首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A pronounced Curie-like upturn of the magnetic susceptibility χ( T ) of the quasi one-dimensional spin chain compound Ba2V3O9 has been found recently [#!kaul:02!#]. Frequently this is taken as a signature for a staggered field mechanism due to the presence of g-factor anisotropy and Dzyaloshinskii-Moriya interaction. We calculate this contribution within a realistic structure of vanadium 3 d- and oxygen 2 p-orbitals and conclude that this mechanism is far too small to explain experimental results. We propose that the Curie term is rather due to a segmentation of spin chains caused by broken magnetic bonds which leads to uncompensated S = ? spins of segments with odd numbers of spins. Using the finite-temperature Lanczos method we calculate their effective moment and show that ∼ 1% of broken magnetic bonds is sufficient to reproduce the anomalous low-T behavior of χ( T ) in Ba2V3O9. Received 19 December 2002 / Received in final form 29 January 2003 Published online 14 March 2003  相似文献   

2.
The magnetic structures of Mn1-xFexWO4 with x = 0.0, 0.16, 0.21, 0.225, 0.232, 0.24, 0.27, 0.29, and 1.0 were refined from neutron powder diffraction data. The magnetic phase diagram could be completed in the coexistence range of different magnetic structures up to x = 0.29. For the magnetic state at 1.5 K a commensurate antiferromagnetic structure with a propagation vector = (±1/4, 1/2, 1/2) was found for x ⩽ 0.22 while the magnetic spins order with = (1/2, 0, 0) for x ≥ 0.22. In the latter phase, additionally, weak magnetic reflections indexed to an incommensurate ordering with = (- 0.214, 1/2, 0.457) occur in the diffraction pattern up to x = 0.29 indicating the occurence of a reentrant phase. For 0.12 ⩽ x ⩽ 0.29 the low temperature phases are separated from a magnetic high temperature phase showing only magnetic reflections indexed to a spin arrangement with = (1/2, 0, 0). The magnetic phase diagram is discussed qualitatively considering random superexchange between the statistically distributed Mn2+- and Fe2+-ions in the coexistence range 0.12 ⩽ x ⩽ 0.29 of different magnetic structures related to those of pure MnWO4 and FeWO4. Received 9 October 2002 Published online 14 March 2003  相似文献   

3.
Neutron powder diffraction was employed to study the pressure effect on the magnetic transition in the pseudobinary Laves-phase compound Er0.57Y0.43Co2 and to determine the magnetic moments of the Er- and Co-subsystems. Our studies reveal that the onset of long-range magnetic order for both the localized 4 f (Er) and itinerant 3 d (Co) electron moments appears at about the same temperature at ambient pressure. The pressure effect on Tc is found to be negative and equal for both sublattices, namely T c / p ∼ - 0.4 K/kbar. The values of the magnetic moments of the Er and the Co ions are found = 5.40±0.15μ B /atom, = 0.50±0.07μ B /atom and 5.35±0.15μ B /atom, 0.37±0.09μ B /atom, for p = 0 and 6 kbar, respectively. Our experimental results give evidence for short-range magnetic order formation at temperatures already above Tc and for a coexistence short- and long-range order below Tc down to 4 K. Received 20 December 2001 / Received in final form 12 June 2002 Published online 31 October 2002 RID="a" ID="a"e-mail: andrew.podlesnyak@psi.ch  相似文献   

4.
Polycrystalline two-layered perovskite La2.5-xK0.5+xMn2O 7 + δ (0 < x < 0.5) samples have been prepared by a modified sol-gel method and their magnetoresistance and magnetocaloric effects have been studied. A large deviation between the metal-insulator (MI) transition temperature (T ρ ) and the magnetic transition temperature (TC) is observed. Large magnetoresistance (MR) effects with Δρ/ρ of 40% at 12 kOe are obtained in wide temperature ranges. The maximum of the magnetic entropy change peaks at its Curie temperature (TC), far above its MI transition temperature (T ρ ). The large magnetic entropy change (1.4 J/kg.K) is obtained in the sample La2.5-xK0.5+xMn2O 7 + δ (x = 0.35) upon 10 kOe applied magnetic field. Received 2 May 2002 / Received in final form 1st October 2002 Published online 19 December 2002 RID="a" ID="a"e-mail: wzhong@ufp.nju.edu.cn  相似文献   

