首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 466 毫秒
1.
This article describes the synthesis and properties of the first poly(arylene‐vinylene)‐based sensitizers for application in dye‐sensitized solar cells (DSSC). The polymers were prepared by the Suzuki–Heck copolymerization of potassium vinyltrifluoroborate (PVTB) with a mixture of dibromoaryl comonomers designed to obtain macromolecules able to bind onto the photoelectrode by means of carboxyphenylene units. The copolymerization reactions were carried out in the presence of an excess of PVTB to lower the molecular weights of the polymers, which were obtained as soluble materials. The polymers poly[(9,9‐didodecyl‐2,7‐fluorenylene)‐vinylene‐co‐(carboxy‐2,5‐phenylene)‐vinylene] ( P1 ), poly[(9,9‐didodecyl‐2,7‐fluorenylene)‐vinylene‐co‐(carboxy‐2,5‐phenylene)‐vinylene‐co‐(4,7‐benzothiadiazolylene)‐vinylene] ( P2 ), and poly[(9,9‐didodecyl‐2,7‐fluorenylene)‐vinylene‐co‐(carboxy‐2,5‐phenylene)‐vinylene‐co‐2,5‐thienylene‐vinylene] ( P3 ) were used in DSSC devices, obtaining conversion efficiencies up to 0.88% ( P3 ). © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

2.
Poly(p‐phenylene vinylene) (PPV), poly(2,5‐dioctyl‐p‐phenylene vinylene) (PDOPPV), and poly[2‐methoxy‐5‐(2′‐ethylhexyloxy)‐p‐phenylene vinylene] (MEHPPV) were synthesized by a liquid–solid two‐phase reaction. The liquid phase was tetrahydrofuran containing 1,4‐bis(bromomethyl)benzene, 1,4‐bis(chloromethyl)‐2,5‐dioctylbenzene, or 1,4‐bis(chloromethyl)‐2‐methoxyl‐5‐(2′‐ethylhexyloxy)benzene as the monomer and a certain amount of tetrabutylammonium bromide as a phase‐transfer catalyst. The solid phase consisted of potassium hydroxide particles with diameters smaller than 2 mm. The experimental results demonstrated that the reaction conversions of PPV and PDOPPV were fairly high (~65%), but the conversion of MEHPPV was only 45%. Moreover, gelation was found in the polymerization processes. As a result, PPV was insoluble and PDOPPV and MEHPPV were partially soluble in the usual organic solvents, such as tetrahydrofuran and chloroform. Soluble PDOPPV and MEHPPV were obtained with chloromethylbenzene or bromomethylbenzene as a retardant regent. The molar mass of soluble PDOPPV was measured to be 2 × 104 g mol?1, and that of MEHPPV was 6 × 104 g mol?1. A thin, compact film of MEHPPV was formed via spin coating, and it emitted a yellow light. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 449–455, 2003  相似文献   

3.
New conjugated copolymers of quinoxaline (AQ) and thienopyrazine (ATP) with vinylene (V) or ethynylene (E), poly[2,3‐bis(4‐(2‐ethylhexyloxy)phenyl)‐quinoxaline vinylene] (PAQV), poly[2,3‐bis(4‐(2‐ethylhexyloxy)phenyl)‐quinoxaline ethynylene)] (PAQE), poly[2,3‐bis(4‐(2‐ethylhexyloxy)phenyl)‐thieno[3,4‐b]pyrazine vinylene] (PATPV), and poly[2,3‐bis(4‐(2‐ethylhexyloxy)phenyl)‐thieno[3,4‐b]pyrazine ethynylene] (PATPE), were successfully synthesized by Stille coupling reaction. The optical band gaps of the PAQV, PAQE, PATPV, and PATPE were 1.86, 2.00, 0.88, and 0.90 eV, respectively, whereas the electrochemical band gaps were 1.99, 2.06, 1.00, and 1.06 eV, respectively. The reduced steric hindrance by the incorporation of the V or E linkage or the intramolecular charge transfer between the acceptor and the V or E linkage led to the small band gap. The AQ/ATP‐vinylene copolymers exhibited much higher vis/near infrared absorption intensity than the AQ/ATP‐ethynylene suggested the stronger π–π* transition intensity in the former and led to better charge‐transporting characteristics. The saturation field‐effect hole mobilities of the PATPV were 2.1 × 10?3, 1.7 × 10?2, and 1.1 × 10?2 cm2 V?1 s?1 on bare, octyltrichlorosilane (OTS)‐treated, and octadecyltrichlorosilane(ODTS)‐treated SiO2, respectively, with on‐off current ratios of 35, 6.02 × 102, and 7.56 × 102. On the other hand, the estimated field‐effect transistor hole mobility of the PATPE was in the range of 1.7 × 10?6–8.1 × 10?4 cm2 V?1 s?1, which was significantly smaller than those of the PATPV. The small band gaps and high charge carrier mobility of the prepared copolymers suggested their potential applications for near‐infrared electronic and optoelectronic devices. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 74–81, 2010  相似文献   

