首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The reactions of UO3 and TeO3 with KCl, RbCl, or CsCl at 800 °C for 5 d yield single crystals of A2[(UO2)3(TeO3)2O2] (A=K (1), Rb (2), and Cs (3)). These compounds are isostructural with one another, and their structures consist of two-dimensional sheets arranged in a stair-like topology separated by alkali metal cations. These sheets are comprised of zigzagging uranium(VI) oxide chains bridged by corner-sharing trigonal pyramidal TeO32− anions. The chains are composed of dimeric, edge-sharing, pentagonal bipyramidal UO7 moieties joined by edge-sharing tetragonal bipyramidal UO6 units. The lone-pair of electrons from the TeO3 groups are oriented in opposite directions with respect to one another on each side of the sheets rendering each individual sheet non-polar. The alkali metal cations form contacts with nearby tellurite oxygen atoms as well as with oxygen atoms from the uranyl moieties. Crystallographic data (193 K, MoKα, ): 1, triclinic, space group , , , , α=101.852(1)°, β=102.974(1)°, γ=100.081(1)°, , Z=2, R(F)=2.70% for 98 parameters and 1697 reflections with I>2σ(I); 2, triclinic, space group , , , , α=105.590(2)°, β=101.760(2)°, γ=99.456(2)°, , Z=2, R(F)=2.36% for 98 parameters and 1817 reflections with I>2σ(I); 3, triclinic, space group , , , , α=109.301(1)°, β=100.573(1)°, γ=99.504(1)°, , Z=2, R(F)=2.61% for 98 parameters and 1965 reflections with I>2σ(I).  相似文献   

3.
Three novel Th(IV) compounds containing heavy oxoanions, Th(SeO3)(SeO4) (1), Th(IO3)2(SeO4)(H2O)3·H2O (2), and Th(CrO4)(IO3)2 (3), have been synthesized under mild hydrothermal conditions. Each of these three distinct structures contain trigonal pyramidal and tetrahedral oxoanions. Compound 1 adopts a three-dimensional structure formed from ThO9 tricapped trigonal prisms, trigonal pyramidal selenite, SeO32-, anions containing Se(IV), and tetrahedral selenate, SeO42-, anions containing Se(VI). The structure of 2 contains two-dimensional porous sheets and occluded water molecules. The Th centers are found as isolated ThO9 tricapped trigonal prisms and are bound by four trigonal pyramidal iodate anions, two tetrahedral selenate anions, and three coordinating water molecules. In the structure of 3, the Th(IV) cations are found as ThO9 tricapped trigonal prisms. Each Th center is bound by six IO31- anions and three CrO42- anions forming a chiral three-dimensional structure. Second-harmonic generation of 532 nm light from 1064 nm radiation by a polycrystalline sample of 3 was observed. Crystallographic data (193 K, MoKα, λ=0.71073): 1; monoclinic, P21/c; , , , β=103.128(1), Z=4, R(F)=2.47% for 91 parameters with 1462 reflections with I>2σ(I); 2, monoclinic, P21/n, , , , β=100.142(2), Z=4, R(F)=4.71% for 158 parameters with 2934 reflections with I>2σ(I); 3, orthorhombic, P212121, , , , Z=4, R(F)=2.04% for 129 parameters with 2035 reflections with I>2σ(I).  相似文献   

4.
5.
Four solid phases of [Zn(DMSO)6](ClO4)2 have been detected by differential scanning calorimetry (DSC). Specifically, the phase transitions were detected between: metastable phase KII ↔ supercooled phase K0 at , stable phase KIb ↔ stable phase KIa at , stable phase KIa ↔ stable phase K0 at . At Tm2 = 389 K crystals partially and at Tm1 = 465 K completely melts. From the entropy change values it was concluded that the phases: K0 and K0′ are the orientationally dynamically disordered phases, so called ODDIC crystals, and phases KIa, KIb and metastable KII are dynamically ordered but with some degree of positional disorder.  相似文献   

