首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Tin(IV)tetraphenylporphyrinato tetrafluoroborate, [SnIV(TPP)(BF4)2], was used as an efficient catalyst for trimethylsilylation of alcohols and phenols with hexamethyldisilazane (HMDS). High-valent [SnIV(TPP)(BF4)2] catalyzes trimethylsilylation of primary, secondary and tertiary alcohols as well as phenols, and the corresponding TMS-ethers were obtained in high yields and short reaction times at room temperature. While, under the same reaction conditions [SnIV(TPP)Cl2] is less efficient to catalyze these reactions. One important feature of this catalyst is its ability in the chemoselective silylation of primary alcohols in the presence of secondary and tertiary alcohols and phenols. The catalyst was reused several times without loss of its catalytic activity.  相似文献   

2.
In the present work, highly efficient trimethylsilylation of alcohols and phenols with hexamethyldisilazane (HMDS) catalyzed by high-valent [TiIV(salophen)(OTf)2] is reported. Under these conditions, primary, secondary and tertiary alcohols as well as phenols were silylated in short reaction times and high yields. It is noteworthy that this method can be used for chemoselective silylation of primary alcohols in the presence of secondary and tertiary alcohols and phenols. The catalyst was reused several times without loss of its catalytic activity.  相似文献   

3.
Titanium(IV) salophen trifluoromethanesulfonate, [TiIV(salophen)(OSO2CF3)2], as a catalyst enables selective tetrahydropyranylation of alcohols and phenols with 3,4‐dihydro‐2H‐pyran. Using this catalytic system, primary, secondary and tertiary alcohols, as well as phenols, were converted to their corresponding tetrahydropyranyl ethers in high yields and short reaction times at room temperature. Investigation of the chemoselectivity of this method showed discrimination between the activity of primary alcohols in the presence of secondary and tertiary alcohols and phenols. This heterogenized catalyst could be reused several times without loss of its catalytic activity. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

4.
In this paper, rapid and highly efficient trimethylsilylation of alcohols and phenols with hexamethyldisilazane (HMDS) in the presence of catalytic amounts of high‐valent [SnIV(TPP)(OTf)2] is reported. This catalytic system catalyzes trimethylsilylation of primary, secondary and tertiary alcohols as well as phenols, and the corresponding TMS‐ethers were obtained in high yields and short reaction times at room temperature. It is noteworthy that this method can be used for chemoselective silylation of primary alcohols in the presence of secondary and tertiary alcohols and phenols. The catalyst was reused several times without loss of its catalytic activity. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

5.
High-valent tin(IV)octabromotetraphenylporphyrinato trifluoromethanesulfonate, [SnIV(Br8TPP)(OTf)2], was used for selective methoxymethylation of alcohols and phenols with formaldehyde dimethyl acetal (FDMA) at room temperature. Different primary, secondary and tertiary alcohols as well as phenols were converted to their corresponding methoxymethyl ethers with FMDA in the presence of an electron deficient tin(IV) porphyrin. The catalyst was reused several times without significant loss of its activity.  相似文献   

6.
The catalytic activity of graphene oxide‐bound tetrakis(p ‐aminophenyl)porphyrinatotin(IV) trifluoromethanesulfonate, [SnIV(TNH2PP)(OTf)2], in the trimethylsilylation of alcohols and phenols with hexamethyldisilazane (HMDS) is reported. The prepared catalyst was characterized using inductively coupled plasma analysis, scanning electron microscopy, transmission electron microscopy, and Fourier transform infrared and diffuse reflectance UV–visible spectroscopies. This heterogeneous catalyst was used for selective trimethylsilylation of various alcohols and phenols with HMDS in short reaction times and high yields. Also, the catalyst is of high reusability and stability, in that it was recovered several times without loss of its initial activity. The chemoselectivity of this catalytic system in the silylation of primary alcohols in the presence of secondary and tertiary alcohols and also phenols was investigated.  相似文献   

7.
In the present work, the catalytic activity of high-valent tetraphenylporphyrinatovanadium(IV) trifluoromethanesulfonate, [VIV(TPP)(OTf)2], in the tetrahydropyranylation of alcohols and phenols with 3,4-dihydro-2H-pyran (DHP) is reported. This new electron-deficient V(IV) compound was used as a highly efficient catalyst for pyranylation of primary (aliphatic and benzylic), sterically-hindered secondary and tertiary alcohols with DHP. Tetrahydropyranylation of phenols with DHP was also performed to afford the desired THP-ethers. The chemoselectivity of this method was also investigated. The results indicated that primary alcohols are more reactive in the presence of secondary and tertiary alcohols and phenols. This catalyst was reused several times without loss of its activity.  相似文献   