4.
We have calculated the optical and electronic properties of several conjugated organic polymers: poly(p‐phenylene‐vinylene) (PPV) and its derivatives. Cyano substitutions on the phenylene ring: poly(2,5‐dicyano‐p‐phenylene‐vinylene) (2,5‐DCN‐PPV) and on the vinylene linkage: poly(p‐phenylene‐7(,8)‐(di)cyano‐vinylene) are considered. In addition, poly(quinoxaline‐vinylene) (PQV) is studied. The infinite isolated quasi‐1D chains are treated with periodic boundary conditions, using atomic basis sets. In a comparative study of PPV, some issues regarding the selection of the functionals and basis sets are discussed and excitation energies derived from time‐dependent and from ordinary methods are compared. It is concluded that for these polymers the calculations are informative at the B3LYP/6‐31G** density functional theory (DFT) level. The absolute values might change with improved methods, but the similarity of the polymers suggests that the relative characterization is adequate. Band structures are communicated along with characteristics of the highest occupied and the lowest unoccupied crystal orbitals (HOCO and LUCO). Electron affinities, ionization potentials, valence and conduction bandwidths, and effective masses at the bandgap are given. © 2006 Wiley Periodicals, Inc. Int J Quantum Chem, 2006  相似文献   

5.
We have synthesized three new donor–acceptor‐type monomers to achieve soluble and processable low‐band gap polymers, 4,7‐bis(4‐octyl‐2‐thienyl)‐2,1,3‐benzothiadiazole (B4TB), 4,7‐bis(3‐octyl‐2‐thienyl)‐2,1,3‐benzothiadiazole (B3TB), and 4‐(3‐octyl‐2‐thienyl)‐7‐(4‐octyl‐2‐thienyl)‐2,1,3‐benzothiadiazole (B34TB), by the Suzuki coupling reaction. Using B4TB and B3TB, two soluble high molecular weight regioregular head‐to‐head and tail‐to‐tail polymers poly[4,7‐bis(4‐octyl‐2‐thienyl)‐2,1,3‐ benzothiadiazole] (PB4TB) and poly[4,7‐bis(3‐octyl‐2‐thienyl)‐2,1,3‐benzothiadiazole] (PB3TB) were prepared via iron(III) chloride‐mediated oxidative polymerization. The structures of the polymers were confirmed by 1H and 13C NMR, and the molecular weights were determined by size exclusion chromatography. The optical properties (absorbance and fluorescence) of the monomers and polymers were studied and compared with unsubstituted analogues. The monomers and polymers bearing octyl substituents on the thiophene rings pointing away from the benzothiadiazole units (B4TB and PB4TB) possess a more planar structure, and their optical spectra appear redshifted as compared with those having the octyl chain nearer to the benzothiadiazole (B3TB and PB3TB). The optical band gaps of PB3BT (Eg = 2.01 eV) and PB4BT (Eg = 1.96 eV), however, are at much higher energy levels than that of the unsubstituted electrochemically polymerized PBTB material (Eg = 1.1–1.2 eV) as a result of steric effects of the octyl chains. The electrochemical properties of the monomers and polymers were examined using cyclic voltammetry and reflect the effect of alkyl substitution. B4TB and PB4TB were oxidized at a lower potential than B3TB and PB3TB, whereas their reduction potentials were less negative. The electrochemical band gap calculated from the onset of the reduction and oxidation process agreed with the optical band gap calculated from the absorption edges. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 40: 251–261, 2002  相似文献   