6.
Two new zinc phosphites [Zn2(HPO3)2(H2PO3)][C3H5N2] 1 and [Zn2(HPO3)3][C4H7N2]2·2H2O 2 have been hydrothermally synthesized templated by imidazole and 2-methylimidazole. Single-crystal X-ray diffraction analysis reveals that the two compounds have the similar inorganic framework structures, which both exhibit 2D double layer structures with double 12-membered rings. Due to the different space-filling effect of the guest molecules, the stacking mode of adjacent layers and the arrangement mode of the organic amines are distinct. In 1, the adjacent layers are stacked in an -ABAB- sequence and monoprotonated imidazole molecules sit in the middle of 12MR windows, while in 2, the layers are stacked in an -AAAA- pattern. Monoprotonated 2-methylimidazole molecules occupy two different sites, one inserts into 12MR and the other resides in the interlayer region. Crystal data for 1: triclinic, P-1, , , , α=114.71(3)°, β=92.78(3)°, γ=113.04(3)°, , Z=2; for 2: triclinic, P-1, , , , α=68.244(7)°, β=76.143(7)°, γ=63.113(6)°, , Z=2.  相似文献   

7.
Two zinc phosphates (ZnPO), [H2(N2C9H20)]·[Zn(H2PO4)4] (I) and [H2(N2C9H20)]2·[Zn2(HPO4)3(H2PO4)2]·H2O (II), are synthesized under hydrothermal conditions using 4-amino-2.2.6.6-tetramethylpiperidine as organic template. I crystallizes in space group with , , , α=92.57(1)°, β=89.76(1)°, γ=102.16(2)°, and Z=2. Its structure, refined to R=0.029 and Rw=0.076 for 4279 independent reflections, consists of [Zn(H2PO4)4]2− clusters held together through strong hydrogen bonds to form pseudo-layers between which the doubly protonated amine molecules are inserted. II is monoclinic, C2, with , , , β=103.72(5)°, and Z=4 (R=0.079, Rw=0.268, 2477 independent reflections). The structure of II consists of [Zn2(HPO4)3(H2PO4)2]4− inorganic (2D) layers built up from vertex-sharing [ZnO4] and [(H2/H)PO4] tetrahedra. Organic cations and water molecules ensure the connection between these layers via hydrogen bonds. It is shown that numerous (1D), (2D), e.g., [H2(N2C9H20)]2·[Zn2(HPO4)3(H2PO4)2]·H2O, and (3D) (ZnPO) result from the condensation of the [Zn(H2PO4)4]2− clusters.  相似文献   

8.
A new three-dimensional non-interpenetrating coordination polymer, [{Cu(dps)2(SO4)}·3H2O·DMF]n (1) (dps=4,4′-dipyridyl sulfide) was synthesized and structurally characterized. 1 crystallizes in triclinic system, space group P−1 with cell parameters of a=10.9412(1) Å, b=11.8999(1) Å, c=12.5057(1) Å, V=1400.7(3) Å3, Z=2, Dc=1.573 g cm−3, F(0 0 0)=686, μ=1.059 mm−1. R1=0.0436, wR2=0.1148. In the polymeric architecture, serve as bridging coligands to connect highly puckered [Cu2(dps)2]n frameworks resulting in a 3D motif containing channels for guest molecule inclusion. Quantum chemistry calculation shows that the third-order NLO properties of polymer 1 are controlled by groups and dps ligands, and metal ions have less influence on the third-order NLO properties.  相似文献   

9.
Single crystals of the potassium uranyl iodate, K[UO2(IO3)3] (1), have been grown under mild hydrothermal conditions. The structure of 1 contains two-dimensional sheets extending in the [ab] plane that consist of approximately linear UO22+ cations bound by iodate anions to yield UO7 pentagonal bipyramids. There are three crystallographically unique iodate anions, two of which bridge between uranyl cations to create sheets, and one that is monodentate and protrudes in between the layers in cavities. K+ cations form long ionic contacts with oxygen atoms from the layers forming an eight-coordinate distorted dodecahedral geometry. These cations join the sheets together. Ion-exchange reactions have been carried out that indicate the selective uptake of Cs+ over Na+ or K+ by 1. Crystallographic data (193 K, MoKα, ): 1, orthorhombic, Pbca, a=11.495(1) Å, b=7.2293(7) Å, c=25.394(2) Å, Z=8, R(F)=1.95% for 146 parameters with 2619 reflections with I>2σ(I).  相似文献   