5.
We evaluate three meson doorway mechanisms for nucleon-antinucleon annihilation at rest for the first time. Detailed results are presented for the final state φπ0 originating from the 3S1 initial state and for the φρ channel originating from 1S0. The results presented also include the improved contributions from two meson doorway states and from the tree diagrams. For all the channels considered a consistent explanation of large and small OZI violations emerges. Received: 22 December 1999  相似文献   

6.
We have applied the break-junction technique to highly biepitaxial c-axis oriented YBa2Cu3O7 thin films with T C (ρ=0) = 91 K. Mechanically adjustable junctions with a good stability and tunneling current favored along the ab-planes have been realized. The conductance characteristics of these junctions show the presence of gap related maxima that move towards zero bias for increasing temperatures. Considering the misorientation angle α≈ 45 ° ± 5 ° of the junction, a maximum gap value at the Fermi level Δ 22 meV is inferred at T = 13 K. The temperature dependence of the gap related structures, shows a quasilinear behavior for T > 0.4 T C similar to that observed in c-axis oriented, S-I-N type YBa2Cu3O7 planar junctions. Received 20 July 2001  相似文献   

7.
The low temperature magnetic and transport properties of the Pr0.5Ca0.5Mn1-xNixO3 manganites ( 0≤ x ≤0.1) have been investigated. The presence of Ni hinders the charge and orbital ordering observed in Pr0.5Ca0.5MnO3 and favors the creation of ferromagnetic regions, leading to phase separation. The ferromagnetic fractions induced by the Ni substitution have been estimated from magnetization measurements, they are large and reach 40% for 4% of Ni. Steps are observed in the M ( H ) and ρ( H ) curves of all the samples at T < 5 K. They are similar to the steps observed in Pr0.5Ca0.5Mn1-xMxO3, where M is a non magnetic cation (Mg2+, Ga3+,...), and for which the ferromagnetic fractions are very small (less than 2%), however, their appearance is restricted to lower temperatures (T < 5 K) with Ni dopant than with non magnetic cations. This study shows that steps can be observed in a wide range of phase-separated systems, even when the ferromagnetic fraction is very large. Received 5 April 2002 / Received in final form 8 July 2002 Published online 14 October 2002 RID="a" ID="a"e-mail: antoine.maignan@ismra.fr  相似文献   

8.
Far-infrared reflectivity studies on the polycrystalline intermetallic compound MgB2 with a superconducting transition temperature T c = 39 K were performed at temperatures 20 K to 300 K. We observe a significant raise of the superconducting-to-normal state reflectivity ratio below 70 cm -1 , with a maximum at about 25-30 cm -1 , which gives a lower estimate of the superconducting gap of 2Δ(0) ≈ 3-4 meV. Received 7 March 2001 and Received in final form 18 April 2001  相似文献   

9.
The dielectric permittivity ε - i of SrTi 18O 3 (STO18) is studied under a dc electric field E as a function of the temperature, T. In ε vs. T, a double-peak is found when 0 < E < 30 KV/m. While the peak at high-T is attributed to the smeared ferroelectric phase transition, the low-T one is induced by domain wall motion. The transverse Ising model including an external homogeneous and quenched random-fields is successfully used to describe both the smeared phase transition and the domain wall response in the low-T domain state. The calculations are in good agreement with the experimental results. Received 4 January 2002 / Received in final form 25 March 2002 Published online 19 July 2002  相似文献   

