首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Summary. We study the additive and multiplicative Schwarz domain decomposition methods for elliptic boundary value problem of order 2 r based on an appropriate spline space of smoothness . The finite element method reduces an elliptic boundary value problem to a linear system of equations. It is well known that as the number of triangles in the underlying triangulation is increased, which is indispensable for increasing the accuracy of the approximate solution, the size and condition number of the linear system increases. The Schwarz domain decomposition methods will enable us to break the linear system into several linear subsystems of smaller size. We shall show in this paper that the approximate solutions from the multiplicative Schwarz domain decomposition method converge to the exact solution of the linear system geometrically. We also show that the additive Schwarz domain decomposition method yields a preconditioner for the preconditioned conjugate gradient method. We tested these methods for the biharmonic equation with Dirichlet boundary condition over an arbitrary polygonal domain using cubic spline functions over a quadrangulation of the given domain. The computer experiments agree with our theoretical results. Received December 28, 1995 / Revised version received November 17, 1998 / Published online September 24, 1999  相似文献   

2.
There are two approaches for applying substructuring preconditioner for the linear system corresponding to the discrete Steklov–Poincaré operator arising in the three fields domain decomposition method for elliptic problems. One of them is to apply the preconditioner in a common way, i.e. using an iterative method such as preconditioned conjugate gradient method [S. Bertoluzza, Substructuring preconditioners for the three fields domain decomposition method, I.A.N.-C.N.R, 2000] and the other one is to apply iterative methods like for instance bi-conjugate gradient method, conjugate gradient square and etc. which are efficient for nonsymmetric systems (the preconditioned system will be nonsymmetric). In this paper, second approach will be followed and extensive numerical tests will be presented which imply that the considered iterative methods are efficient.  相似文献   

3.
Summary. Multilevel preconditioners are proposed for the iterative solution of the discrete problems which arise when orthogonal spline collocation with piecewise Hermite bicubics is applied to the Dirichlet boundary value problem for a self-adjoint elliptic partial differential equation on a rectangle. Additive and multiplicative preconditioners are defined respectively as sums and products of independent operators on a sequence of nested subspaces of the fine partition approximation space. A general theory of additive and multiplicative Schwarz methods is used to prove that the preconditioners are spectrally equivalent to the collocation discretization of the Laplacian with the spectral constants independent of the fine partition stepsize and the number of levels. The preconditioned conjugate gradient and preconditioned Orthomin methods are considered for the solution of collocation problems. An implementation of the methods is discussed and the results of numerical experiments are presented. Received March 1, 1994 / Revised version received January 23, 1996  相似文献   

4.
This article is devoted to the numerical analysis of two classes of iterative methods that combine integral formulas with finite‐difference Poisson solvers for the solution of elliptic problems. The first method is in the spirit of the Schwarz domain decomposition method for exterior domains. The second one is motivated by potential calculations in free boundary problems and can be viewed as a numerical analytic continuation algorithm. Numerical tests are presented that confirm the convergence properties predicted by numerical analysis. © 2003 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 20: 199–229, 2004  相似文献   

5.
We propose a simple and effective hybrid (multiplicative) Schwarz precondtioner for solving systems of algebraic equations resulting from the mortar finite element discretization of second order elliptic problems on nonmatching meshes. The preconditioner is embedded in a variant of the classical preconditioned conjugate gradient (PCG) for an effective implementation reducing the cost of computing the matrix-vector multiplication in each iteration of the PCG. In fact, it serves as a framework for effective implementation of a class of hybrid Schwarz preconditioners. The preconditioners of this class are based on solving a sequence of non-overlapping local subproblems exactly, and the coarse problems either exactly or inexactly (approximately). The classical PCG algorithm is reformulated in order to make reuse of the results of matrix-vector multiplications that are already available from the preconditioning step resulting in an algorithm which is cost effective. An analysis of the proposed preconditioner, with numerical results, showing scalability with respect to the number of subdomains, and a convergence which is independent of the jumps of the coefficients are given.  相似文献   

6.
The simulation of large-scale fluid flow applications often requires the efficient solution of extremely large nonsymmetric linear and nonlinear sparse systems of equations arising from the discretization of systems of partial differential equations. While preconditioned conjugate gradient methods work well for symmetric, positive-definite matrices, other methods are necessary to treat large, nonsymmetric matrices. The applications may also involve highly localized phenomena which can be addressed via local and adaptive grid refinement techniques. These local refinement methods usually cause non-standard grid connections which destroy the bandedness of the matrices and the associated ease of solution and vectorization of the algorithms. The use of preconditioned conjugate gradient or conjugate-gradient-like iterative methods in large-scale reservoir simulation applications is briefly surveyed. Then, some block preconditioning methods for adaptive grid refinement via domain decomposition techniques are presented and compared. These techniques are being used efficiently in existing large-scale simulation codes.  相似文献   