10.
The first example of a unidimensional zirconium hydroxide fluoride was synthesized under mild solvothermal treatment and characterized by X-ray diffraction and thermal techniques. Monoprotonated ethylenediamine cations reside between the anionic chains. Crystal data for this material are as follows: [C2N2H9][Zr(OH)2F3], M=243.35, orthorhombic, space group Pca21, a=6.8016(13), b=6.1393(12), , , , Z=4, , μ(Mo-Kα)=1.777 mm−1, . The material transforms to an unknown layered material at ∼175 °C, a common occurrence for 1D structures where the chains are arranged in hydrogen-bonded layers and separated by interlayer organoammoniums. Collapse to the known condensed mineral phase Zr(FO)2.7 occurs at ca. 275 °C before finally transforming to the baddeleyite form of ZrO2 at ca. 460 °C.  相似文献   

11.
Two new manganese(II) selenite polymorphs with formula Mn(SeO3)·H2O have been synthesized by slow evaporation from an aqueous solution. The crystal structure of both compounds (1) and (2) have been solved from X-ray diffraction data. The structure of (1) was determined from single-crystal X-ray diffraction techniques. The compound crystallizes in the Ama2 space group, with a=5.817(1), b=13.449(3), and Z=4. The structure of (2) has been solved from X-ray powder diffraction data. This phase crystallizes in the P21/n space group with unit-cell parameters of a=4.921(3), b=13.121(7), , β=90.03(2)° and Z=4. Both polymorphs exhibit a layered structure formed by isolated sheets of MnO6 octahedra and (SeO3)2− trigonal pyramids in the (010) plane. These layers, which contain one manganese and selenium atom crystallographically independent, are formed by octahedra linked between them through the selenite oxoanions. The difference of both compounds consists in the stacking of the layers along the b-axis. The IR spectra show the characteristic bands of the selenite anion. Studies of luminescence performed at 6 K and diffuse reflectance spectroscopy have been carried out for both phases. The Dq and Racah (B and C) parameters, from luminescence and diffuse reflectance spectroscopy, are Dq=705, B=750, for (1) and Dq=720, B=745, for (2). The ESR spectra of both compounds are isotropic with g-values of 1.99(1). Magnetic measurements indicate the presence of antiferromagnetic couplings in both phases. The J-exchange parameters have been estimated by fitting the experimental magnetic data to a model for square-planar lattice. The values obtained are J/k=-0.83, −0.91 K and J/k=-0.97, −1.20 K, for polymorphs (1) and (2), respectively.  相似文献   

12.
13.
The compound (enH2)3.5[As8V14O42(PO4)]·2H2O 1 (en=ethylenediamine) has been synthesized and characterized by means of elemental analysis, IR spectrum, ESR spectrum, XPS spectrum, TG analysis and single crystal X-ray diffraction analysis. The compound 1 crystallizes in monoclinic system, space group C2/c, β=105.59(3), Z=8 and R1(wR2)=0.0398(0.0885). The compound 1 is constructed from [As8V14O42(PO4)]7− anions and H2en cations linked through hydrogen bonds into a network. The [As8V14O42(PO4)]7− cluster consists of 14 VO5 square pyramids linked by 4 As2O5 handle-like units, and includes at its center an ordered PO43− anion.  相似文献   

14.
15.
A cobalt phosphonate (H3O)6·[Co4(H2O)4(HPMIDA)2(PMIDA)2)]·2H2O, 1, has been synthesized from a mild solvothermal reaction of Co(II) ion with N-(phosphonomethyl)iminodiacetic acid (H4PMIDA). Compound 1 crystallizes in the triclinic space group with cell parameters of , , , α=93.06(3)°, β=99.66(3)°, γ=90.34(3)° and Z=1. Compound 1 shows a novel tetra-nuclear molecular structure. In the crystal lattice, molecules of 1 hydrogen bond to each other to form two-dimensional (2D) layers, which are further linked together by the co-crystallized H2O molecules and H3O+ counter ions through hydrogen bonding to form the 3D supramolecular network. Thermogravimetric analysis, IR spectrum, magnetic susceptibility and luminescent spectra are given.  相似文献   

