首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
The thermomechanical properties of anion exchange polymers based on polysulfone (PSU) quaternized with trimethylamine (TMA) or 1,4‐diazabicyclo[2.2.2]octane (DABCO) and containing hydroxide or chloride anions by tensile stress–strain tests and dynamic mechanical analysis (DMA) have been determined. The reported mechanical properties included the Young's modulus, tensile strength, and elongation at break from tensile tests and the storage and loss modulus and glass transition temperature from DMA. The anion exchange membranes behaved as stiff polymers with Young's modulus in the order of 1 GPa, relatively with high strength (about 30 MPa) and low elongation at break (around 10%) was observed. Tensile tests were also made with membranes exchanged with hydrogen‐carbonate and carbonate anions to control the absence of important carbonation of the OH form. The glass transition temperatures were of the order of 150 °C (PSU‐TMA) or 200 °C (PSU‐DABCO) for the hydroxide form, confirmed by differential scanning calorimetry; they increase further by about 50 K, when hydroxide ions are replaced by chloride. This result and the increase of the storage modulus could be interpreted by the higher hydration of hydroxide ions and the plasticizing effect of water, which reduced the Van der Waals interactions between the macromolecular chains. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 1180–1187  相似文献   

2.
Abstract

Several poly(aryl ether)s have been prepared by the condensation of 1,3‐bis(4‐hydroxy phenyl) benzene with different trifluoromethyl activated bis‐fluoro compounds. IR, 1H and 13C NMR, and elemental analyses have established the resulting polymer structures. The properties of the polymers have been evaluated by DSC, TGA, dynamic mechanical analysis (DMA) and stress–strain analysis. The polymers 1a and 1c showed semi‐crystalline behavior as evident by sharp crystalline melting peaks at 299°C and 330°C along with glass transitions at 202°C and 216°C, respectively. The polymers showed very good thermal stability in air, high modulus, and high tensile strength with low elongation at break.  相似文献   

3.
The mechanical properties of linear and V‐shaped compositional gradient copolymer of styrene and n‐butyl acrylate with composition of around 55 wt % styrene were investigated by comparing with their block copolymer counterparts. Compared with their block copolymer counterparts, the gradient copolymers showed lower elastic modulus, much larger elongation at break, and similar ultimate tensile strength at room temperature. This performance could be ascribed to that the local moduli continuously change from the hardest nanodomains to the softest nanodomains in the gradient copolymer, which alleviates the stress concentration during tensile test. Compared with the V‐shaped gradient (VG) copolymer, the linear gradient copolymer showed much higher elastic modulus but lower elongation at break. The mechanical properties of the gradient copolymers were more sensitive to the change in temperature from 9 °C to 75 °C. With recovery temperature increased from 10 °C to 60 °C, the strain recovery of VG copolymer would change steadily from 40% to 99%. However, the elastic recovery of linear and triblock copolymer was poor even at 60 °C. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 860–868  相似文献   

4.
The drawing behavior of the ultra‐high molecular weight polyethylene (UHMW‐PE) melts has been studied by comparing the stress/strain curves for two types of samples as polymerized using conventional Ziegler and newer metallocene catalyst systems. Two UHMW‐PE samples, having the same viscosity average molecular weight of 3.3 × 106, but different molecular weight distribution, have been drawn from melt at special conditions. The sample films for drawing were prepared by compression molding of reactor powders at 180°C in the melt. Differences in the structural changes during drawing and resultant properties, ascribable to their broad or narrow molecular weight distribution, were estimated from tensile tests, SEM observations, X‐ray measurements and thermal analyses. The metallocene‐catalyzed sample having narrower molecular weight distribution, could be effectively drawn from the melt up to a maximum draw ratio (DR) of 20, significantly lower than that obtained for the Ziegler‐catalyzed sample, ∼ 50. The stress/strain curves on drawing were remarkably influenced by draw conditions, including draw temperature and rate. However, the most effective draw for both was achieved at 150°C and a strain rate of 5 min−1, independent of sample molecular weight distribution. The efficiency of drawing, as evaluated by the resultant tensile properties as a function of DR, was higher for the metallocene‐catalyzed sample having narrower molecular weight distribution. Nevertheless, the maximum achieved tensile modulus and strength for the Ziegler sample, 50–55 and 0.90 GPa, respectively, were significantly higher than those for the metallocene sample, 20 and 0.65 GPa, respectively, reflecting the markedly higher drawability for the former than the latter. The stress/strain behavior indicated that the origin of differences during drawing from the melt could be attributed to the ease of chain relaxation for the lower molecular weight chains in the melt. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 1921–1930, 1999  相似文献   

