首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The use of succinamic acid (H2sucm) in CuII/N,N′,N″-donor [2,2′:6′,2″-terpyridine (terpy), 2,6-bis(3,5-dimethylpyrazol-1-yl)pyridine (dmbppy)] reaction mixtures yielded compounds [Cu(Hsucm)(terpy)]n(ClO4)n (1), [Cu(Hsucm)(terpy)(MeOH)](ClO4) (2), [Cu2(Hsucm)2(terpy)2](ClO4)2 (3), [Cu(ClO4)2(terpy)(MeOH)] (4), [Cu(Hsucm)(dmbppy)]n(NO3)n·3nH2O (5.3nH2O), and [CuCl2(dmbppy)]·H2O (6·H2O). The succinamate(−1) ligand exists in four different coordination modes in the structures of 13 and 5, i.e., the μ2OO′:κO″ in 1 and 5 which involves asymmetric chelating coordination of the carboxylato group and ligation of the amide O-atom leading to 1D coordination polymers, the μ22OO′ in 3 which involves asymmetric chelating and bridging coordination of the carboxylato group, and the asymmetric chelating mode in 2. The primary amide group, either coordinated in 1 and 5, or uncoordinated in 2 and 3, participate in hydrogen bonding interactions, leading to interesting crystal structures. Characteristic IR bands of the complexes are discussed in terms of the known structures and the coordination modes of the Hsucm ligands. The thermal decomposition of complex 5·3nH2O was monitored by TG/DTG and DTA measurements.  相似文献   

2.
The use of succinamic acid (H2sucm)/N,N′-chelate (2,2′-bipyridine, bpy; 4,4′-dimethyl-2,2′-bipyridine, dmbpy; 1,10-phenanthroline, phen) ‘ligand blends’ in CuX2·yH2O (X = NO3, y = 3; X = Cl, y = 0) chemistry has yielded the new complexes [Cu2(Hsucm)3(bpy)2](NO3)·0.5MeOH (1·0.5MeOH), [Cu2(Hsucm)(OH)Cl(bpy)2](OH)·3.6H2O (5·3.6H2O) and [Cu2(Hsucm)2Cl2(phen)2] (6). The succinamate(−1) ion behaves as a carboxylate ligand and exists in two different coordination modes in the structures of the above complexes, i.e., the common syn, syn μ2OO′ in 1, 5 and 6, and the μ22OO′ in 1. The primary amide group of Hsucm remains uncoordinated and participates in intermolecular hydrogen bonding interactions leading to 1D, 2D and 3D networks. Characteristic IR bands of the complexes are discussed in terms of the known structures and the coordination modes of the Hsucm ligands.  相似文献   

3.
The synthetic investigation of the CuII/maleamate(−1) ion (HL)/N,N′,N′′-chelate general reaction system has allowed access to compounds [Cu2(HL)2(bppy)2](ClO4)2·H2O (1·H2O), [Cu(HL)(bppy)(ClO4)] (2) and [Cu(HL)(terpy)(H2O)](ClO4) (4) (bppy = 2,6-bis(pyrazol-1-yl)pyridine, terpy = 2,2′;6′,2′′-terpyridine). In the absence of externally added hydroxides, compound [Cu2(L′)2(bppy)2](ClO4)2 (3) was obtained from MeOH solutions; L′ is the monomethyl maleate(−1) ligand which is formed in situ via the CuII-assisted HL → L′ transformation. In the case of tptz-containing (tptz = 2,4,6-tris(2-pyridyl)-1,3,5-triazine) reaction systems, the CuII-assisted hydrolysis of tptz to pyridine-2-carboxamide (L1) afforded complex [Cu(L1)2(NO3)2] (5). The crystal structures of 15 are stabilized by intermolecular hydrogen bonding and π–π stacking interactions. Characteristic IR bands of the complexes are discussed in terms of the known structures and the coordination modes of the ligands.  相似文献   

4.
Two new isomorphous tetranuclear complexes [Cu4L2(4,4′-bipy)2]·(ClO4)4·2CH3CN·2H2O (1) and [Zn4L2(4,4′-bipy)2]·(ClO4)3·CH3O·4H2O (2) have been obtained and fully characterized (where bipy = bipyridine, H2L = macrocycle is the [2+2] condensation product of 2,6-diformyl-4-fluoro-phenol and 1,4-diaminobutane). They exhibit wheel-like configuration in which two 4,4′-bipy molecules connect two dinuclear [M2L]2+ units. The interactions of the complexes with calf thymus DNA were studied by UV-Vis and CD spectroscopic techniques. The binding constants of 1 and 2 are 2.27 × 106 and 3.89 × 105 M−1, respectively. The magnetic measurement of 1 reveals that there are strong antiferromagnetic coupling (J = -272.6 cm−1) between two Cu(II) ions in the macrocyclic unit and ferromagnetic interaction (j′ = 41.7) between the Cu(II) ions in two adjacent macrocyclic units. Furthermore, the cyclic voltammogram of 1 shows that it undergoes two quasi-reversible processes with the half wave potentials -0.232 and -0.606 V, respectively.  相似文献   

