首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We consider a linear integral equation with a supersingular integral treated in the sense of the Hadamard finite value, which arises in the solution of the Neumann boundary value problem for the Laplace equation with the representation of the solution in the form of a doublelayer potential. We consider the case in which the exterior boundary value problem is solved outside a plane surface (a screen). For the integral operator in the above-mentioned equation, we suggest quadrature formulas of the vortex loop method with regularization, which provide its approximation on the entire surface when using an unstructured partition. In the problem in question, the derivative of the unknown density of the double-layer potential, as well as the errors of quadrature formulas, has singularities in a neighborhood of the screen edge. We construct a numerical scheme for the integral equation on the basis of the suggested quadrature formulas and prove an estimate for the norm of the inverse matrix of the resulting system of linear equations and the uniform convergence of the numerical solutions to the exact solution of the supersingular integral equation on the grid.  相似文献   

2.
The exterior Stokes problem between two parallel planes that are separated by a prismatic cylinder is extended to the interior of the prism by requiring the continuity of the velocity across the lateral faces. The well‐posedness of the exterior–interior problem is proved in suitable weighted Sobolev spaces. The solution is represented by Fourier series in the z‐variable. The Fourier coefficients, solutions of auxiliary two‐dimensional exterior–interior problems, are analyzed by viewing them as boundary integral equations of potential theory and global regularity of the densities, is established in weighted Sobolev spaces of traces. A boundary element method, with suitably refined mesh size, is implemented for the numerical treatment of the Fourier coefficients. This provides optimal convergent semi‐ and fully‐discrete spectral methods of Fourier–Galerkin type. © 2007 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2008  相似文献   

3.
In this work, the modified Green function technique for the exterior Dirichlet problem in linear thermoelasticity is presented. Expressing the solution of the problem as a double‐layer potential of an unknown density, we form the associated boundary integral equation that describes the problem. Exploiting that the discrete spectrum of the irregular values of the associated integral equation is identified with the spectrum of eigenvalues of the corresponding interior homogeneous Neumann problem for the transverse part of the elastic displacement field, we introduce a modification of the fundamental solution of the elastic field. We establish the sufficient conditions that the coefficients of the modification must satisfy to overcome the problem of nonuniqueness for the thermoelastic problem.  相似文献   

4.
In this paper, we represent a new numerical method for solving the steady-state Stokes equations in an unbounded plane domain. The technique consists in coupling the boundary integral and the finite element methods. An artificial smooth boundary is introduced separating an interior inhomogeneous region from an exterior one. The solution in the exterior domain is represented by an integral equation over the artificial boundary. This integral equation is incorporated into a velocitypressure formulation for the interior region, and a finite element method is used to approximate the resulting variational problem. This is studied by means of an abstract framework, well adapted to the model problem, in which convergence results and optimal error estimates are derived. Computer results will be discussed in a forthcoming paper.  相似文献   

5.
This article concerns the development of energy-based variational formulations and their corresponding finite element–boundary element Rayleigh–Ritz approximations for solving the time-harmonic vibration and scattering problem of an inhomogeneous penetrable fluid or solid object immersed in a compressible, inviscid, homogeneous fluid. The resulting coupled finite element and boundary integral methods (FEM-BEM) have the following attractive features: (1) Separate direct and complementary variational principles lead naturally to several alternative structure variable and fluid variable methodologies. (2) The solution in the exterior region is represented by a combined single- and double-layer potential which ensures the validity of the methods for all wave numbers; even though this representation introduces hypersingular integrals, for actual computations the hypersingular operator may be rewritten in terms of single-layer potentials, which can be integrated by standard techniques. (3) Since the discretized equations for the interior region and for the boundary are derived from the first variation of bilinear functionals the resulting algebraic systems of equations are always symmetric. In addition, the transition conditions across the interface are natural. This allows one to approximate the solutions within the interior and exterior regions independently, without imposing any boundary constraints.  相似文献   

6.
We consider a linear integral equation with a hypersingular integral treated in the sense of the Hadamard finite value. This equation arises in the solution of the Neumann boundary value problem for the Laplace equation with a representation of a solution in the form of a double-layer potential. We consider the case in which the interior or exterior boundary value problem is solved in a domain; whose boundary is a smooth closed surface, and an integral equation is written out on that surface. For the integral operator in that equation, we suggest quadrature formulas like the method of vortical frames with a regularization, which provides its approximation on the entire surface for the use of a nonstructured partition. We construct a numerical scheme for the integral equation on the basis of suggested quadrature formulas, prove an estimate for the norm of the inverse matrix of the related system of linear equations and the uniform convergence of numerical solutions to the exact solution of the hypersingular integral equation on the grid.  相似文献   