5.
Melt spinning of poly-L, DL-lactide 70/30 has been studied. Fiber having diameter lower than 120 micron exhibited tensile modulus and strength in the range of 3–4 GPa and 130–180 MPa, respectively. Maximum attainable modulus and strength of 4.7 GPa and 205 MPa were predicted, according to a proposed equation in dependence on the draw ratio. In vitro degradation performed in PBS solution at 37 °C, showed that after 4 weeks fibers maintained adequate properties for tissue engineering applications.  相似文献   

6.
New polyoxamides, poly(m-xylylene oxamide) (PMXD2) and its copolymer with 2-methyl-1,5- pentanediamine (P(MXD2/M52)) with relative viscosity up to 4.6 were synthesized via spray/solid state polymerization. The obtained polyoxamides were characterized by FTIR, NMR, WAXD, DSC and TGA. The Tm of the copolymers decreased with increasing percentage of poly(2-methyl-1,5- pentaneoxamide) (PM52) in the copolymer from 346°C for 100% poly(meta-xylyleneoxamide) (PMXD2) to 277°C for copolymers of PMXD/PM52 (60/40). TGA analysis revealed that the thermal stability of the copolymers compared well with commercial PA6 and XRD studies suggested the copolymers possessed high crystallinity. DMA profile of the PMXD/PM52 (70/30) copolymer showed better mechanical performance with a storage modulus of about 7.2 GPa as compared to 1.8 GPa of PA6 at 25°C.  相似文献   

7.
The zone-drawing method (ZD) was applied to electrochemically synthesized polypyrrole films containing tosylate (PPy/TsO) and the mechanical and electrical properties of the resulting films were investigated. It was found that the electrical conductivity of the zone-drawn film reached 365 S cm−1 in the drawing direction, which was 4.7 times that of the original film. The tensile properties of the zone-drawn film were improved and Young's modulus and strength at break increased to 4.32 GPa and 90.1 MPa from 0.53 GPa and 40.4 MPa of the as-synthesized film, respectively. The dynamic storage modulus (E) increased by the zone-drawing over a whole experimental temperature range and attained 7.0 GPa at room temperature and 4.0 GPa even at 200°C. © 1996 John Wiley & Sons, Inc.  相似文献   

8.

Four novel perfluoroalkylated poly(arylene ether)s have been synthesized successfully using four perfluoroalkyl‐activated bisfluoro monomers. These polymers are synthesized through nucleophilic displacement of the fluorine atoms on the benzene ring with 4,4′‐thiodiphenol and are named as 1a, 1b, 1c and 1d, respectively. The polymers obtained by displacement of the fluorine atoms exhibit weight‐average molar masses up to 3.9×104 g · mol?1 in Gel permeation chromatography. These poly(arylene ether)s showed very high thermal stability up to 548°C for 10% weight loss in TGA under nitrogen and high glass transition temperature (Tg) up to 178°C in DSC depending on the repeat unit structures. The glass transition temperatures taken as peak in tan δ in DMA measurements are in good agreement with the DSC Tg values. All the polymers synthesized are soluble in a wide range of organic solvent such as CHCl3, CHCl2, THF, NMP, DMF and toluene. Transparent thin films of these polymers cast from THF exhibited tensile strengths up to 72 MPa, modulus up to 1.69 GPa with low elongation at break depending on their exact repeating unit structures. Rheological properties showed ease of processability of these polymers with no change in melt viscosity with temperature.  相似文献   

9.
A high‐tension annealing (HTA) method has been applied to zone‐annealed poly(ethylene‐2,6‐naphthalate) (PEN) fibers in order to further improve their mechanical properties. The HTA treatment was carried out under an applied tension of 428 MPa at a treating temperature of 175 °C. The applied tension was close to the tensile strength at 175 °C. The resulting HTA fiber had a birefringence of 0.492 and degree of crystallinity of 57%. Wide‐angle X‐ray diffraction (WAXD) photographs of the HTA fibers showed three reflections (010, 100, and 1 10) attributed to an α form crystal, but no (020) reflection attributed to a β form was observed in the equator. The tensile modulus and tensile strength increased with processing, and the HTA fiber had a maximum modulus of 33 GPa, a tensile strength of 1.1 GPa, and a storage modulus of 33 GPa at 25 °C. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 61–67, 2000  相似文献   

