution to a modified boundary-layer problem for an impermeable surface. In addition, the exact similarity solution of the original boundary-layer problem is used, via suitable transverse translations, to construct new explicit solutions describing boundary-layer flows induced by permeable surfaces.  相似文献   

17.
Magyari  E.  Keller  B. 《Transport in Porous Media》2003,51(2):227-230
External free convection boundary-layer flows are usually treated by neglecting the effect of viscous dissipation. This assumption always results in a non-parallel flow, besides a strong parallel component also a weak transversal component of the (steady) velocity field occurs. The present paper shows, however, that the weak opposing effect of the buoyancy forces due to heat release by viscous dissipation, can give rise along a cold vertical plate adjacent to a fluid saturated porous medium to a strictly parallel steady free convection flow. This boundary-layer flow is described by an algebraically decaying exact analytical solution of the basic balance equations.  相似文献   

18.
Harris  S.D.  Ingham  D.B.  Pop  I. 《Transport in Porous Media》2002,46(1):1-18
In this paper we analyse how the presence of the thermal capacity of a vertical flat plate of finite thickness, which is embedded in a porous medium affects the transient free convection boundary-layer flow. At the time t = 0, the plate is suddenly loaded internally with a constant heat flux rate q, so that a transient boundary-layer flow is initiated adjacent to the plate. Initially, the transient effects due to the imposition of the uniform heat flux rate at the plate are confined to a thin fluid region near to the surface and are described by a small time solution. These effects continue to penetrate outwards and eventually evolve into a new steady state flow. Analytical solutions have been derived for these transient (small time) and steady state (large time) flow regimes, which are then matched by a numerical solution of the full boundary-layer equations. It has been found that the non-dimensional fluid temperature (or fluid velocity) profiles are reduced when the thermal capacity effects, described by a parameter Q *, are reduced. For small values of Q *, the approach of these profiles to their steady state values is monotonic. However, for large values of Q *, the temperature profiles are observed to locally exceed (pass through a maximum value) the final steady state values at certain distances from the plate. In general, the maxima in the temperature profiles increase in size as Q * increases and the time taken to approach the steady state solutions increases significantly.  相似文献   

19.
A problem is considered for the system describing gas flows with plate boundary layer separation in Mises variables in boundary-layer theory. The existence of generalized solutions of the problem is proved. __________ Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 49, No. 4, pp. 36–41, July–August, 2008.  相似文献   

20.
In this paper we have numerically investigated the existence and uniqueness of a vertically flowing fluid passed a model of a thin vertical fin in a saturated porous media. We have assumed the two-dimensional mixed convection from a fin, which is modelled as a fixed, semi-infinite vertical surface, embedded in a fluid-saturated porous media under the boundary-layer approximation. We have taken the temperature, in excess of the constant temperature in the ambient fluid on the fin, to vary as  , where is measured from the leading edge of the plate and λ is a fixed constant. The Rayleigh number is assumed to be large so that the boundary-layer approximation may be made and the fluid velocity at the edge of the boundary-layer is assumed to vary as . The problem then depends on two parameters, namely λ and , the ratio of the Rayleigh to Péclet numbers. It is found that when λ>0 (<0) there are (is) dual (unique) solution(s) when is grater than some negative values of (which depends on λ). When λ<0 there is a range of negative value of (which depends on λ) for which dual solutions exist and for both λ>0 and λ<0 there is a negative value of (which depends on λ) for which there is no solution. Finally, solutions for 0<1 and 1 have been obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号