5.
Three ligands with flexible bis-terdentate coordination sites, di(2-pyridylcarbaldehyde)-6,6′-dicarboxylic acid hydrazone-2,2′-bipyridine (H2L1), di(2-acetylpyridyl)-6,6′-dicarboxylic acid hydrazone-2,2′-bipyridine (H2L2) and di(2-pyridylketone)-6,6′-dicarboxylic acid hydrazone-2,2′-bipyridine (H2L3) have been easily prepared. Dinuclear double-stranded helicates Co2(L1)2(ClO4)2(C2H5OH)2(H2O)2 (1), Co2(HL2)(L2)(ClO4)3(C2H5OH)2(H2O)2 (2) and Co2(HL3)(L3)(ClO4)3(H2O)4 (3) based on the ligands, H2L13, respectively, have been obtained via self-assembly, their structures were determined by FT-IR, Elemental Analysis, ESI-MS and X-ray diffraction method.  相似文献   

6.
The synthetic investigation of the Cu(ClO4)2·6H2O/fumaric acid (H2fum)/N,N’-chelates (1,10-phen, 2,2′-bpy) tertiary reaction systems has yielded mononuclear, dinuclear and tetranuclear complexes, and three coordination polymers. The chemical and structural identity of the products depends on the solvent, the absence or presence of external hydroxides in the reaction mixtures and the N,N’-donor. Three fumarato(−2) complexes, i.e. compounds [Cu2(fum)(phen)4](ClO4)2·2H2O (1·2H2O), [Cu(fum)(phen)(H2O)]n (3) and [Cu2(fum)(bpy)2(H2O)2]n(ClO4)2n (6), were isolated and structurally characterized, and four non-fumarato complexes, i.e. compounds [Cu43-ΟΗ)22-ΟΗ)2(phen)4(H2O)2](ClO4)4·2H2O (2·2H2O), [Cu(ClO4)(phen) (MeCN)2(H2O)](ClO4) (4), [Cu(ClO4)(phen)(MeCN)2]n(ClO4)n (5) and [Cu(ClO4)2(bpy)(MeCN)2] (7), were simultaneously obtained from the reaction systems investigated. The coordination versatility of the fumarato(−2) ligand is reflected to the three different coordination modes observed in 1·2H2O, 3 and 6; the monodentate bridging μ2OO′ mode in 3, the asymmetric chelating bridging μ2OO′:κO′′:κO′′′ mode in 1·2H2O and 3, and the syn,syn bridging μ4OO′:κO′′:κO′′′ mode in 6. The crystal structures of the complexes are stabilized by intra- and inter-molecular hydrogen bonding and π–π stacking interactions leading to interesting supramolecular architectures. Characteristic IR bands of the complexes are discussed in terms of the known structures, and the coordination modes of the fum2− ligands.  相似文献   

7.
Five new metal complexes [Pd(LH)2] (1), [Pd(L)2Ru2(bpy)4](ClO4)2 (2), [Pd(L)2Ru2(phen)4](ClO4)2 (3), [Pd(L)2Ru2(dafo)4](ClO4)2 (4) and [Pd(L)2Ru2(dcbpy)4](ClO4)2 (5), (where, L = ligand, bpy = 2,2′-bipyridine, phen = 1,10-phenantroline, dafo = 4,5-diazafluoren-9-one and dcbpy = 3,3′-dicarboxy-2,2′-bipyridine) have been isolated and characterized by UV-VIS, FT-IR, 1H NMR, magnetic susceptibility measurements, elemental analysis, molar conductivity, X-ray powder techniques, thermal analyses and their morphology studied by SEM measurements. IR spectra show that the ligand acts in a tetradentate manner and coordinates N4 donor groups of LH2 to PdII ion. The disappereance of H-bonding (O−H···O) in the trinuclear RuII-PdII-RuII metal complexes, the RuII ion centered into the main oxime core by the coordination of the imino groups while the two RuII ions coordinate dianionic oxygen donors of the oxime groups and linked to the ligands of bpy, phen, dafo and dbpy. The X-powder results show that 1 metal complex is indicating crystalline nature, not amorphous nature. Whereas, the X-ray powder pattern of the ligand (LH2) with 2, 3,4 and 5 exhibited only broad humps, indicating its amorphous nature. The catalytic activity of three different complexes were tested in the Suzuki coupling reaction. The 1, 4 and 5 metal complexes catalyse Suzuki coupling reaction between phenylboronic acid and arylbromides affording biphenyls. Also, the thermal results shown that the most stable complex is 1 compound while the less stable is 4 compound.  相似文献   