10.
A film of nascent powder of polytetrafluoroethylene (PTFE), compacted below the ambient melting temperature (Tm, 335 °C), was drawn by two‐stage draw techniques consisting of a first‐stage solid‐state coextrusion followed by a second‐stage solid‐state coextrusion or tensile draw. Although the ductility of extrudates was lost for the second‐stage tensile draw at temperatures above 150 °C due to the rapid decrease in strength, as previously reported, the ductility of extrudates increased with temperature even above 150 °C when the second‐stage draw was made by solid‐state coextrusion, reflecting the different deformation flow fields in a free space for the former and in an extrusion die for the latter. Thus, a powder film initially coextruded to a low extrusion draw ratio (EDR) of 6–20 at 325 °C was further drawn by coextrusion to EDRs up to ~?400 at 325–340 °C, near the Tm. Extremely high chain orientation (fc = 0.998 ± 0.001), crystallinity (96.5 ± 0.5)%, and tensile modulus (115 ± 5 GPa at 24 °C, corresponding to 73% of the X‐ray crystal modulus) were achieved at high EDRs. Despite such a morphological perfection and a high modulus, the tensile strength of a superdrawn tape, 0.48 ± 0.03 GPa, was significantly low when compared with those (1.4–2.3 GPa) previously reported by tensile drawing above the Tm. Such a low strength of a superdrawn, high‐modulus PTFE tape was ascribed to the low intermolecular interaction of PTFE and the lack of intercrystalline links along the fiber axis, reflecting the initial chain‐extended morphology of the nascent powder combined with the fairly high chain mobility associated with the crystal/crystal transitions at around room temperature. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 3369–3377, 2006  相似文献   

11.
A random copolymer (RCP) containing poly(ether ether ketone) (PEEK) and thermotropic liquid crystalline polymer (TLCP) segments was synthesized. Its chemical structure and liquid crystalline properties were characterized by FT‐IR, differential scanning calorimetry (DSC) and polar light microscopy (PLM) respectively. A single glass transition temperature (Tg) at 134.0°C, a melting temperature (Tm) at 282.0°C and a temperature of ignition (Ti) at 331.3°C can be observed. Blends of PEEK and TLCP with and without RCP as compatibilizer were prepared by extrusion and the effect of RCP on the thermal properties, dynamic mechanical properties, morphology and static tensile mechanical properties of blends was investigated by means of DSC, dynamic mechanical analysis (DMA), scanning electron microscopy (SEM), etc. Dynamic mechanical measurements indicated that there appeared to be only a single tan δ peak resulting from the glass transition of the PEEK‐rich phase and the Tg value shifted towards higher temperature due to the presence of compatibilizer, as suggested partial compatibility. Morphological investigations showed that the addition of RCP to binary blends reduced the dispersed phase size and improved the interfacial adhesion between the two phases. The ternary compatibilized blends showed enhanced tensile modulus compared to their binary blends without RCP. The strain at break decreased for the ternary blends due to embrittlement of the matrix by the incorporation of some RCP to the matrix phase. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

12.
Thermoplastic fiber composites were prepared using high modulus lyocell (regenerated cellulose) fibers for reinforcement and cellulose acetate butyrate (CAB) as matrix. Choices were made with regard to fiber options (fabric versus continuous tow) and method of matrix deposition (prepregging by powder coating, film stacking, or solution impregnating). The results suggest that solution-prepregged fiber tow consolidated at circa 200°C produced unidirectional consolidated panels with tensile strength, modulus, and strain at failure values of approximately 250MPa,>20GPa and 3–4%, respectively, at fiber volume contents of approximately 60%. Modulus and ultimate tensile strength increased with fiber content, and modulus followed rule-of-mixture behavior. Adequate surface wetting and matrix-fiber adhesion were found with solution-prepregged composites. The unexpectedly low strain at failure (2 to <4%) was attributed to brittle matrix failure, and failure surfaces revealed that the fibers, for the most part, remained intact after the matrix had failed.  相似文献   

