首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Five bis(benzo-15-crown-5) derivatives connected with different bridge chains were synthesized as neutral carriers in K+-selective electrodes. Potassium ion-selective PVC membrane electrodes based on these bis(crown ether)s were prepared using dibutyl phthalate (DBP) and dioctyl phthalate (DOP) as plasticizers of the PVC membrane. The selectivity coefficients (K M n+:K K+) for various alkali and alkaline-earth metal ions were measured. The electrodes based on the bis(crown ether)s are more selective for K+ than those based on monomeric crown ethers. The selectivity of one of the prepared potassium selective electrodes was higher than that of the electrode based on valinomycin and three of them were stable over a wide pH range.  相似文献   

2.
Complexations of crown ethers with alkali metal ions have been investigated extensively by FAB mass spectrometry over the past decade, but very little attention has been paid to reactions of crown ethers with other classes of metal ions such as alkaline earth metal ions, transition metal ions and aluminum ions. Although fast atom bombardment ionization mass spectrometry has proven to be a rapid and convenient method to determine the binding interactions of crown ethers with metal ions, problems in reliabilities for quantitative measurements of” binding strength for the host-guest complexes have been described in the literature. Thus, in this paper, applications of FAB/MS for investigating the complexation of crown ethers with various classes of metal ions is discussed. Extensive fragmentations for neutral losses such as C2H4O or C2H4 molecules from the host-guest complexes could be observed. The reason is attributed to the energetic bombardment processes of FAB occuring in the formation of these complexes. Complexes of cyclen with metal ions also show neutral losses of C2H4NH molecules leading to fragment ions. Transition metal ions usually form (Crown + MCl)+ type of ions, alkaline earth metal ions can form both (Crown + MCl)+ and (Crown + MOH)+ type of ions. But for aluminum ions, only (Crown + Al(OH)2)+ type of ions could he observed.  相似文献   

3.
The complexation reaction of phenylaza-15-crwon-5, 4- nitrobenzo- 15-crown-5, and benzo-15-crown-5 with Ag+, Tl+ and Pb2+ ions in methanol solution have been studied by a competitive potentiometric method. The Ag+/Ag electrode used both as an indicator and reference electrode in a concentration cell. The emf of cell monitored as the crown ethers concentration varies through the titration. The stoichiometry and stability constants of resulting complexes have been evaluated by MINIQUAD. The stoichiometry for all resulting complexes was 1:1. The stability of these metal ions with derivatives of 15-crown-5 are in order phenylaza-15-crown-5 > Benzo-15-crown-5 > 4-nitrobenzo-15-crown-5, and for the each used crown ethers are as Pb2+ > Ag+ > Tl+. The effect of the substituted group on the stability of resulting complexes was considered. The obtained results are novel and interesting.  相似文献   

4.
Summary Pure silica gels (Pia Seed 5S-60-SIL) calcined at 200, 400, 600, 800 and 1000°C for 5 h have been used as cation-exchange stationary phases in ion chromatography with indirect photometric detection for common monovalent and divalent cations (Li+, Na+, NH4 +, K+, Mg2+ and Ca2+); 0.75mm tyramine (4-(2-aminoethyl)phenol)-0.25mm oxalic acid, pH 5.0, containing crown ethers (18-crown-6 (1,4,7,10,13,15-hexaoxacyclooctadecane) or 15-crown-5 (1,4,7,10,13-pentaoxacyclopentadecane)) was used as mobile phase. With increasing calcination temperature, the amounts of the crown ethers adsorbed on the calcined silica gel column increased and, consequently, the effect of the crown ethers as retention modifiers for these cations increased. Excellent simultaneous separation and highly sensitive detection of these cations at 275 nm were achieved in 17 min by use of a 150 mm×4.6 mm i.d. column packed with silica gel calcined at 1000°C and use of 0.75mm tyramine-0.25mm oxalic acid, pH 5.0, containing either 0.5mm 18-crown-6 or 5.0mm 15-crown-5 as mobile phase.  相似文献   

5.
A very simple and novel method is devised to study the mechanism of phase transfer catalysis (PTC) for a nucleophilic substitution reaction between potassium thiocyanate and p-nitrobenzyl bromide (p-NB); the mechanism of the nucleophilic substitution reaction is illustrated by characterizing the interfacial dilational viscoelastic properties of the crown ether catalysts and intermediates, which are closely related to the interfacial behavior of the species in the PTC reaction. The results obtained from this study can be used to infer the mechanism of the nucleophilic substitution reaction that uses 18-crown-6 (18C6) and dibenzo-18-crown-6 (DB18C6) as phase transfer catalysts. This mechanism begins with formation of the intermediates [K · Crown ether]+ and [K · Crown ether]+SCN? through mutual collisions between crown ethers and KSCN in the aqueous phase near the interface. Then the complex, [K · Crown ether]+Br?, was obtained due to the collision between [K · Crown ether]+SCN? and p-NB in the organic phase near the interface and simultaneously the products were obtained.  相似文献   

