首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The stereoisomers of the title compounds produce nearly identical electron ionization (EI) mass spectra, which are dominated in the case of the norbornene-condensed derivatives by retro-Diels-Alder (RDA) fragmentation of the hydrocarbon ring. The RDA fragmentation mainly occurs with H transfer and gives rise to [M-C5H5]+. For the norbornane-condensed derivatives, the main fragmentation routes include the formation of [M-C5H7]+ (protonated thiouracil) and [M-C7H9]+ (only from thiazinopyrimidines). The latter species are formed via RDA decomposition of the pyrimidone subunit of the heterocyclic system, a process previously observed for cyclohexane-condensed analogs of these compounds. Only minor differences could be detected between the EI spectra of the diexo and diendo isomers. Under chemical ionization (CI) conditions, the norbornane-condensed compounds produced no significant fragment peaks with either isobutane or methane as reagent gas. In contrast, the isobutane and methane CI spectra of the norbornene-condensed compounds exhibited prominent peaks of [MH-C5H6]+ and [(M+CxHy)-C5H6]+ originating from moderately stereoselective RDA fragmentations. The relative abundances of the RDA ions obtained from the respective stereoisomers with the same reagent gas were consistently different over a range of experimental conditions. The non-occurrence of RDA fragmentation of the thiazinopyrimidine ring under CI conditions suggested that its energy of activation is higher than that for either of the norbornene-ring RDA fragmentations (with or without H transfer) observed under EI and CI conditions.  相似文献   

2.
The 70 eV electron ionization (EI) mass spectra were recorded for eight norbornane/ene-fused 2-N-phenyl-iminoperhydro-1,3-oxazines, and the fragmentation patterns were studied by metastable ion analysis and exact mass measurement. Whereas the stereoisomeric unsaturated compounds could not be distinguished on the basis of their EI mass spectra, the stereoisomeric saturated compounds gave rise to clearly different spectra. The ionized unsaturated compounds decomposed mainly by two consecutive retro-Diels-Alder (RDA) reactions. A methyl substituent on the ring nitrogen strongly influenced the charge distribution on the RDA fragments. The ionized saturated compounds fragmented through several pathways. Loss of cyclopentadiene from the molecular ion was the energetically favoured fragmentation reaction for the saturated di-endo-fused compounds but was unimportant for the di-exo-fused compounds.  相似文献   

3.
Electron ionization (EI), methane chemical ionization (CI), and collision-induced dissociation (CID) mass spectra of complete series of positional monochloro-isomers of 3-hydroxy-2-phenyl-4(1H)-quinolinone are evaluated and discussed. It is shown that in the CI experiments, in addition to the protonated precursor molecules, odd-electron molecular ions are formed and this affects the appearance of the CID spectra. The influence of different direct probes and other experimental parameters such as the pressure of the reagent gas, isolation width, or collision energy was studied. EI, CI and CID spectra of the positional isomers show essentially the same fragmentation pathways but comparisons of the relative signal intensities of various product ions reveal some positional effects. Different isomers are also distinguished. The compounds can be divided into two groups using diagnostic ions (chloro substitution of the quinolinone moiety or the phenyl ring) or identified using a created spectral database. It was demonstrated that the reproducibility of the CID spectra is fully satisfactory for isomer identification, and that the created database can be applied for comparison of spectra measured over an extended time period (1 month) or spectra obtained during the direct analysis of a reaction mixture extract. Explanation of the fragmentation of the isomers is supported by exploratory density functional theory (DFT) calculations, e.g. rationalization of the relatively higher importance of the M(+.)-H(.)-Cl(.)-CO fragmentation pathway during EI than during CID, and vice versa for the pathway M(+.)-Cl(.)-CO. Copyright (c) 2008 John Wiley & Sons, Ltd.  相似文献   

4.
The electron impact and methane and ammonia chemical ionization mass spectra of some selected nitro-substituted isomeric benzalacetophenones, benzyl ketones and aromatic epoxides have been examined. The isomeric pairs show significant differences in the electron impact and chemical ionization spectra. The EI spectra show cleavage α to the carbonyl as the major fragmentation mode. Under CI conditions subtle differences in the fragmentation modes of isomeric pairs are more enhanced, and elimination reactions are more favoured in the o-nitro-substituted compounds than in the para isomers.  相似文献   

5.
A series of diastereomeric 4S,5S,6R/S-tetrahydropyrano- and 3S,4S,5R/S-tetrahydrofuranochromenylamine derivatives (a/b isomers; 1-26) has been studied under electron ionization (EI) and chemical ionization (CI) conditions. The EI mass spectra of all diastereomeric compounds show two characteristic fragment ions, of which one is formed by retro-Diels-Alder (RDA) reaction from the molecular ion, retaining the charge on the diene fragment, and the other [M-(HNAr)]+ ion by a simple radical loss. The RDA process is more favorable in all b isomers, whereas the radical loss is dominant in all a isomers; based on these two ions it is easy to differentiate the two diastereomers. The collision-induced dissociation (CID) spectra of all the molecular ions also show the same trend, which reflects the stereoselectivity in the formation of the two characteristic fragment ions. The results of theoretical calculations performed are in accordance with the experimental observations. The CI experiments (methane and isobutane) on all the diastereomeric compounds also enabled the differentiation of the isomers.  相似文献   