13.
Bioabsorbable poly(ester-urethane) networks were synthesized from ethyl 2,6-diisocyanatohexanoate (L -lysine diisocyanate) (LDI) and a series of polyester triols. LDI was synthesized by refluxing L-lysine monohydrochloride with ethanol to form the ester, which was subsequently refluxed with 1,1,1,3,3,3-hexamethyldisilazane to yield a silazane-protected intermediate. This product was then phosgenated using triphosgene. Polyester triols were synthesized from D,L-lactide, ?-caprolactone, or comonomer mixtures thereof, using glycerol as initiator and stannous octoate as catalyst. Polyurethane networks were cured using [NCO]/[OH] = 1.05 and stannous octoate (0.05 wt %) for 24 h at room temperature and pressure and 24 h at 50°C and 0.1 mm Hg. LDI-based polyurethane networks were totally amorphous and possessed very low sol contents. Networks based on poly (D,L-lactide) triols were rigid (Tg ∽ 60°C) with ultimate tensile strengths of ~ 40–70 MPa, tensile moduli of ~ 1.2–2.0 GPa, and ultimate elongations of ~ 4–10%. Networks based on ?-caprolactone triols were low-modulus elastomers with tensile strengths and moduli of ~ 1–4 MPa and ~ 3–6 GPa, respectively, and ultimate elongations of ~ 50–300%. Networks based on copolymers displayed physical properties consistent with monomer composition and were tougher than the networks based on the homopolymers. Tensile strengths for the copolymers were ~ 3–25 MPa with ultimate elongations up to 600%. Hydrolytic degradation under simulated physiological conditions showed that D ,L -lactide homopolymer networks were the most resistant to degradation, undergoing virtually no change in mass or physical properties for 60 days. ?-Caprolactone-based networks were resistant to degradation for 40 days, and high-lactide copolymer-based networks suffered substantial losses in physical properties after only 3 days. © 1994 John Wiley & Sons, Inc.  相似文献   

14.
A series of three fluorine containing and three non-fluorinated Diels–Alder step-growth polyarylene polymers and copolymers was synthesized via conventional oil bath heating (days/weeks). A drastic time reduction was realized with a microwave-assisted polymerization (hours). The polymers were characterized by multinuclear (1H, 13C, and 19F) NMR and attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy, thermal analysis (thermogravimetric analysis [TGA], differential scanning calorimetry [DSC], and dynamic mechanical analysis [DMA]), gel permeation chromatography, X-ray diffraction (XRD), water contact analysis, and refractive index (RI) measurements. The NMR spectra indicated a mixture of para and meta conformations through the polymer backbone increasing to more para with greater fluorine content. TGA revealed the fluorine-containing polyarylenes possessed the highest char yields at almost 80% at 1000°C under nitrogen, and all the polyarylenes possessed onset of degradation temperatures above 550°C under nitrogen and air atmospheres. XRD analysis indicated more ordering for the fluorine-containing polyarylenes which afforded the high char yields. DMA gave storage moduli values in the range of 1–10 GPa for the polyarylenes. Molecular weights for all samples were above 100 kg/mol. Water contact angles did not change with fluorine content due to the shielding effect of the pendant phenyl groups. However, the RI decreased to 1.6497 at 632.8 nm for the polyarylene with the highest fluorine content.  相似文献   

15.
ABSTRACT

Ultra-high-molecular-weight poly[(R)-3-hydroxybutyrate](P(3HB)) was biosynthesized from glucose by a recombinant Escherichia coli XL-1 Blue (pSYL105) harboring Alcaligenes eutrophus PHB biosynthesis phbCAB genes. Six kinds of P(3HB) samples with differ-ent weight-average molecular weight (Mw ) from 1.1 × 106 to 11 × 106 measured by multi-angle laser light scattering were respectively produced at pH values of 7.0 to 6.5 in culture media. Solvent-cast P(3HB) films of high-molecular-weights over Mw of 3.3 × 106 were stretched easily and reproducibly at 160°C to a draw ratio of 400-650%. Mechanical properties of the stretched P(3HB) films were markedly improved relative to those of solvent-cast film. The elongation to break, Young's modulus, and tensile- strength of stretched film (Mw = 11 × 106) were 58%, 1.1 GPa, and 62 MPa, respectively. X-ray diffraction patterns indicated that the stretched film was highly oriented and had a high crystallinity over 80%. When the stretched film was annealed at 160°C for 2 hours, the mechanical properties were further improved (elongation to break = 67%, Young's modulus = 1.8 GPa and tensile strength = 77 MPa). The mechanical properties of the stretched-annealed film remained almost unchanged for 6 months at room temperature, suggesting that a high crystallinity of the stretched-annealed film avoids a progress of secondary crystallization.