7.
A new method, based on the Kelvin transformation and the Fokas integral method, is employed for solving analytically a potential problem in a non‐convex unbounded domain of ?2, assuming the Neumann boundary condition. Taking advantage of the property of the Kelvin transformation to preserve harmonicity, we apply it to the present problem. In this way, the exterior potential problem is transformed to an equivalent one in the interior domain which is the Kelvin image of the original exterior one. An integral representation of the solution of the interior problem is obtained by employing the Kelvin inversion in ?2 for the Neumann data and the ‘Neumann to Dirichlet’ map for the Dirichlet data. Applying next the ‘reverse’ Kelvin transformation, we finally obtain an integral representation of the solution of the original exterior Neumann problem. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

8.
Emma Skopin 《PAMM》2012,12(1):585-586
The scalar Oseen equation represents a linearized form of the Navier Stokes equations. We present an explicit potential theory for this equation and solve the exterior Dirichlet and interior Neumann boundary value problems via a boundary integral equations method in spaces of continuous functions on a C2-boundary, extending the classical approach for the isotropic selfadjoint Laplace operator to the anisotropic non-selfadjoint scalar Oseen operator. (© 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

9.
This paper proposes a new formulation of regularized meshless method (RMM), which differs from the traditional RMM in that the traditional formulation generates the diagonal elements of influence matrix via null-field integral equations, while our new one directly employs the boundary integral equations at the domain point to evaluate the diagonal elements. We test the present RMM formulation to two-dimensional anisotropic potential problems in finite and infinite domains in comparison with the traditional RMM. Numerical results show that the present RMM sharply outperforms the traditional RMM in the solution of interior problems, while the latter is clearly superior for exterior problems. A rigorous theoretical analysis of circular domain case also corroborates such numerical experiment observations and is provided in the appendix of this paper.  相似文献   

10.
In this work we propose and analyze numerical methods for the approximation of the solution of Helmholtz transmission problems in two or three dimensions. This kind of problems arises in many applications related to scattering of acoustic, thermal and electromagnetic waves. Formulations based on boundary integral methods are powerful tools to deal with transmission problems in unbounded media. Different formulations using boundary integral equations can be found in the literature. We propose here new symmetric formulations based on a paper by Martin Costabel and Ernst P. Stephan (1985), that uses the Calderón projector for the interior and exterior problems to develop closed expressions for the interior and exterior Dirichlet-to-Neumann operators. These operators are then matched to obtain an integral system that is equivalent to the Helmholtz transmission problem and uses Cauchy data on the transmission boundary as unknowns. We show how to simplify the aspect and analysis of the method by employing an additional mortar unknown with respect to the ones used in the original paper, writing it in an appropriate way to devise Krylov type iterations based on the separate Dirichlet-to-Neumann operators.  相似文献   

11.
Problems of exterior acoustic scattering may be conveniently formulated by means of boundary integral equations. The problem seeks to find a wave function which gives velocity potential profile, pressure density profile, etc. of the acoustic wave at points in space. At the background of the formulations are two theories viz. (Helmholtz) Potential theory and the Green's representation formula. Potential theory gives rise to the so-called indirect formulation and the Green's representation formula to the direct formulations. Classical boundary integral formulations fail at the eigenfrequencies of the interior domain. That is, if a solution is sought of the exterior problem by first solving a homogeneous boundary integral equation, one is inevitably led to the conclusion that these homogeneous boundary equations have nontrivial solutions at certain wave-numbers which are the eigenvalues of the corresponding interior problem. At lower wave-numbers, these eigenfrequencies are thinly distributed but the higher the wave-number, the denser it becomes. This is a well-known drawback for both time-harmonic acoustics and elastodynamics. This is not a physical difficulty but arises entirely as a result of a deficiency in the integral equation is representation. Why then use It? The use has many advantages notably in that the meshing region is reduced from the infinite domain exterior to the body to its finite surface. This created the need for some robust formulations. A proof of the Kussmaul [1] formulation is presented. The formulation has a hypersingular kernel in the integral operator, which creates a havoc in computation (e.g., ill conditioning). The hyper-singularity can be avoided [2], as a result a new formulation is proposed. This paper presents a broad overview of the Adapted Kussmaul Formulation (AKF).  相似文献   

12.
In this paper we show how to construct fundamental sequences for approximate solutions to exterior Dirichlet and Neumann-type problems in the bending of micropolar plates. The sequences are based on singular solutions of the governing equilibrium equations. These singular solutions are, however, unbounded at infinity. This leads to difficulties when applying the usual methods for proving linear independence and completeness. By decomposing the sequences into divergent and convergent parts we show that they can be accommodated in a more general framework developed in previous work. This allows us to overcome the difficulties mentioned above. Kupradze's method of generalised Fourier series is then modified and used to construct approximations which converge uniformly to the corresponding exact solutions  相似文献   

13.
We present a systematic analysis of the integral operators of potential theory that arise when solving the Helmholtz or Maxwell equations in the exterior (or interior) of a sphere in the frequency domain. After obtaining expressions for the signatures of layer potentials in the spherical harmonic or vector spherical harmonic basis, we turn to a consideration of various integral equations that have been proposed in the literature for problems of acoustic and electromagnetic scattering. The selection of certain parameters in “combined field” and “Calderon-preconditioned” formulations is shown to have a significant impact on condition number, extending earlier work by Kress and others.  相似文献   