8.
In the present work, the application of electron‐deficient tetraphenylporphyrinatovanadium(IV) trifluoromethanesulfonate, [VIV(TPP)(OTf)2], in the trimethylsilylation of alcohols and phenols with hexamethydisilazane (HMDS) is reported. This new V(IV) catalyst was used as an efficient catalyst for silylation of not only primary alcohols but also sterically hindered secondary and tertiary alcohols with HMDS. Trimethylsilylation of phenols with HMDS was also performed to afford the desired Trimethylsilyl ethers (TMS) ethers. The chemoselectivity of this method was also investigated. This catalyst can be reused several times without loss of its activity. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

9.
Efficient trimethylsilylation of alcohols and phenols with hexamethyldisilazane (HMDS) catalyzed by ruthenium(III) complex of chloromethylated Salophen supported on nanomagnetic materials is reported. First, the iron nanomagnets were silica coated, functionalized with amine and then ruthenium CM‐Salophen was successfully bonded to their surface. The catalyst, RuIII(OTf)SalophenCH2–NHSiO2–Fe, was characterized by elemental analysis, FT‐IR and UV–visible spectroscopic techniques, transmission electron microscopy and inductively coupled plasma (ICP). The RuIII(OTf)SalophenCH2–NHSiO2–Fe catalyzed trimethylsilylation of primary and secondary alcohols as well as phenols, and the corresponding TMS ethers were obtained in high yields and short reaction times at room temperature. This new heterogenized trimethylsilylation catalyst is easily recovered with a magnet and showed no appreciable loss of activity even after five consecutive runs. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

10.
 An efficient procedure for the trimethylsilylation of alcohols and phenols is presented. The combination of 1,1,1,3,3,3-hexamethyldisilazane and a catalytic amount of phenyltrimethylammonium tribromide (PhMe3N+Br3?) was found to be effective for the trimethylsilylation of alcohols and phenols. The protection reaction is very simple and homogenously performed in dichloromethane at room temperature and mild conditions.  相似文献   

11.
Polystyrene‐supported gallium trichloride (PS/GaCl3) as a highly active and reusable heterogeneous Lewis acid effectively activates hexamethyldisilazane (HMDS) for the efficient silylation of alcohols and phenols at room temperature. In this heterogeneous catalytic system, primary, secondary, and tertiary alcohols as well as phenols were converted to their corresponding trimethylsilyl ethers with short reaction times and high yields under mild reaction conditions. The heterogenized catalyst is of high reusability and stability in the silylation reactions and was recovered several times with negligible loss in its activity or a negligible catalyst leaching, and also there is no need for regeneration. It is noteworthy that this method can be used for chemoselective silylation of different alcohols and phenols with high yields.  相似文献   

12.
In the present work, tetrakis(p-aminophenyl)porphyrinatotin(IV) trifluoromethanesulfonate, [SnIV(TNH2PP)(OTf)2], supported on chloromethylated polystyrene was prepared and characterized by elemental analysis, FT IR and diffuse reflectance UV-Vis spectroscopic methods. This new heterogenized catalyst was used for acetylation of alcohols and phenols with acetic anhydride in short reaction times and high yields. The catalyst is of high reusability and stability in the acetylation reactions and was recovered several times without loss of its initial activity and catalyst leaching.  相似文献   

13.
Highly efficient acetylation and benzoylation of alcohols, phenols, amines and thiols with acetic and benzoic anhydrides catalyzed by new and reusable zirconyl triflate, ZrO(OTf)2, is reported. The high catalytic activity of electron deficient ZrO(OTf)2 can be used for the acetylation and benzoylation of not only primary alcohols but also sterically-hindered secondary and tertiary alcohols with acetic and benzoic anhydrides. Acetylation of phenols with acetic and benzoic anhydrides was achieved to afford the desired acetates and benzoates efficiently. This catalyst also efficiently catalyzed the acetylation and benzoylation of amines and thiols whereby the corresponding amides and thioesters were obtained in good to excellent yields. This catalyst can be reused several times without loss of its activity.  相似文献   