6.
The highly conjugated aromatic polymers, poly(2,5-dimethoxyphenylene vinylene) and poly(2,5-dimethylphenylene vinylene), were obtained from their water soluble, sulfonium salt precursor polymers. Films of these polymers were reacted with either AsF5 or I2 vapor. Poly(2,5-dimethoxyphenylene vinylene) showed increases in electrical conductivity of up to 14 to 15 orders of magnitude for these two dopants, while an 8 to 9 order of magnitude increase was observed for poly(2,5-dimethylphenylene vinylene) with the same dopants. The synthesis of the precursor polymers, the properties and elimination reactions of films of the precursors, the doping reactions, and the conductivities of the resulting phenylene vinylene films are discussed.  相似文献   

7.
We used X-ray photoemission spectroscopy (XPS) to investigate the surface species of poly(p-phenylene vinylene) (PPV) and its interface formation with Ca and Al. PPV surfaces compositions varied with sample preparation. For relatively "clean'' surfaces with 4–5% O, analysis of the O 1s peak revealed four types of oxygen species, namely carbonyl (C=O), hydroxyl (C–OH), ether (C–O–C) and the carboxylic groups (HO–C=O). The oxygen groups, excluding ether, reacted with Al or Ca to form the corresponding metal oxides. Chemical interactions between the metals and the phenylene and vinylene units to yield new species were not detected. For sulfur-free surfaces, a C 1s peak shift of +0.5 eV followed the deposition of 15–30 Å of Ca on PPV. For sulfur-containing surfaces, the C 1s peak shift was −0.5 eV. We attribute this difference to the interaction of metal atoms with the sulfur impurities. For Al/PPV, a C 1s peak shift occurred at <2 Å of Al deposition and reached a constant value of about +0.4 eV after ⪅8 Å of Al. Again, the direction of the peak shift depended on the presence of sulfur impurities. We attribute the C 1s peak shifts to surface band bending and to Schottky barrier formation. Since surface oxidation of PPV can inhibit band-bending, our overall results suggest that the barrier height at the metal/PPV interface is highly sensitive to the surface preparation and relatively insensitive to the work function of the metals. The shift seen by XPS in the C 1s core level spectra of PPV points clearly to charge transfer and Schottky barrier formation at the interface as a result of metal deposition. These results imply that the metal/polymer interface is not rigid and that triangular barrier tunneling fails to take into account the effect of barrier formation. We propose a band-bending modified tunneling (BBMT) model to explain charge transfer at the Ca/polymer interface. © 1997 John Wiley & Sons, Ltd.  相似文献   

8.
《Supramolecular Science》1998,5(5-6):519-522
The electrochemical behavior of poly(2-methoxy-5-dodecyloxy-1,4-phenylene vinylene) (MD-PPV) is investigated by cyclic voltammetry and in situ spectroelectrochemical measurement. The energy gap of MD-PPV is determined to be 2.05 eV based on the onset potentials of electrochemical p-doping and n-doping. That PEO affects the electrochemical behavior of MD-PPV/PEO blend positively is also observed.  相似文献   

9.
A new p‐phenylene–vinylene–thiophene‐based siloxane block copolymer has been synthesized. The copolymer consists of alternating rigid and flexible blocks. The rigid blocks are composed of phenylene–vinylene–thiophene‐based units, and the flexible blocks are derived from 1,3‐dialkyldisiloxane units. The former component acts as the chromophore, and allows fine tuning of band gap for blue‐light emission, while the latter imparts good solubility of the copolymer in organic solvents, and thus, should enhance processibility of the resulting copolymer. The thermal properties of the copolymer have been characterized by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). The photoluminescence (PL) of the copolymer in solution and in cast film has been studied. The effects of concentration on the PL intensity of the new copolymer in polymer blends with poly(methyl methacrylate) (PMMA) and poly(vinyl carbazole) (PVK) have also been described. Efficient energy transfer from PVK to the new block copolymer in the blended film was observed. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 1450–1456, 2000  相似文献   

10.
Two hydrophilic branched oligo(ethylene glycol)-substituted PPV derivatives, poly(2,5-bis(1,3-bis(triethoxymethoxy)propan-2-yloxy)-1,4-phenylene vinylene) (BTEMP-PPV) and poly(2-methoxy-5-(1,3-bis(triethoxymethoxy)propan-2-yloxy)-1,4-phenylene vinylene) (MTEMP-PPV), are presented. Polymerizations have been performed via the dithiocarbamate precursor route, using lithium hexamethyldisilazide (LHMDS) as a base, to obtain high molecular weight precursor polymers. After thermal conversion of the precursor polymers into the fully conjugated systems, the solubility of the polymers has been examined. The polar nonionic side chains of MTEMP-PPV and BTEMP-PPV render the PPV backbone soluble in a variety of solvents, including alcohols and even water, making these polymers suitable candidates to be used in optoelectronic devices that can be processed from environmentally friendly solvent systems.  相似文献   