6.
7.
The mass spectra of a number of aliphatic nitro compounds have been studied using electron Ionization (EI) and a variety of chemical Ionization (CI) techniques in attempts to obtain relative molecular mass information. The use of positive ion ammonia chemical Ionization techniques gave very satisfactory results, providing abundant [M + NH4]+ ions, not only from both primary and secondary nitro compounds, but also from the much more labile tertiary nitro compounds. However, the use of methane and isobutane positive ion CI or EI conditions resulted in facile fragmentation with little relative molecular mass information being made available. Negative ion CI using methane, isobutane or ammonia as moderating gases all gave abundant [M ? 1]? ions with primary and secondary nitro compounds but at much reduced sensitivity.  相似文献   

8.
Users of ion trap mass spectrometers frequently develop methods that associate chemical ionization with tandem mass spectrometry detection. With apparatus using internal ionization, the chemical reagent is present in the trap during the collision induced dissociation (CID) step and one may wonder if the reagent influences the fragmentation ratios in MS/MS. We report a comparison of the fragmentation ratios of protonated molecules when using the most common reagents (methane, ammonia, methanol, acetonitrile, isobutane) for performing in situ chemical ionization. Four molecules were chosen in the medical field to serve as models: alprazolam, diazepam, flunitrazepam and acetaminophen. In the non-resonant CID mode, the influence of the reagent mass is clearly seen in spite of its low partial pressure in the ion trap; the reagent acts as a "heavy target": the degree of fragmentation increases with the molecular weight of the reagent. In the resonant CID mode, there is no evident correlation between the fragmentation ratio of MH(+) ions and the nature of the CI reagent; a slight shift of the secular frequency of the precursor ion, which tends to reduce the CID efficiency, could compensate for the "heavy target" effect underscored in the non-resonant mode.  相似文献   

9.
The mass spectrometric behavior of stereo- and regioisomeric, partially saturated isoindoloquinazolines was studied by positive-ion electron ionization (EI) and fast-atom bombardment (FAB/LSIMS) mass spectrometry combined with collision-induced dissociation (CID). A highly stereospecific retro-Diels-Alder process was observed in the cyclohexene-fused isomers under the EI conditions, and a corresponding (although less specific) fragmentation was observed in their FAB spectra. In the absence of RDA fragmentations, regio- and stereoisomers of the cyclohexane-fused heterocycles could be distinguished based on their FAB/CID spectra.  相似文献   

10.
Fully methylated methyl x-deoxy-x-fluoro-β-D -galactopyranosides were studied using electron impact (EI) and chemical ionization (CI) mass spectrometry and by gas chromatography (GC)/mass spectrometry. Metastable daughter- and parent-ion measurements and high-resolution measurements were used to evaluate the fragmentation schemes. Both the presence and the position of the electronegative fluorine atom influences the fragmentation pathways of the permethylated compounds. The individual methyl x-deoxy-x-fluoro-per-O-methyl-β-D - galactopy-ranosides have different GC retention times. This, together with the characteristic differences present in the EI or CI (methane or isobutane) mass spectra, allows the location of fluorine in these substances to be unambiguously determined.  相似文献   

11.
Desorption chemical ionization mass spectrometry employing ammonia as the reagent gas has been extensively used to obtain molecular mass and structural information on a wide variety of compounds. Mass-deficient reference standards normally used for calibration purposes in mass spectrometry do not provide adequate mass spectra under ammonia chemical ionization conditions. In order to overcome this problem a mixture of ammonia and methane as reagent gases was employed. In high-resolution accurate mass measurement experiments, this gas mixture allows the simultaneous detection of mass spectra of perfluorokerosene adequate for calibration purposes and spectra containing molecular mass information of the analyte. A needle valve system was used to control the composition of the gas mixture introduced into the ion source. For positive-ion accurate mass measurements of higher masses (up to m/z = 2300), Fomblin 18/8 oil was successfully used as a reference standard under ammonia, methane and isobutane desorption chemical ionization conditions.  相似文献   

12.
The methane and isobutane chemical ionization mass spectra of ten 2,4,6-trinitroaromatic compounds have been recorded. The mass spectra contain intense [M + 1]+ ions and usually little fragmentation. However, in some cases major fragmentation processes have been observed. Some unusual adduct ions have been found with isobutane as the reagent and their temperature dependence has been studied.  相似文献   