  相似文献   

16.
High-density polyethylene filaments prepared by a solid-state deformation in an Instron capillary rheometer show unusually high crystal orientation, chain extension, axial modulus, and ultimate tensile strength. The Young's modulus and ultimate tensile strength have been determined from stress–strain curves. Gripping of this high modulus polyethylene has been a problem heretofore, but the measurement of ultimate tensile strength has now been made feasible by a special gripping procedure. Tensile moduli show an increase with sample preparation temperature and pressure. Values as high as 6.7 × 1011 dyne/cm2 are obtained from samples extruded at 134°C and 2400 atm and tested at a strain rate of 3.3 × 10?4 sec?1. The effect of strain rate and frequency on modulus has also been evaluated by a combination of stress–strain data and dynamic tension plus sonic measurements over nine decades of time.  相似文献   

17.
To prepare thermally stable and high‐performance polymeric films, new solvent‐soluble aromatic polyamides with a carbamoyl pendant group, namely poly(4,4′‐diamino‐3′‐carbamoylbenzanilide terephthalamide) (p‐PDCBTA) and poly(4,4′‐diamino‐3′‐carbamoylbenzanilide isophthalamide) (m‐PDCBTA), were synthesized. The polymers were cyclized at around 200 to 350 °C to form quinazolone and benzoxazinone units along the polymer backbone. The decomposition onset temperatures of the cyclized m‐ and p‐PDCBTAs were 457 and 524 °C, respectively, lower than that of poly(p‐phenylene terephthalamide) (566 °C). For the p‐PDCBTA film drawn by 40% and heat‐treated, the tensile strength and Young's modulus were 421 MPa and 16.4 GPa, respectively. The film cyclized at 350 °C showed a storage modulus (E′) of 1 × 1011 dyne/cm2 (10 GPa) over the temperature range of room temperature to 400 °C. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 775–780, 2000  相似文献   

18.
A 2,6‐dimethylphenol‐dipentene dicyanate ester ( DPCY ) was synthesized from the reaction of 2,6‐dimethylphenol‐dipentene adduct and cyanogen bromide. The proposed structure was confirmed by Fourier transform infrared (FTIR), elemental analysis, mass, and nuclear magnetic resonance (NMR) spectra. DPCY was then cured by itself or cured with bisphenol A dicyanate ester ( BADCY ). Thermal properties of cured epoxy resins were studied using differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), dielectric analysis (DEA), and thermogravimetric analysis (TGA). These data are compared with those of BADCY . The cured DPCY exhibits a lower dielectric constant (2.61 at 1 MHz), dissipation factor (29.3 mU at 1 MHz), thermal stability (5% degradation temperature and char yield are 429 °C and 17.64%, respectively), glass transition temperature (246 °C by TMA and 258 °C by DMA), coefficient of thermal expansion (33.6 ppm before Tg and 134.1 ppm after Tg), and moisture absorption (0.95% at 48 h) than those of BADCY , but higher moduli (5.12 GPa at 150 °C and 4.60 GPa at 150 °C) than those of the bisphenol A system. The properties of cured cocyanate esters lie between cured BADCY and DPCY , except for moduli. Moduli of some cocyanate esters are even higher than those of cured BADCY and DPCY . A positive deviation from the Fox equation was observed for cocyanate esters. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 3986–3995, 2004  相似文献   

19.
A zone-drawing and zone-annealing treatment was applied to poly(p-phenylene sulfide) fibers in order to improve their mechanical properties. The zone-drawing (ZD) was carried out at a drawing temperature of 90°C under an applied tension of 5.5 MPa, and the zone-annealing (ZA) was carried out at an annealing temperature of 220°C under 138.0 MPa. The differential scanning calorimetry (DSC) thermogram of the ZD fiber had a broad exothermic transition (Tc = 110°C) attributed to cold-crystallization and a melting endotherm peaking at 286°C. The Tc of the ZD fiber was lower than that (Tc = 128°C) of the undrawn fiber. In the temperature dependence of storage modulus (E′) for the ZD fiber, the E′ values decreased with increasing temperature, but increased slightly in the temperature range of 90–100°C, and decreased again. The slight increase in E′ was attributable to the additional increase in the crosslink density of the network, which was caused by strain-induced crystallization during measurement. The resulting ZA fiber had a draw ratio of 6.0, a degree of crystallinity of 38%, a tensile modulus of 8 GPa, and a tensile strength of 0.7 GPa. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 1731–1738, 1998  相似文献   

20.
通过溶剂交换法将无机Laponite从水相转移到N,N-二甲基乙酰胺(DMAC)中,在超声波作用下,Laponite与热塑性聚氨酯(TPU)溶液进行共混复合,Laponite插层到PU分子链间而制备Laponite/聚氨酯纳米复合材料.利用TEM,AFM,TGA,DSC,DMA和静态拉伸对其结构、组成、形貌和性能进行表征,研究结果表明,Laponite优先插层到聚氨酯的硬段中,片层和硬段通过氢键相互作用和尺寸匹配性,进而形成一种插层网络结构.由于这种网络结构的存在,使Laponite/聚氨酯复合材料的强度、硬度及韧性得到同步提高.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号