11.
A series of new poly(p‐phenylene vinylene) derivatives with different dendritic pendants—poly{2‐[3′,5′‐bis(2″‐ethylhexyloxy)benzyloxy]‐1,4‐phenylenevinylene} (BE–PPV), poly{2‐[3′,5′‐bis(3″,7″‐dimethyl)octyloxy]‐1,4‐phenylenevinylene} (BD–PPV), poly(2‐{3′,5′‐bis[3″,5″‐bis(2?‐ethylhexyloxy)benzyloxy]benzyloxy}‐1,4‐phenylenevinylene) (BBE–PPV), poly(2‐{3′,5′‐bis[3″,5″‐bis(3?,7?‐dimethyloctyloxy)benzyloxy]benzyloxy}‐1,4‐phenylenevinylene) (BBD–PPV), and poly[(2‐{3′,5′‐bis[3″,5″‐bis(2?‐ethylhexyloxy)benzyloxy]benzyloxy}‐1,4‐phenylenevinylene)‐co‐(2‐{3′,5′‐bis[3″,5″‐bis(3?,7?‐dimethyloctyloxy)benzyloxy]benzyloxy}‐1,4‐phenylenevinylene)] (BBE‐co‐BBD–PPV; 1:1)—were successfully synthesized according to the Gilch route. The structures and properties of the monomers and the resulting conjugated polymers were characterized with 1H and 13C NMR, elemental analysis, gel permeation chromatography, thermogravimetric analysis, ultraviolet–visible absorption spectroscopy, photoluminescence, and electroluminescence spectroscopy. The obtained polymers possessed excellent solubility in common solvents and good thermal stability, with a 5% weight loss temperature of more than 328 °C. The weight‐average molecular weights and polydispersity indices of BE–PPV, BD–PPV, BBE–PPV, BBD–PPV, and BBE‐co‐BBD–PPV (1:1) were in the range of 1.33–2.28 × 105 and 1.35–1.53, respectively. Double‐layer light‐emitting diodes (LEDs) with the configuration of indium tin oxide/polymer/tris(8‐hydroxyquinoline) aluminum/Mg:Ag/Ag devices were fabricated, and they emitted green‐yellow light. The turn‐on voltages of BE–PPV, BD–PPV, BBE–PPV, BBD–PPV, and BBE‐co‐BBD–PPV (1:1) were approximately 5.6, 5.9, 5.5, 5.2, and 4.8 V, respectively. The LED devices of BE–PPV and BD–PPV possessed the highest electroluminescent performance; they exhibited maximum luminance with about 860 cd/m2 at 12.8 V and 651 cd/m2 at 13 V, respectively. The maximum luminescence efficiency of BE–PPV and BD–PPV was in the range of 0.37–0.40 cd/A. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 3126–3140, 2005  相似文献   

12.
In this study, a novel conjugated polymer, poly(4,4‐bis(2‐ethylhexyl)‐4H‐cyclopenta[def]phenanthrene‐2,6‐vinylene) (PCPPV) has been synthesized and characterized. For the polymerization, Gilch's reaction was applied for the first time with the cyclopenta[def]phenanthrene system. The absorption and emission spectra of PCPPV are red‐shifted about 40–50 nm due to the vinylene units when compared with those of poly(2,6‐(4,4‐bis(2‐ethylhex‐yl)‐4H‐cyclopenta[def]phenanthrene)) (PCPP). The solid‐state fluorescence is significantly broadened, possibly due to π–π interactions introduced by the phenanthrene and vinylene moieties. In solution, as the concentration of polar solvent increased, the photoluminescence (PL) intensity decreased due to quenching and aggregation by the interchain interactions between the conjugated backbones. After annealing the film at 80 °C, the PL and electroluminescence (EL) emission spectra exhibited also the quenching and aggregation effects indicating the interchain interactions of PCPPV. The large number of aromatic rings in a unit and the increased planarity achieved through introduction of vinylene units are able to give interchain interactions stronger than fluorene or phenylene units. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 5068–5077, 2009  相似文献   