10.
A neutron diffraction study, as a function of temperature, of the title compounds is presented. The whole family (space group Immm, a ≈ 3.8?, b ≈ 5.8?, c ≈ 11.3?) is structurally characterised by the presence of flattened NiO6 octahedra that form chains along the a-axis, giving rise to a strong Ni-O-Ni antiferromagnetic interaction. Whereas for Y-compound only strong 1D correlations exist above 1.5 K, presenting the Haldane gap characteristic of 1D AF chain with integer spin, 3D AF ordering is established simultaneously for both R and Ni sublattices at temperatures depending on the rare earth size and magnetic moment. The magnetic structures of R2BaNiO5 ( R = Nd, Tb, Dy, Ho, Er and Tm) have been determined and refined as a function of temperature. The whole family orders with a magnetic structure characterised by the temperature-independent propagation vector = (1/2, 0, 1/2). At 1.5 K the directions of the magnetic moments differ because of the different anisotropy of the rare earth ions. Except for Tm and Yb (which does not order above 1.5 K), the magnetic moment of the R3+ cations are close to the free-ion value. The magnetic moment of Ni2+ is around 1.4 , the strong reduction with respect to the free-ion value is probably due to a combination of low-dimensional quantum effects and covalency. The thermal evolution of the magnetic structures from T N down to 1.5 K is studied in detail. A smooth re-orientation, governed by the magnetic anisotropy of R3+, seems to occur below and very close to T N in some of these compounds: the Ni moment rotates from nearly parallel to the a-axis toward the c-axis following the R moments. We demonstrate that for setting up the 3D magnetic ordering the R-R exchange interactions cannot be neglected. Received 19 July 2001  相似文献   

11.
We study the statistical properties of the sum S t = dt'σ t', that is the difference of time spent positive or negative by the spin σ t, located at a given site of a D-dimensional Ising model evolving under Glauber dynamics from a random initial configuration. We investigate the distribution of St and the first-passage statistics (persistence) of this quantity. We discuss successively the three regimes of high temperature ( T > T c), criticality ( T = T c), and low temperature ( T < T c). We discuss in particular the question of the temperature dependence of the persistence exponent , as well as that of the spectrum of exponents (x), in the low temperature phase. The probability that the temporal mean S t/t was always larger than the equilibrium magnetization is found to decay as t - - ?. This yields a numerical determination of the persistence exponent in the whole low temperature phase, in two dimensions, and above the roughening transition, in the low-temperature phase of the three-dimensional Ising model. Received 4 December 2000  相似文献   

12.
The magnetic transport properties have been measured for La0.67-xYxCa0.33MnO3 ( 0 ⩽ x ⩽ 0.14) system. It was found that the transition temperature T p almost linearly moves to higher temperature as H increases. Electron spin resonance confirms that above T p , there exist ferromagnetic clusters. From the magnetic polaron point of view, the shift of T p vs. H was understood, and it was estimated that the size of the magnetic polaron is of 9.7 ∼ 15.4 ? which is consistent with the magnetic correlation length revealed by the small-angle neutron-scattering technique. The transport properties at temperatures higher than T p conform to the variable-range hopping mechanism. Received 27 August 2002 / Received in final form 2 December 2002 Published online 14 March 2003  相似文献   

13.
EPR and 7Li NMR measurements were performed in the distorted inverse spinel V(LiCu)O4 down to 1.5 K. Anisotropy effects on magnetic resonance spectra due to the Jahn-Teller distortion of the oxygen octahedra surrounding the copper ions are discussed. The estimation of the spin-spin interactions deduced from the EPR-relaxation rate Δ H reveals a situation comparable to the prototypical one-dimensional S = 1/2 Heisenberg antiferromagnet CuGeO3. Approaching three-dimensional antiferromagnetic order ( T N ≈ 2 K) from above, both magnetic relaxation rates, Δ H EPR and 7 (1/ T 1 ), respectively, exhibit nearly the same critical divergence reminding to the onset of three-dimensional order in two-dimensional layered systems. Received 22 January 2001 and Received in final form 6 May 2001  相似文献   

14.
15.
Thermodynamic quantities and correlation functions (CFs) of the classical antiferromagnet on the checkerboard lattice are studied for the exactly solvable infinite-component spin-vector model, D↦∞. In contrast to conventional two-dimensional magnets with continuous symmetry showing extended short-range order at distances smaller than the correlation length, r ξ c∝ exp(T */T), correlations in the checkerboard-lattice model decay already at the scale of the lattice spacing due to the strong degeneracy of the ground state characterized by a macroscopic number of strongly fluctuating local degrees of freedom. At low temperatures, spin CFs decay as < >∝ 1/r 2 in the range a 0r≪ξ cT -1/2, where a0 is the lattice spacing. Analytical results for the principal thermodynamic quantities in our model are very similar with MC simulations, exact and analytical results for the classical Heisenberg model (D = 3) on the pyrochlore lattice. This shows that the ground state of the infinite-component spin vector model on the checkerboard lattice is a classical spin liquid. Received 16 November 2001 and Received in final form 12 February 2002  相似文献   