6.
《Electroanalysis》2004,16(21):1785-1790
Binaphthyl‐based crown ethers incorporating anthraquinone, benzoquinone, and 1,4‐dimethoxybezene have been synthesized and tested for Rb+ selective ionophores in the poly(vinyl chloride) (PVC) membrane. The membrane containing NPOE gave a better Rb+ selectivity than those containing either DOA or BPPA as a plasticizer. The response was linear within the concentration range of 1.0×10?5–1.0×10?1 M and the slope was 54.7±0.5 mV/dec. The detection limit was determined to be 9.0×10?6 M and the optimum pH range of the membrane was 6.0–9.0. The ISE membrane exhibits good selectivity for Rb+ over ammonium, alkali metal, and alkaline earth metal ions. Selectivity coefficients for the other metal ions, log KPot were ?2.5 for Li+, ?2.4 for Na+, ?2.0 for H+, ?1.0 for K+, ?1.2 for Cs+, ?1.6 for NH4+, ?4.5 for Mg2+, ?5.0 for Ca2+,?4.9 for Ba2+. The lifetime of the membrane was about one month.  相似文献   

7.
Various homogeneous and heterogeneous crown ether catalysts were prepared and applied as phase transfer catalysts for some reductions, oxidations and polymerizations. Among various crown ethers, 15-crown-5 seems the best to catalyze the reduction of ketones and aldehydes with sodium borohydride in nonpolar aprotic solvents. A granular entrapped 15-crown-5-polyacrylamide catalysts was also prepared and applied as a heterogeneous catalyst for these reductions which seem to obey pseudo-first-order kinetics with rate constant 10?4–105 s?1. The steric effects of ketones and the effects of temperature and concentration of crown ethers, sodium borohydride and carbonyl compounds were also investigated. Among various crown ethers, 18-crown-6 is the best to catalyze the oxidation of olefins such as styrene, xylene and stilbene with potassium permanganate. Crown ethers were successfully applied as catalysts for anionic polymerization of p-xylenedibromide with sodium dithionite as an initiator.  相似文献   

8.
Precipitate formation between phosphotungstic acid and crown ethers is a general phenomenon, producing solids with selective ion exchange behavior for the alkali metal ions. Distribution coefficients for Li+, Na+, K+, and Cs+ were measured for a series of these precipitates with different crown ethers. The sorption data are more complicated than for the corresponding phosphomolybdates and indicate a variability in the number of exchangeable sites with H+ and M+ concentration. The crown ether used markedly affects the cation selectivity of the phosphotungstate precipitates.  相似文献   

9.
Abstract

7Lithium NMR measurements were used to determine the stoichiometry and stability of Li+ complexes with 12-crown-4, 15-crown-5 and benzo-15-crown-5 in acetonitrile solution. A competitive 7Li NMR technique was also employed to probe the complexation of Mg2+, Ca2+, Co2+, Ni2+, Cu2+, Zn2+ and Cd2+ ions with the same crown ethers. In all cases, the stability of the resulting 1:1 complexes was found to decrease in the order 15-crown-5 > benzo-15-crown-5 > 12-crown-4. Ca2+ and Cd2+ ions formed the most stable complexes in the series.  相似文献   

10.
A non‐ionic cryptand‐22 surfactant consisting of a macrocyclic cryptand‐22 polar head and a long paraffinic chain (C10H21‐Cryptand‐22) was synthesized and characterized. The critical micellar concentration (CMC) of the cryptand surfactant in ROH/H2O mixed solvent was determined by the pyrene fluorescence probe method. In general, the cmc of the cryptand surfactant increased upon decreasing the polarity of the surfactant solution. The cryptand surfactant also can behave as a pseudo cationic surfactant by protonation of cryptand‐22 or complexation with metal ions. Effects of protonation and metal ions on the cmc of the cryptand surfactant were investigated. A preliminary application of the cryptand surfactant as an ion‐transport carrier for metal ions, e.g., Li+, Na+, K+ and Sr2+, through an organic liquid‐membrane was studied. The transport ability of the cryptand surfactant for these metal ions was in the order: K+ ≥ Na+ < Li+ < Sr2+. A comparison of the ion‐transport ability of the cryptand surfactant with other macrocyclic polyethers, e.g., dibenzo‐18‐crown‐6, 18‐crown‐6 and benzo‐15‐crown‐5, was studied and discussed. Among these macrocyclic polyethers, the cryptand surfactant was the best ion‐transport carrier for Na+, Li+ and Sr2+ ions. Furthermore, a foam extraction system using the cryptand surfactant to extract the cupric ion was also investigated.  相似文献   