13.
We used time-dependent density-functional-theory (TDDFT) approaches to calculate absorption (S(0)-->S(1)) and emission (S(1)-->S(0)) transition energies of poly(p-phenylene vinylene) (PPV). The absorption and emission energies were estimated to be 2.44 and 2.16 eV, respectively, from the extrapolation of calculated results for oligomers. Comparisons with available experimental data demonstrated that TDDFT is a very reliable tool for investigating the electronic transitions of PPV.  相似文献   

14.
The symmetry-adapted cluster-configuration interaction (SAC-CI) method has been used to investigate the optical and geometric properties of the oligomers of poly(para-phenylene vinylene) (PPV) and poly(para-phenylene) (PP). Vertical singlet and triplet absorption spectra and emission spectra have been calculated accurately; the mean average deviation from available experimental results lies within 0.2 eV. The chain length dependence of the transition energies has been improved in comparison to earlier TDDFT and MRSDCI calculations. The present analysis suggests that conventional TDDFT with the B3LYP functional should be used carefully, as it can provide inaccurate estimates of the chain length dependence of the excitation energies of these molecules with long pi conjugation. The T1 state was predicted to be at a lower energy, by 1.0-1.5 eV for PPV and by 0.9-1.7 eV for PP, than the S1 state, which indicates a localized T1 state with large exchange energy. By calculating the SAC-CI electron density difference between the ground and excited states, the geometry relaxations due to excitations can be analyzed in detail using electrostatic force theory. For trans-stilbene, the doubly excited 21Ag state was studied, and the calculated transition energy of 4.99 eV agrees very well with the experimental value of 4.84 eV. In contrast to previous ab initio calculations, we predict this doubly excited 21Ag state to lie above the 11Bu state.  相似文献   

15.
The synthesis of new random poly(arylene‐vinylene)s containing the electron withdrawing 3,7‐dibenzothiophene‐5,5‐dioxide unit was achieved by the Suzuki–Heck cascade polymerization reaction. The properties of poly[9,9‐bis(2‐ethylhexyl)‐2,7‐fluorenylene‐vinylene‐co‐3,7‐dibenzothiophene‐5,5‐dioxide‐vinylene] (50/50 mol/mol, P1 ) and poly[1,4‐bis(2‐ethylhexyloxy)‐2,5‐phenylene‐vinylene‐co‐3,7‐dibenzothiophene‐5,5‐dioxide‐vinylene] (50/50 mol/mol, P2 ) were compared with those of terpolymers obtained by combining the fluorene, dibenzothiophene, and 1,4‐bis(2‐ethylexyloxy)benzene in 20/40/40 ( P3 ), 50/25/25 ( P4 ), and 80/10/10 ( P5 ) molar ratios. The polymers were characterized by 1H NMR and IR, whereas their thermal properties were investigated by TGA and DSC. Polymers P1–5 are blue–green emitters in solution (λem between 481 and 521 nm) whereas a profound red shift observed in the solid state is emission (λem from 578 to 608 nm) that can be attributed both to the charge transfer stabilization exerted by the polar medium and to intermolecular interactions occurring in the solid state. Cyclic voltammetry permitted the evaluation of the ionization potentials and also revealed a quasi‐reversible behavior in the reduction scans for the polymers ( P1–4 ) containing the higher amounts of 3,7‐dibenzothiophene‐5,5‐dioxide units. Electroluminescent devices with both ITO/PEDOT‐PSS/ P1–5 /Ca/Al (Type I) and ITO/PEDOT‐PSS/ P1–5 /Alq3/Ca/Al (Type II) configuration were fabricated showing a yellow to yellow–green emission. In the case of P4 , a luminance of 1835 cd/m2 and an efficiency of 0.25 cd/A at 14 V were obtained for the Type II devices. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 2093–2104, 2009  相似文献   

16.
导电聚合物是由一些具有共轭π键的聚合物经化学或电化学掺杂后形成的导电率可从绝缘体延伸到导体范围的一类高分子材料。其中噻吩及其衍生物具有导电率高、环境稳定性好、成膜性好、禁带宽度小等特点,是用做光伏电池的理想材料。相继报道的有聚3-甲噻吩[1]、聚3-己基噻吩[2],聚(3-十一烷基-2,2’-并噻吩)[3]等。对于聚噻吩的光电化学性质的研究,在国际上很少见报道,国内尚未见报道,本文对聚噻吩(PTh)的光电化学性质进行了研究。1实验部分1.1仪器与试剂光电化学实验采用带石英窗口的三电极电解池,工作电极为ITO/PTh膜电极,参比电极为饱和…  相似文献   