7.
Two preconditioning techniques for solving difference equations arising in finite difference approximation of elliptic problems on cell-centered grids are studied. It is proven that the BEPS and the FAC preconditioners are spectrally equivalent to the corresponding finite difference schemes, including a nonsymmetric one, which is of higher-order accuracy. Numerical experiments that demonstrate the fast convergence of the preconditioned iterative methods (CG and GCG-LS in the nonsymmetric case) are presented.  相似文献   

8.
This paper deals with iterative algorithms for domain decomposition applied to the solution of a quasilinear elliptic problem. Two iterative algorithms are examined: the first one is the Schwarz alternating procedure and the second algorithm is suitable for parallel computing. Convergence results are established in the two-domain and multidomain decomposition cases. Some issues of parallel implementation of these algorithms are discussed.  相似文献   

9.
For solving nonsymmetric linear systems, the well-known GMRES method is considered to be a stable method; however, the work per iteration increases as the number of iterations increases. We consider two new iterative methods GGMRES and MGMRES, which are a generalization and a modification of the GMRES method, respectively. Instead of using a minimization condition as in the derivation of GGMRES, we use a Galerkin condition to derive the MGMRES method. We also introduce another new iterative method, LAN/MGMRES, which is designed to combine the reliability of GMRES with the reduced work of a Lanczos-type method. A computer program has been written based on the use of the LAN/MGMRES algorithm for solving nonsymmetric linear systems arising from certain elliptic problems. Numerical tests are presented comparing this algorithm with some other commonly used iterative algorithms. These preliminary tests of the LAN/MGMRES algorithm show that it is comparable in terms of both the approximate number of iterations and the overall convergence behavior. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

10.
Ciaramella  G.  Vanzan  T. 《Numerical Algorithms》2022,91(1):413-448

Two-level Schwarz domain decomposition methods are very powerful techniques for the efficient numerical solution of partial differential equations (PDEs). A two-level domain decomposition method requires two main components: a one-level preconditioner (or its corresponding smoothing iterative method), which is based on domain decomposition techniques, and a coarse correction step, which relies on a coarse space. The coarse space must properly represent the error components that the chosen one-level method is not capable to deal with. In the literature, most of the works introduced efficient coarse spaces obtained as the span of functions defined on the entire space domain of the considered PDE. Therefore, the corresponding two-level preconditioners and iterative methods are defined in volume. In this paper, we use the excellent smoothing properties of Schwarz domain decomposition methods to define, for general elliptic problems, a new class of substructured two-level methods, for which both Schwarz smoothers and coarse correction steps are defined on the interfaces (except for the application of the smoother that requires volumetric subdomain solves). This approach has several advantages. On the one hand, the required computational effort is cheaper than the one required by classical volumetric two-level methods. On the other hand, our approach does not require, like classical multi-grid methods, the explicit construction of coarse spaces, and it permits a multilevel extension, which is desirable when the high dimension of the problem or the scarce quality of the coarse space prevents the efficient numerical solution. Numerical experiments demonstrate the effectiveness of the proposed new numerical framework.

  相似文献   

11.
Summary. In recent years, it has been shown that many modern iterative algorithms (multigrid schemes, multilevel preconditioners, domain decomposition methods etc.) for solving problems resulting from the discretization of PDEs can be interpreted as additive (Jacobi-like) or multiplicative (Gauss-Seidel-like) subspace correction methods. The key to their analysis is the study of certain metric properties of the underlying splitting of the discretization space into a sum of subspaces and the splitting of the variational problem on into auxiliary problems on these subspaces. In this paper, we propose a modification of the abstract convergence theory of the additive and multiplicative Schwarz methods, that makes the relation to traditional iteration methods more explicit. The analysis of the additive and multiplicative Schwarz iterations can be carried out in almost the same spirit as in the traditional block-matrix situation, making convergence proofs of multilevel and domain decomposition methods clearer, or, at least, more classical. In addition, we present a new bound for the convergence rate of the appropriately scaled multiplicative Schwarz method directly in terms of the condition number of the corresponding additive Schwarz operator. These results may be viewed as an appendix to the recent surveys [X], [Ys]. Received February 1, 1994 / Revised version received August 1, 1994  相似文献   

12.
A preconditioned conjugate gradient method is applied to finite element discretizations of some nonsymmetric elliptic systems. Mesh independent superlinear convergence is proved, which is an extension of a similar earlier result from a single equation to systems. The proposed preconditioning method involves decoupled preconditioners, which yields small and parallelizable auxiliary problems.  相似文献   