11.
Abstract

Recent experiments have shown that monobasic chromophoric crown ethers have very selective extraction behavior making them useful as analytical organic reagents.(1–6) The chromogenic crown ethers are synthesized by reacting a chromophore like picryl chloride to an aminobenzo crown ether. One such compound 2″4″-dinitro-6-trifluoromethylphenyl-4′-aminobenzo-15-crown-5 (1) exhibits linear response to K+ from 700-5ppm in the presence of 3000ppm Na+.  相似文献   

12.
The stability constants and the partial molal volume and isentropic partial molal compressibility changes of complex formation between cations and crown ethers in water at 25°C are presented. The cations involved are Na+, K+, Rb+, Cs+, Ca2+, and Ba2+, and the crown ethers are 12-crown-4, 15-crown-5, and 18-crown-6. Values of V of complex formation have been discussed in terms of two simple models, one based on the scaled particle theory, and the others on the Drude-Nernst continuum model. The results indicate that the charge of the potassium cation in 18-crown-6 is especially well screened from the water. On this basis hydration numbers of complexed cations have been calculated. This shows that the size of the cation compared to the crown ether hole is important for the contacts between complexed cations and water.  相似文献   

13.
Ladders of relative alkali ion affinities of crown ethers and acyclic analogs were constructed by using the kinetic method. The adducts consisting of two different ethers bound by an alkali metal ion, (M1 + Cat + M2)+, were formed by using fast atom bombardment ionization to desorb the crown ethers and alkali metal ions, then collisionally activated to induce dissociation to (M1 + Cat)+ and (M2 + Cat)+ ions. Based on the relative abundances of the cationized ethers formed, orders of relative alkali ion affinities were assigned. The crown ethers showed higher affinities for specific sizes of metal ions, and this was attributed in part to the optimal spatial fit concept. Size selectivities were more pronounced for the smaller alkali metal ions such as Li+, Na+, and K+ than the larger ions such as Cs+ and Rb+. In general, the cyclic ethers exhibited greater alkali metal ion affinities than the corresponding acyclic analogs, although these effects were less dramatic as the size of the alkali metal ion increased.  相似文献   

14.
[7Li] NMR measurements were used to determine the stoichiometry and stability of Li+ complexes with 18-crown-6 and dicyclohexyl-18-crown-6 in nitromethane and acetonitrile solutions. A competitive [7Li] NMR technique was also employed to probe the complexation of Ba2+, Pb2+, Cd2+, and UO22+ ions with the same crown ethers–solvent systems. All the resulting 1 : 1 complexes were more stable in nitromethane than acetonitrile solution. In all cases, the stability of both crown complexes in nitromethane and acetonitrile varied in the order Pb2+ > Ba2+ > Li+ > Cd2+ > UO22+.  相似文献   

15.
A series of five monoaza crown ethers with 12-crown-4 and 15-crown-5 rings were studied with respect to their complexation of Li+, Na+, K+, Ca2+ and Sr2+ ions in 95/5 (v/v) methanol/ water. The complexes were studied by potentiometric titrations, with pH and sodium ion-selective electrodes. The acidity constants of the protonated ligands, and the stability constants of the 1:1 metal complexes were determined. The results show that the stability constants increase with the total number of oxygen atoms in the ligand, and mostly also in the sequence Li+ < K+ < Na+ < Ca2+ < Sr2+.  相似文献   