8.
The reactions of representative 2-pyridyl oximes with NiII salts in the presence of a base have been investigated. The synthetic study has led to the new triangular complexes [Νi3(ppko)6]·2H2O·0.5EtOH·MeOH (1·2H2O·0.5EtOH·MeOH), [Νi3(mpko)3(HCO2)2(mpkoH)2](ClO4) (2) and [Νi3(ppko)3(HCO2)2(ppkoH)2](ClO4) (3), where ppko is the anion of phenyl(2-pyridyl)ketone oxime and mpko is the anion of methyl(2-pyridyl)ketone oxime. The structures of compounds 1 and 2 have been determined by single crystal X-ray diffraction. The ppko ligand in 1 adopts four different coordination modes including the unique NpyridylOoximate chelating one which gives rise to a 6-membered chelating ring, while the neutral and the deprotonated oxime ligands in 2 adopt three different coordination modes. The magnetic properties of 1 and 2 have been studied by variable-temperature dc magnetic susceptibility techniques which indicate antiferromagnetic interactions.  相似文献   

9.
Reactions of 2-(pyridine-3-yl)-1H-4,5-imidazoledicarboxylic acid (H3PyIDC) with a series of Ln(III) ions affords ten coordination polymers, namely, {[Ln(H2PyIDC)(HPyIDC)(H2O)2]·H2O}n [Ln=Nd (1), Sm (2), Eu (3) and Gd (4)], {[Ln(HPyIDC)(H2O)3]·(H2PyIDC)·H2O}n [Ln=Gd (5), Tb (6), Dy (7), Ho (8) and Er (9)], and {[Y2(HPyIDC)2(H2O)5]·(bpy)·(NO3)2·3H2O}n (10) (bpy=4,4′-bipyridine). They exhibit three types of networks: complexes 1-4 are isomorphous coordination networks containing neutral 2D metal-organic layers, while complexes 5-9 are isomorphous, which consist of cationic metal-organic layers and anionic organic layers, and complex 10 is a 2D network built up from 4-connected HPyIDC2− anion and 4-connected Y(III) ions. In addition, thermogravimetric analyses and solid-state luminescent properties of the selected complexes are investigated. They exhibit intense, characteristic emissions in the visible region at room temperature.  相似文献   

10.
The preparation, crystal structures and spectroscopic characterization of four oxalate copper(II) complexes containing the 4,4′-dimethyl-2,2′-bipyridine (Mebpy) or di(2-pyridyl)sulfide (DPS) nitrogen ligands namely [μ-(ox){Cu(Mebpy)(NO3)(H2O)}2] (1), [μ-(ox){Cu(Mebpy)(ClO4)(H2O)}2] (2), [μ-(ox){Cu(DPS)(H2O)}2](ClO4)2 (3) and [Cu(DPS)(ox)(H2O)] · 2H2O (4) are described. X-ray diffraction measurements have shown that complexes 13 are binuclear, in which the oxalate anion bridges two Cu(II) centers, while the complex (4) is mononuclear and the oxalate anion adopts the terminal bidentate chelating coordination mode. In 1 and 2 the Cu(II) sites display a distorted octahedral geometry (4+2 environment) and in compounds 3 and 4 the Cu(II) centers exhibit a slightly distorted square pyramidal geometry. In addition, complexes 1 and 2 present a 2D supramolecular arrangement through hydrogen bonds between coordination water molecules and nitrate or perchlorate anions and π-stacking interaction between the pyridyl rings of Mebpy nitrogen ligands.  相似文献   

11.
One novel triply-bridged dicopper(II) complex formulated as [Cu2(dpa)2(μ-Cl)(μ-OH)(μ-HCOO)]·(ClO4) 1 and two terephthalate anions bridged 2,2′-bipyridine (2,2′-bpy) dicopper(II) complexes with formulae of [Cu2(2,2′-bpy)4(μ-terephthalate)]·(NO3)22 and [Cu2(2,2′-bpy)4(μ-terephthalate)]·(terephthalate) 3, respectively, have been synthesized and characterized by infrared and electrospray mass spectra as well as X-ray single-crystal determination. In addition, thermal properties of all compounds have been studied.  相似文献   