17.
Low‐band‐gap π‐conjugated polymers composed of π‐excessive thiophene and π‐deficient benzothiadiazole and quinoxaline units were prepared in high yields by a polycondensation method using palladium cross‐coupling reactions of alkylthiophene diacetylenes, 4,7‐dibromo‐2,1,3‐benzothiadiazole, and 5,8‐dibromo‐2,3‐dipyridine‐2‐ylquinoxaline. The copolymers were characterized by NMR, IR, UV, gel permeation chromatography, and elemental analysis. High‐molecular‐weight (weight‐average molecular weight up to 82,600 g/mol), thermostable, soluble, and film‐forming materials were obtained. The polymers were photoluminescent in chloroform and showed metallic luster in the solid state. The absorption and emission in solution and in the solid state of the polymers revealed that the polymers generated a π‐stacked structure in the solid state, and the polymer molecules in the film were ordered. Thin films of poly[3‐dodecylthiophen‐2,5‐diylethynylene‐(benzo[1,2,5]thiadiazole‐4,7‐diyl)ethynylene] ( P‐1 ), poly[3,4‐di dodecylthiophen‐2,5‐diylethynylene‐(benzo[1,2,5]thiadiazole‐4,7‐diyl)ethynylene] ( P‐2 ), poly[3‐dodecylthiophene‐2,5‐diylethynylene‐(2,3‐dipyridine‐2‐ylquinoxaline‐5,8‐diyl)ethynylene] ( P‐3 ), and poly[3,4‐didodecylthiophene‐2,5‐diylethynylene‐(2,3‐dipyridine‐2‐ylquinoxaline‐5,8‐diyl)‐ethynylene] ( P‐4 ) exhibited an optical band gap of ~1.85–2.08 eV. The highest occupied molecular orbital and lowest unoccupied molecular orbital levels of the polymers were determined from electrochemical measurements. In the absorption and emission spectra of these polymers in chloroform/methanol mixtures, all the polymers revealed solvatochromic effects, which were related to the formation of aggregates, as confirmed by temperature‐dependence absorption investigations. The absorption spectra of P‐2 and P‐4 at different temperatures also revealed significant effects of the structure on the molecular interactions. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 6445–6454, 2005  相似文献   

18.
Photoexcitation kinetics and interfacial electronic structures of poly[2-methoxy-5(2-ethylhexyloxy)-p-phenylene vinylene] (MEH-PPV) film on gold have been investigated using two-photon photoemission spectroscopy (2PPE). The authors directly probed a fixed intermediate state located at 0.95 eV above the Fermi level (or 2.95 eV below the vacuum level), assigned to a charged polaron. Based on the power law slope and the 2PPE spectra with laser intensity, they found that the polaron follows a second order bimolecular annihilation process. The 2PPE yield dramatically increases with increasing photon energy. They attribute this to an enhanced dissociation of hotter excitons at higher excitation levels. The work function of MEH-PPV/Au is measured to be 3.9 eV, 1.2 eV downshift from the clean gold, attributable to interface dipole effects. The energy gap between the intermediate polaron state and the hole polaron level is estimated to be 2.45 eV.  相似文献   

19.
A novel, water-soluble, cationic PPV derivative poly[(2,5-bis(3-bromotrimethylammoniopropoxy)-phenylene-1,4-divinylene)-alt-1,4-(2,5-bis(2-(2-hydroxyethoxy)ethoxy))phenylene vinylene] (BH-PPV) has been synthesized by a Heck coupling reaction. Multilayered assemblies of the BH-PPV and the sodium salt of hexa(sulfobutyl)fullerenes (C(60)-HS) were fabricated successfully by an alternate deposition technique. The multilayer structures were studied by UV/Vis spectroscopy, small angle X-ray diffraction, and atomic force microscopy. The photoinduced charge transfer property of the self-assembled multilayer film was also measured by a three-electrode cell technique. A steady and rapid cathodic 5.5 microA cm(-2) photocurrent response was measured as the irradiation of the multilayer film was switched on and off. Importantly, the response of on/off cycling is prompt and reproducible. A possible mechanism for the electron-transfer process is proposed.  相似文献   

20.
利用光电化学方法研究了聚3-甲基噻吩的光电化学性质.其禁带宽度为1.93 eV.同时确定了它的价带、导带位置.研究还发现聚3-甲基噻吩属于直接跃迁半导体,具有很好的光电流稳定性.得到的最高IPCE值近1.0%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号