16.
Three new hydrated scandium selenites have been hydrothermally synthesized as single crystals and structurally and physically characterized. Sc2(SeO3)3·H2O crystallizes as a new structure type containing novel ScO7 pentagonal bipyramidal and ScO6+1 capped octahedral coordination polyhedra. Sc2(SeO3)3·3H2O contains typical ScO6 octahedra and is isostructural with its M2(SeO3)3·3H2O (M=Al, Cr, Fe, Ga) congeners. CsSc3(SeO3)4(HSeO3)2·2H2O contains near-regular ScO6 octahedra and has essentially the same structure as its indium-containing analogue. All three phases contain the expected pyramidal [SeO3]2- selenite groups. Crystal data: Sc2(SeO3)3·3H2O, Mr=524.85, trigonal, R3c (No. 161), , , , Z=6, R(F)=0.018, wR(F2)=0.036; Sc2(SeO3)3·H2O, Mr=488.82, orthorhombic, P212121 (No. 19), , , , , Z=4, R(F)=0.051, wR(F2)=0.086; CsSc3(SeO3)4(HSeO3)2·2H2O, Mr=1067.60, orthorhombic, Pnma (No. 62), , , , , Z=4, R(F)=0.035, wR(F2)=0.070.  相似文献   

17.
A ferroelectric crystal (C3N2H5)5Sb2Br11 has been synthesized. The single crystal X-ray diffraction studies (at 300, 155, 138 and 121 K) show that it is built up of discrete corner-sharing bioctahedra and highly disordered imidazolium cations. The room temperature crystal structure has been determined as monoclinic, space group, P21/n with: , and and β=96.19°. The crystal undergoes three solid-solid phase transitions: ) discontinuous, continuous and discontinuous. The dielectric and pyroelectric measurements allow us to characterize the low temperature phases III and IV as ferroelectric with the Curie point at 145 K and the saturated spontaneous polarization value of the order of along the a-axis (135 K). The ferroelectric phase transition mechanism at 145 K is due to the dynamics of imidazolium cations.  相似文献   

18.
A Mo(V) oligophosphate, built up of di and triphosphate groups, Cs(MoO)4(P2O7)2(P3O10) has been synthesized for the first time. This compound crystallizes in the triclinic P−1 space group with , , , α=94.534(6)°, β=102.520(6)°, γ=103.663(4)°. This original structure can be described by the association of MoO6 octahedra, MoP2O11 units built up of one P2O7 group sharing two apices with the same MoO6 octahedron, and triphosphates groups P3O10. The resulting tridimensional framework forms large S-shaped tunnels running along c where the Cs+ cations are located.  相似文献   

19.
The crystal structures of the title compounds were solved using the single-crystal X-ray diffraction technique. At room temperature CsKSO4Te(OH)6 was found to crystallize in the monoclinic system with Pn space group and lattice parameters: ; ; ; β=106.53(2)°; ; Z=4 and . The structural refinement has led to a reliability factor of R1=0.0284 (wR2=0.064) for 7577 independent reflections. Rb1.25K0.75SO4Te(OH)6 material possesses a monoclinic structure with space group P21/a and cell parameters: ; ; ; β=106.860(10)°; ; Z=4 and . The residuals are R1=0.0297 and wR2=0.0776 for 3336 independent reflections. The main interest of these structures is the presence of two different and independent anionic groups (TeO66− and SO42−) in the same crystal.Complex impedance measurements (Z*=ZiZ) have been undertaken in the frequency and temperature ranges 20-106 Hz and 400-600 K, respectively. The dielectric relaxation is studied in the complex modulus formalism M*.  相似文献   

20.
This paper reports the syntheses and characterization of two phosphonate compounds with layered structures, namely, Mn2(2-C5H4NPO3)2(H2O) (1) and Zn(6-Me-2-C5H4NPO3) (2). In compound 1, double chains are found in which the {Mn2O2} dimers are linked by both aqua and O-P-O bridges. These double chains are connected through corner-sharing of {MnO5N} octahedra and {CPO3} tetrahedra, forming an inorganic layer. The pyridyl groups fill the inter-layer spaces. In compound 2, each {ZnO3N} tetrahedron is vertex-shared with three {CPO3} tetrahedra and vice versa, hence forming an inorganic honeycomb layer. The pyridyl groups reside between the layers. Magnetic studies show that weak antiferromagnetic interactions are mediated between the manganese ions in compound 1. Crystal data for 1: monoclinic, space group C2/c, , , , β=107.3(1)°. For 2: orthorhombic, space group Pbca, , , .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号