13.
This article deals with numerical solutions of a general class of coupled nonlinear elliptic equations. Using the method of upper and lower solutions, monotone sequences are constructed for difference schemes which approximate coupled systems of nonlinear elliptic equations. This monotone convergence leads to existence‐uniqueness theorems for solutions to problems with reaction functions of quasi‐monotone nondecreasing, quasi‐monotone nonincreasing and mixed quasi‐monotone types. A monotone domain decomposition algorithm which combines the monotone approach and an iterative domain decomposition method based on the Schwarz alternating, is proposed. An application to a reaction‐diffusion model in chemical engineering is given. © 2010 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 28: 621–640, 2012  相似文献   

14.
This paper deals with discrete monotone iterative algorithms for solving a nonlinear singularly perturbed convection–diffusion problem. A block monotone domain decomposition algorithm based on a Schwarz alternating method and on block iterative scheme is constructed. This monotone algorithm solves only linear discrete systems at each iterative step of the iterative process and converges monotonically to the exact solution of the nonlinear problem. The rate of convergence of the block monotone domain decomposition algorithm is estimated. Numerical experiments are presented.  相似文献   

15.
Summary In this paper we discuss bounds for the convergence rates of several domain decomposition algorithms to solve symmetric, indefinite linear systems arising from mixed finite element discretizations of elliptic problems. The algorithms include Schwarz methods and iterative refinement methods on locally refined grids. The implementation of Schwarz and iterative refinement algorithms have been discussed in part I. A discussion on the stability of mixed discretizations on locally refined grids is included and quantiative estimates for the convergence rates of some iterative refinement algorithms are also derived.Department of Mathematics, University of Wyoming, Laramie, WY 82071-3036. This work was supported in part by the National Science Foundation under Grant NSF-CCR-8903003, while the author was a graduate student at New York University, and in part by NSF Grant ASC 9003002, while the author was a Visiting, Assistant Researcher at UCLA.  相似文献   

16.
We compare the relative performances of two iterative schemes based on projection techniques for the solution of large sparse nonsymmetric systems of linear equations, encountered in the numerical solution of partial differential equations. The Block–Symmetric Successive Over-Relaxation (Block-SSOR) method and the Symmetric–Kaczmarz method are derived from the simplest of projection methods, that is, the Kaczmarz method. These methods are then accelerated using the conjugate gradient method, in order to improve their convergence. We study their behavior on various test problems and comment on the conditions under which one method would be better than the other. We show that while the conjugate-gradient-accelerated Block-SSOR method is more amenable to implementation on vector and parallel computers, the conjugate-gradient accelerated Symmetric–Kaczmarz method provides a viable alternative for use on a scalar machine.  相似文献   

17.
对称线性互补问题的乘性Schwarz算法   总被引:1,自引:0,他引:1  
曾金平  陈高洁 《应用数学》2005,18(3):384-389
本文提出了求解对称性互补问题的乘性Schwarz算法,其中子问题用投影迭代方法求解.利用投影迭代算子的性质及投影迭代的收敛性,证明了算法产生的迭代点列的聚点为原互补问题的解,并在一定条件下,证明算法产生的迭代点列的聚点存在.  相似文献   

18.
Recently, some new multilevel preconditioners for solving elliptic finite element discretizations by iterative methods have been proposed. They are based on appropriate splittings of the finite element spaces under consideration, and may be analyzed within the framework of additive Schwarz schemes. In this paper we discuss some multilevel methods for discretizations of the fourth-order biharmonic problem by rectangular elements and derive optimal estimates for the condition numbers of the preconditioned linear systems. For the Bogner–Fox–Schmit rectangle, the generalization of the Bramble–Pasciak–Xu method is discussed. As a byproduct, an optimal multilevel preconditioner for nonconforming discretizations by Adini elements is also derived.  相似文献   

19.
We consider (relaxed) additive and multiplicative iterative space decomposition methods for the minimization of sufficiently smooth functionals without constraints. We develop a general framework which unites existing approaches from both parallel optimization and finite elements. Specifically this work unifies earlier research on the parallel variable distribution method in minimization, space decomposition methods for convex functionals, algebraic Schwarz methods for linear systems and splitting methods for linear least squares. We develop a general convergence theory within this framework, which provides several new results as well as including known convergence results.  相似文献   

20.
We consider sequential, i.e., Gauss–Seidel type, subspace correction methods for the iterative solution of symmetric positive definite variational problems, where the order of subspace correction steps is not deterministically fixed as in standard multiplicative Schwarz methods. Here, we greedily choose the subspace with the largest (or at least a relatively large) residual norm for the next update step, which is also known as the Gauss–Southwell method. We prove exponential convergence in the energy norm, with a reduction factor per iteration step directly related to the spectral properties, e.g., the condition number, of the underlying space splitting. To avoid the additional computational cost associated with the greedy pick, we alternatively consider choosing the next subspace randomly, and show similar estimates for the expected error reduction. We give some numerical examples, in particular applications to a Toeplitz system and to multilevel discretizations of an elliptic boundary value problem, which illustrate the theoretical estimates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号