16.
We report low-temperature measurements 0.07 K ? T ? 2 K of the specific heat, C, of the perovskite superconductor Sr2RuO4. Based on a detailed analysis of our data with respect to both sample quality (as measured by T c = 0.43 K - 1.17 K) and magnetic-field dependence, it is shown that the electronic contribution to the specific heat, which contains the desired information on the gap structure, is superimposed by at least two additional contributions: a Schottky-type hump at T ≈ 0.1 - 0.2 K and a low-temperature upturn in C / T at T < 0.1 K. We discuss possible origins of these additional contributions and their implications for the interpretation of low-temperature C ( T ) data. Received 23 August 2001  相似文献   

17.
We make a new proposal to describe the very low temperature susceptibility of the doped Haldane gap compound Y2BaNi1-xZnxO5. We propose a new mean field model relevant for this compound. The ground state of this mean field model is unconventional because antiferromagnetism coexists with random dimers. We present new susceptibility experiments at very low temperature. We obtain a Curie-Weiss susceptibility χ( T ) ∼ C /(Θ + T ) as expected for antiferromagnetic correlations but we do not obtain a direct signature of antiferromagnetic long range order. We explain how to obtain the “impurity” susceptibility ( T ) by subtracting the Haldane gap contribution to the total susceptibility. In the temperature range [1 K, 300 K] the experimental data are well fitted by T ( T ) = C imp 1 + T imp / T . In the temperature range [100 mK, 1 K] the experimental data are well fitted by T ( T ) = A ln( T / T c ), where T c increases with x. This fit suggests the existence of a finite Néel temperature which is however too small to be probed directly in our experiments. We also obtain a maximum in the temperature dependence of the ac-susceptibility ( T ) which suggests the existence of antiferromagnetic correlations at very low temperature. Received 17 July 2001  相似文献   

18.
Eur. Phys. J. B 24, 315 (2001) Here we comment on a recently published paper on the presence of a phason contribution in the low temperature heat capacity data of the charge-density-wave compounds K0.3MoO3 and (TaSe4)2I. We have shown that the anomaly in the C P / T 3 data reported by Odin et al. is straightforwardly interpreted in terms of low energy phonon modes resulting from the peculiar topology of these compounds. Received 21 February 2002 Published online 19 July 2002  相似文献   

19.
Measurements of the thermal conductivity (kxx) and the thermal Hall effect (kxy) in high magnetic fields in Y- and Bi-based high-T c superconductors are presented. We describe the experimental technique and test measurements on a simple metal (niobium). In the high-T c superconductors kxx and kxy increase below T c and show a maximum in their temperature dependence. kxx has contributions from phonons and quasiparticle (QP) excitations, whereas kxy is purely electronic. The strong increase of kxy below T c gives direct evidence for a strong enhancement of the QP contribution to the heat current and thus for a strong increase of the QP mean free path. Using kxy and the magnetic field dependence of kxx we separate the electronic thermal conductivity ( k xx el ) of the CuO 2 -planes from the phononic thermal conductivity ( k xx ph ). In YBa2Cu3O 7 - δ k xx el shows a pronounced maximum in the superconducting state. This maximum is much weaker in Bi2Sr2CaCu2O 8 + δ , due to stronger impurity scattering. The maximum of k xx el is strongly suppressed by a magnetic field, which we attribute to the scattering of QPs on vortices. An additional magnetic field independent contribution to the maximum of kxx occurs in YBa2Cu3O 7 - δ , reminiscent of the contribution of the CuO-chains, as determined from the anisotropy in untwined single crystals. Our data analysis reveals that below T c as in the normal state a transport (τ) and a Hall ( ) relaxation time must be distinguished: The inelastic (i.e. temperature dependent) contribution to τ is strongly enhanced in the superconducting state, whereas displays the same temperature dependence as above T c . We determine also the electronic thermal conductivity in the normal state from kxy and the electrical Hall angle. It shows an unusual linear increase with temperature. Received 23 August 2000  相似文献   

20.
The fully correlated calculations of the Zeeman gJ factors for the first three quartet S states of lithium are presented, including relativistic and radiative corrections of orders α2, α2 m/M, and α3. The isotope shifts in gJ are predicted precisely for various isotopes of lithium. Received 4 December 2000 and Received in final form 26 September 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号