14.
The paper considers a class of matrix-functions defined on some contour in the complex plane that have meromorphic continuations in the interior or exterior domain of that contour. These matrix-functions generally do not admit Wiener-Hopf standard factorization. The paper studies the problem of index factorization, which is a version of Wiener-Hopf factorization. Some criterions for index factorization and exact formulas for particular indices are found along with a constructive method which applies the factorization to solution of an explicit, finite system of linear algebraic equations.  相似文献   

15.
Werner Varnhorn 《PAMM》2014,14(1):741-742
With methods of hydrodynamical potential theory we construct a solution of the Stokes resolvent equations in 2d exterior domains with C1,α-boundaries, 0 < α ≤ 1. The resulting system of boundary integral equations is uniquely solvable for small resolvent parameter λ and allows the limiting procedure λ → 0. (© 2014 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

16.
We develop and experimentally study the algorithms for solving three-dimensionalmixed boundary value problems for the Laplace equation in unbounded domains. These algorithms are based on the combined use of the finite elementmethod and an integral representation of the solution in a homogeneous space. The proposed approach consists in the use of the Schwarz alternating method with consecutive solution of the interior and exterior boundary value problems in the intersecting subdomains on whose adjoining boundaries the iterated interface conditions are imposed. The convergence of the iterative method is proved. The convergence rate of the iterative process is studied analytically in the case when the subdomains are spherical layers with the known exact representations of all consecutive approximations. In this model case, the influence of the algorithm parameters on the method efficiency is analyzed. The approach under study is implemented for solving a problem with a sophisticated configuration of boundaries while using a high precision finite elementmethod to solve the interior boundary value problems. The convergence rate of the iterations and the achieved accuracy of the computations are illustrated with some numerical experiments.  相似文献   

17.
Using a standard application of Green's theorem, the exterior Dirichlet problem for the Laplace equation in three dimensions is reduced to a pair of integral equations. One integral equation is of the second kind and the other is of the first kind. It is known that the integral equation of the second kind is not uniquely solvable, however, it has been demonstrated that the pair of integral equations has a unique solution. The present approach is based on the observation that the known function appearing in the integral equation of the second kind lies in a certain Banach space E which is a proper subspace of the Banach space of continuous complex-valued functions equipped with the maximum norm. Furthermore, it can be shown that the related integral operator when restricted to E has spectral radius less than unity. Consequently, a particular solution to the integral equation of the second kind can be obtained by the method of successive approximations and the unique solution to the problem is then obtained by using the integral equation of the first kind. Comparisons are made between the present algorithm and other known constructive methods. Finally, an example is supplied to illustrate the method of this paper.  相似文献   

18.
Summary. Many boundary integral equations for exterior boundary value problems for the Helmholtz equation suffer from a notorious instability for wave numbers related to interior resonances. The so-called combined field integral equations are not affected. However, if the boundary is not smooth, the traditional combined field integral equations for the exterior Dirichlet problem do not give rise to an L2()-coercive variational formulation. This foils attempts to establish asymptotic quasi-optimality of discrete solutions obtained through conforming Galerkin boundary element schemes.This article presents new combined field integral equations on two-dimensional closed surfaces that possess coercivity in canonical trace spaces. The main idea is to use suitable regularizing operators in the framework of both direct and indirect methods. This permits us to apply the classical convergence theory of conforming Galerkin methods.  相似文献   

19.
In this paper, we present a domain decomposition method, based on the general theory of Steklov-Poincaré operators, for a class of linear exterior boundary value problems arising in potential theory and heat conductivity. We first use a Dirichlet-to-Neumann mapping, derived from boundary integral equation methods, to transform the exterior problem into an equivalent mixed boundary value problem on a bounded domain. This domain is decomposed into a finite number of annular subregions, and the Dirichlet data on the interfaces is introduced as the unknown of the associated Steklov-Poincaré problem. This problem is solved with the Richardson method by introducing a Dirichlet-Robin-type preconditioner, which yields an iteration-by-subdomains algorithm well suited for parallel computations. The corresponding analysis for the finite element approximations and some numerical experiments are also provided.  相似文献   

20.
The aim of this paper is the numerical treatment of a boundary value problem for the system of Stokes’ equations. For this we extend the method of approximate approximations to boundary value problems. This method was introduced by Maz’ya (DFG-Kolloquium des DFG-Forschungsschwerpunktes Randelementmethoden, 1991) and has been used until now for the approximation of smooth functions defined on the whole space and for the approximation of volume potentials. In the present paper we develop an approximation procedure for the solution of the interior Dirichlet problem for the system of Stokes’ equations in two dimensions. The procedure is based on potential theoretical considerations in connection with a boundary integral equations method and consists of three approximation steps as follows. In a first step the unknown source density in the potential representation of the solution is replaced by approximate approximations. In a second step the decay behavior of the generating functions is used to gain a suitable approximation for the potential kernel, and in a third step Nyström’s method leads to a linear algebraic system for the approximate source density. For every step a convergence analysis is established and corresponding error estimates are given.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号