16.
A series of double-armed benzo-15-crown-5 lariats (3–8) have been synthesized by the reaction of 4′, 5′-bis(bromomethyl)-benzo-15-crown-5 (2) with 4-hydroxybenzaldehyde, phenol, 4-chlorophenol, 4-methoxyphenol, 2-hydroxybenzaldehyde, and 4-acetamidophenol in 43 ~ 82% yields, respectively. The complex stability constants (K S) and thermodynamic parameters for the stoichiometric 1:1 and/or 1:2 complexes of benzo-15-crown-5 1 and double-armed crown ethers 3–8 with alkali cations (Na+, K+, Rb+) have been determined in methanol–water (V/V=8:2) at 25 °C by means of microcalorimetric titrations. As compared with the parent benzo-15-crown-5 1, double-armed crown ethers 3–8 show unremarkable changes in the complex stability constants upon complexation with Na+, but present significantly enhanced binding ability toward cations larger than the crown cavity by the secondly sandwich complexation. Thermodynamically, the sandwich complexations of crown ethers 3-8 with cations are mostly enthalpy-driven processes accompanied with a moderate entropy loss. The binding ability and selectivity of cations by the double-armed crown ethers are discussed from the viewpoints of the electron density, additional binding site, softness, spatial arrangement, and especially the cooperative binding of two crown ether molecules toward one metal ion.  相似文献   

17.
A number of N-alkylnitrobenzoaza-15-crown-5 with the macrocycle N atom conjugated with the benzene ring were obtained. The structural and complexing properties of these compounds were compared with those of model nitrobenzo- and N-(4-nitrophenyl)aza-15-crown-5 using X-ray diffraction, 1H NMR spectroscopy, and DFT calculations. The macrocyclic N atom of benzoazacrown ethers are characterized by a considerable contribution of the sp3-hybridized state and a pronounced pyramidal geometry; the crownlike conformation of the macrocycle is preorganized for cation binding, which facilitates complexation. The stability constants of the complexes of crown ethers with the NH4 +, EtNH3 +, Na+, K+, Ca2+, and Ba2+ ions were determined by 1H NMR titration in MeCN-d3. The most stable complexes were obtained with alkaline-earth metal cations, which is due to the higher charge density at these cations. The characteristics of the complexing ability of N-alkylnitrobenzoaza-15-crown-5 toward alkaline earth metal cations are comparable with analogous characteristics of nitrobenzo-15-crown-5 and are much better than those of N-(4-nitrophenyl)aza-15-crown-5.  相似文献   

18.
Several mono-and bis(benzo-18-crown-6) ethers comprising o-nitrophenyl urethanemoieties were synthesized and studied as ionophores in PVC membrane electrodes. Thebis(crown ether)s were found to exhibit good potentiometric Cs+ selectivity overmono and divalent cations as compared to the respective mono(crown ether)s.  相似文献   

19.
A series of double-armed benzo-15-crown-5 lariats (3–8) have been synthesized by the reaction of 4′, 5′-bis(bromomethyl)-benzo-15-crown-5 (2) with 4-hydroxybenzaldehyde, phenol, 4-chlorophenol, 4-methoxyphenol, 2-hydroxybenzaldehyde, and 4-acetamidophenol in 43 ~ 82% yields, respectively. The complex stability constants (K S) and thermodynamic parameters for the stoichiometric 1:1 and/or 1:2 complexes of benzo-15-crown-5 1 and double-armed crown ethers 3–8 with alkali cations (Na+, K+, Rb+) have been determined in methanol–water (V/V=8:2) at 25 °C by means of microcalorimetric titrations. As compared with the parent benzo-15-crown-5 1, double-armed crown ethers 3–8 show unremarkable changes in the complex stability constants upon complexation with Na+, but present significantly enhanced binding ability toward cations larger than the crown cavity by the secondly sandwich complexation. Thermodynamically, the sandwich complexations of crown ethers 3-8 with cations are mostly enthalpy-driven processes accompanied with a moderate entropy loss. The binding ability and selectivity of cations by the double-armed crown ethers are discussed from the viewpoints of the electron density, additional binding site, softness, spatial arrangement, and especially the cooperative binding of two crown ether molecules toward one metal ion.Graphical Abstract Synthesis of Double-Armed Benzo-15-crown-5 and Their Complexation Thermodynamics with Alkali CationsYU LIU*, JIAN-RONG HAN, ZHONG-YU DUAN and HENG-YI ZHANG This revised version was published online in July 2005 with a corrected issue number.  相似文献   

20.
《Electroanalysis》2005,17(11):1015-1018
A new pendant‐arm derivative of diaza‐18‐crown‐6, containing two oxime donor groups, has been synthesized and incorporated into a polyvinyl chloride (PVC) membrane ion‐selective electrode. The electrode shows selectivity for Ag+ ion, with a near Nernstian response. Pb2+, Cu2+, Hg2+, and Tl+ are major interfering ions, with Cd2+ having minor interference. The electrode shows no potentiometric response for the ions Mg2+, Al3+, K+, Ca2+, Ni2+, Fe3+, and La3+, and is responsive to H+ at pH<6.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号