12.
The syntheses of five new aminoalkylbis(phenolate) ligands (as hydrochlorides) and their uranyl complexes are described. The reaction between uranyl nitrate hexahydrate and phenolic ligand [(N,N-bis(2-hydroxy-5-tert-butyl-3-methylbenzyl)-1-aminopropane) · HCl], H2L1 · HCl, forms a uranyl complex [UO2(HL1)2] · 2CH3CN (1). The ligand [(N,N-bis(2-hydroxy-5-tert-butyl-3-methylbenzyl)-1-aminobutane) · HCl], H2L2 · HCl, forms a uranyl complex with a formula [UO2(HL2)2] · 2CH3CN (2). The ligand [(N,N-bis(2-hydroxy-5-tert-butyl-3-methyl benzyl)-1-aminohexane) · HCl], H2L3 · HCl, yields a uranyl complex with a formula [UO2(HL3)2] · 2CH3CN (3) and the ligand [(N,N-bis(2-hydroxy-5-tert-butyl-3-methylbenzyl)-cyclohexylamine) · HCl], H2L4 · HCl, yields a uranyl complex with a formula [UO2(HL4)2] (4). The ligand [(N,N-bis(2-hydroxy-5-tert-butyl-3-methylbenzyl)-benzylamine) · HCl], H2L5 · HCl, forms a uranyl complex with a formula [UO2(HL5)2] · 2MeOH (5). The molecular structures of 1, 2′ (2 without methanol), 3, 4 and 5 were verified by X-ray crystallography. The complexes 15 are neutral zwitterions which form in a molar ratio of 1:2 (U to L) in the presence of a base (triethylamine) and bear similar mononuclear, distorted octahedral uranyl structures with the four coordinating phenoxo ligands forming an equatorial plane and resulting in a centrosymmetric structure for the uranyl ion. In uranyl ion extraction studies from water to dichloromethane with ligands H2L1 · HCl–H2L5 · HCl, the ligands H2L2 · HCl and H2L4 · HCl are the most effective ones.  相似文献   

13.
Shin-ichi Naya 《Tetrahedron》2008,64(14):3225-3231
As novel methodology for synthesizing the furan ring, a photoinduced oxidative cyclization of 5-(4′,9′-methanocycloundeca-2′,4′,6′,8′,10′-pentaenylidene)pyrimidine-2,4,6(1,3,5H)-triones (7a-c) and related compounds 9a-c was accomplished to give 5,10-methanocycloundeca[4,5]furo[2,3-d]pyrimidine-2,4(1,3H)-dionylium tetrafluoroborates (8a-c+·BF4) and related compounds 2a-c+·BF4, respectively. In the photoinduced oxidative cyclization, the molecular oxygen in air is used as oxidant and the reaction proceeds under mild conditions to give desired products without byproducts, and thus, it is interesting from the viewpoint of the green chemistry. On the reactions of the mono-substituted derivatives 7d,e and 9e,f, the selectivity of the photoinduced cyclizations were reversed as compared with those of the DDQ-promoted oxidative cyclizations. By the NMR monitoring of the reactions of 7a and deuterated compound 7a-D2 under degassed conditions, the details of the reaction pathway were clarified and rationalized on the basis of the MO calculation by the 6-31G basis set of the MP2 levels as well.  相似文献   

14.
Novel condensation reaction of tropone with N-substituted and N,N′-disubstitued barbituric acids in Ac2O afforded 5-(cyclohepta-2′,4′,6′-trienylidene)pyrimidine-2(1H),4(3H),6(5H)-trione derivatives (8a-f) in moderate to good yields. The 13C NMR spectral study of 8a-f revealed that the contribution of zwitterionic resonance structures is less important as compared with that of 8,8-dicyanoheptafulvene. The rotational barriers (ΔG) around the exocyclic double bond of mono-substituted derivatives 8a-c were obtained to be 14.51-15.03 kcal mol−1 by the variable temperature 1H NMR measurements. The electrochemical properties of 8a-f were also studied by CV measurement. Upon treatment with DDQ, 8a-c underwent oxidative cyclization to give two products, 7 and 9-substituted cyclohepta[b]pyrimido[5,4-d]furan-8(7H),10(9H)-dionylium tetrafluoroborates (11a-c·BF4 and 12a-c·BF4) in various ratios, while that of disubstituted derivatives 8d-f afforded 7,9-disubstituted cyclohepta[b]pyrimido[5,4-d]furan-8(7H),10(9H)-dionylium tetrafluoroborate (11d-f·BF4) in good yields. Similarly, preparation of known 5-(1′-oxocycloheptatrien-2′-yl)-pyrimidine-2(1H),4(3H),6(5H)-trione derivatives (14a-d) and novel derivatives 14e,f was carried out. Treatment of 14a-c with aq. HBF4/Ac2O afforded two kinds of novel products 11a-c·BF4 and 12a,c·BF4 in various ratios, respectively, while that of 14d-f afforded 11d-f. The product ratios of 11a-c·BF4 and 12a-c·BF4 observed in two kinds of cyclization reactions were rationalized on the basis of MO calculations of model compounds 20a and 21a. The spectroscopic and electrochemical properties of 11a-f·BF4 and 12a-c·BF4 were studied, and structural characterization of 11c·BF4 based on the X-ray crystal analysis and MO calculation was also performed.  相似文献   