13.
Diastereomeric conduramine derivatives, i.e., (1R,2S,3R/S,6S)-6-(N-carbomethoxyamino) 1,2-O-isopropylidenecyclohex-4-ene-1,2,3-triol (1 and 2) and their O-acetyl derivatives (3 and 4), were studied using gas chromatography (GC) with electron ionization (EI) and chemical ionization (CI). The EI mass spectra of diastereomeric pairs show consistent differences in the relative abundances of characteristic ions. The EI fragmentation patterns are based on precursor/product ion spectra, high-resolution mass spectrometry (HRMS) and deuterium labelling. The CI spectra show differences from the EI spectra, and the isobutane/CI spectra are much simpler than the methane/CI spectra. The differences shown in the CI spectra are similar to those shown in the product ion spectra of [M+H](+) ions generated under electrospray ionization (ESI) conditions. Theoretical calculations are performed to understand the observed differences. The differences in the relative stabilities of molecular ions, or protonated molecules at different sites, can explain the observed differences in the spectra.  相似文献   

14.
The fragmentation of o/p isomers of bisphenol-A was examined by using collisionally activated decomposition and the tanden mass spectrometric techniques. Also chemical ionization was performed using methane, isobutane and ammonia. The o/p position of the hydroxy groups in the bisphenol-A molecule directed the fragmentation both in electron and chemical ionization.  相似文献   

15.
The formation of molecular ions, M+., under fast atom bombardment (FAB) conditions using a liquid matrix was examined by using a new type of synthesized compounds in which preferential M+. peaks appear in their FAB spectra. The FAB spectra were compared with the corresponding mass spectra obtained by the electron impact (EI) ionization, chemical ionization (CI) and charge-exchange ionization (CEI) methods. All of the spectra showed preferential peaks of M+. ion and a characteristic intense fragment ion peak originating from a β-fission. The FAB spectra were similar in the fragment ions appearing in the EI spectra and were very similar in the fragmentation pattern to the CEI spectra using Ar+. and Xe+. as the reagent ions. Further, the FAB spectra did not show any doubly charged ion peaks, while the 70 eV EI spectra showed the peaks of doubly charged molecular and/or fragment ions. The isobutane CI spectra of the synthesized compounds suggested that the formation of M+. ions occurred through the CE reaction with isobutane ion, C4H10+., and the CI spectra showed a marked intense fragment ion peak originating from the β-fission which seemed to occur characteristically in CEI processes. The results obtained suggested that the formation of M+. ions under matrix FAB conditions occurred mainly by CE reactions between the analytes M and matrix molecular ions B+. and/or fragment ions b+..  相似文献   

16.
In the electron impact mass spectroscopy of four 2,3,5,6-bicyclo(2.2.2)–7-octenetetramethoxycarbonyl stereoisomers differences in relative abaundances of product ions and also different fragmentation pathways are observed. The stereospecificity is retained also under positive ion chemical ionization (CI(methane), CI(isobutane)) and negative ion chemical ionization (NICI) (OH?) conditions. Interesting correlations between fragmentation and molecular symmetry are suggested.  相似文献   

17.
Chemical ionization mass spectra of dicarboxylic acids and methyl esters show fragmentation and unimolecular reactions with reagent gases water, methanol, ammonia and methyl ether, which differ from those observed with hydrocarbon reagents methane and isobutane. These reactions involve exchange of the reagent gas for water or methanol of the dicarboxyl compounds as well as secondary exchange of both functions. An effort has been made to determine the mechanism of these reactions and to determine the structural requirements necessary for their occurrence.  相似文献   

18.
The chemical ionization (CI) mass spectra of the 2-tert-butyl-substituted 1,3-cyclopentane- and 1,3-cyclohexanediol diacetates and dimethyl ethers have been determined using isobutane and methane as reagent gases. From the differences in the spectra of these compounds, it clearly follows that steric and conformational effects are expresssed in the CI mass spectra. The relative impact of these effects, however, is strongly dependent on diol derivatization and 2-alkyl substitution.  相似文献   

19.
Abstract

Comparison is made between electron ionization (EI), methane, isobutane and ammonia chemical ionization (CI) and fast atom bombardment (FAB) mass spectrometry of phosphonates related to 2-chloroethylphosphonic acid  相似文献   

20.
The 70 eV electron impact mass spectra of 33 differently substituted oxazolidines were studied to determine the effect of substituents and the existence of the ring—chain tautomeric equilibrium on the decomposition of the molecular ions. Most of the fragmentations can be rationalized to start as the cleavage initiated by the radical site at nitrogen. Isomeric compounds showed different spectra and were easily differentiated. The position of the ring—chain equilibrium could be located only roughly. The chemical ionization mass spectra of the compounds were also recorded, with ammonia, isobutane, acetone or methane as reagent gas. Methane was the only reagent gas that promoted extensive fragmentation of the protonated molecules. However, no information about the position of ring-chain tautomerism was obtained under these conditions. Analogously to other related five-membered heterocycles, the oxazolidines reacted under acetone chemical ionization conditions to afford [M + CH3CO]+ adduct ions. These adducts were stable, however, and unlike those of 1,3-dioxolanes and 1,3-oxathiolanes, they did not decompose and form stable oxonium ions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号