14.
Polystyrene supported TiCl4 (Ps‐TiCl4) and polystyrene supported FeCl3 (Ps‐FeCl3) were prepared by coordinating Lewis acids with polystyrene. The catalysts were characterized by TGA, BET, SEM, IR and pyridine‐adsorbed IR. The loading of Ps‐TiCl4 and Ps‐FeCl3 were 0.35 and 0.3 mmol·g?1 respectively. Both catalysts were found to be efficient for the tetrahydropyranylation and detetrahydropyranylation of various alcohols and phenols in different solvents. Two catalysts can be recovered and reused for five times with good activity.  相似文献   

15.
Cross‐linked poly(4‐vinylpyridine/styrene) copolymer‐supported bismuth(III) triflate (30P/S‐Bi) effectively activates hexamethyldisilazane (HMDS) for the silylation of alcohols and phenols. By the use of this heterogeneous catalytic system, a wide range of alcohols as well as phenols are converted into their corresponding trimethylsilyl ethers in high yield under mild reaction conditions. The catalyst was reused more than 10 times without significant loss of its catalytic activity. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

16.
The catalytic activity of 5,10,15,20‐tetrakis(4‐aminophenyl)porphyrinatotin(IV) trifluoromethanesulfonate, [SnIV(TNH2PP)(OTf)2], supported on chloromethylated MIL‐101, was investigated in the trimethylsilylation of alcohols and phenols with hexamethyldisilazane (HMDS) and also their tetrahydropyranylation with 3,4‐dihydro‐2H‐pyran. Excellent yields, mild reaction conditions, short reaction times and reusability of the catalyst without significant decrease in its initial activity are noteworthy advantages of this supported catalyst. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

17.
13C spin–lattice relaxation times determined for the protonated carbons of carboxylic acids and methyl esters give indications of solution dimerization with the free acids. Since isopthalic and fumaric acids have two carboxyl functions they are able to polymerize in solution. Unlike the case for molecular aggregation due to weak hydrogen bonding in solution (e.g. alcohols, phenols), the 13C T1 values of mono carboxylic acids are not significantly affected by dilution to c. 10?2 M. Variable temperature T1 measurements of both the mono and dibasic acids gave activation energies for molecular reorientation of the order of 2 kcal mol?1, considerably lower than Ea for hydrogen bonded alcohols and comparable with Ea for the unassociated methyl esters of propionic and benzoic acids.  相似文献   

18.
A new, simple and highly chemoselective method for both acetylation and benzoylation of alcohols and phenols with acetic anhydride in the presence of polystyrene-supported gallium trichloride (PS/GaCl3) as a highly active and reusable heterogeneous Lewis acid catalyst is presented. In this catalytic system, primary, secondary and tertiary alcohols as well as phenols were converted to the corresponding acetates and benzoates with high yields. The heterogenized catalyst is of high reusability and stability in the acetylation reactions and was recovered several times with negligible loss in its activity or a negligible catalyst leaching, and also there is no need for regeneration. Remarkably, a selective mono-acetylation of symmetrical diols can be achieved chemoselectively by employing the same catalyst.  相似文献   

19.
Alkali and alkaline earth metal perchlorates exhibit electrostatic catalysis in the activation of anhydrides for the acylation reaction. Perchlorates with higher values of the charge-size function of the metal ion exhibit better catalytic activity following the order Mg(ClO4)2>Ba(ClO4)2>LiClO4. Acylation of structurally diverse phenols, thiols, alcohols, and amines have been carried out with stoichiometric amounts of anhydride at room temperature under solvent free conditions in the presence of catalytic amount of Mg(ClO4)2. Sterically hindered and electron deficient phenols are efficiently acylated. Acylation with sterically hindered anhydrides such as iso-butyric, pivalic, and benzoic anhydrides are carried out with phenols and alcohols in excellent yields. Acid-sensitive alcohols are acylated in excellent yields without any competitive side reactions.  相似文献   

20.
A very efficient and mild silylation of alcohols and phenols with hexamethyldisilazane (HMDS) at rt is developed using Bi(OTf)3 as the catalyst. Primary, secondary and tertiary alcohols as well as phenols are excellently converted into corresponding TMS ethers in a very short reaction time. This procedure can also be applied to large scale silylation for industrial application.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号