15.
The reactions of Cu(ClO4)2·6H2O with 6-(benzylamino)purine derivatives in a stoichiometric 1:2 metal-to-ligand ratio led to the formation of penta-coordinated dinuclear complexes of the formula [Cu2(μ-L18)4(ClO4)2](ClO4)2·nsolv, where L1 = 6-(2-fluorobenzylamino)purine (complex 1), L2 = 6-(3-fluorobenzylamino)purine (2), L3 = 6-(4-fluorobenzylamino)purine (3), L4 = 6-(2-chlorobenzylamino)purine (4), L5 = 6-(3-chlorobenzylamino)purine (5), L6 = 6-(4-chlorobenzylamino)purine (6), L7 = 6-(3-methoxybenzylamino)purine (7) and L8 = 6-(4-methoxybenzylamino)purine (8); n = 0–4 and solv = H2O, EtOH or MeOH. All the complexes have been fully characterized by elemental analysis, FTIR, UV–Vis and EPR spectroscopy, and by magnetic and conductivity measurements. Variable temperature (80–300 K) magnetic susceptibility data of 18 showed the presence of a strong antiferromagnetic exchange interaction between two Cu(II) (S = 1/2) atoms with J ranging from −150.0(1) to −160.3(2) cm−1. The compound 6·4EtOH·H2O was structurally characterized by single crystal X-ray analysis. The Cu?Cu separation has been found to be 2.9092(8) Å. The antiradical activity of the prepared compounds was tested by in vitro SOD-mimic assay with IC50 in the range 8.67–41.45 μM. The results of an in vivo antidiabetic activity assay were inconclusive and the glycaemia in pre-treated animals did not differ significantly from the positive control.  相似文献   

16.
Three rhenium(IV) mononuclear compounds of formulae [ReCl4(biimH2)] · 2DMF (1), [ReCl4(pyim)] · DMF (2) and [ReCl4(bipy)] (3) (biimH2 = 2,2′-biimidazole, pyim = 2-(2′-pyridyl)imidazole, bipy = 2,2′-bipyridine and DMF = N,N-dimethylformamide) have been prepared and characterized. The crystal structure of 2 was determined by single crystal X-ray diffraction. Compound 2 crystallizes in the monoclinic system with P21/c as space group. The rhenium atom is six-coordinated by four Cl atoms and two nitrogen atoms from a bidentate pyim ligand [average values of Re–Cl and Re–N bonds lengths being 2.330(2) and 2.117(4) Å, respectively]. The magnetic properties were investigated from susceptibility measurements performed on polycrystalline samples of 13 in the temperature range 1.9–300 K. The magnetic behaviour found is typical of antiferromagnetically coupled systems, and they exhibit susceptibility maxima at 2.8 (1 and 2) and 5.6 K (3). Short ReIV–Cl?Cl–ReIV contacts through space account for the antiferromagnetic behaviour observed.  相似文献   

17.
The syntheses and crystal structures of four new uranyl complexes with [O,N,O,N′]-type ligands are described. The reaction between uranyl nitrate hexahydrate and the phenolic ligand [(N,N-bis(2-hydroxy-3,5-dimethylbenzyl)-N′,N′-dimethylethylenediamine)], H2L1 in a 1:2 molar ratio (M to L), yields a uranyl complex with the formula [UO2(HL1)(NO3)] · CH3CN (1). In the presence of a base (triethylamine, one mole per ligand mole) with the same molar ratio, the uranyl complex [UO2(HL1)2] (2) is formed. The reaction between uranyl nitrate hexahydrate and the ligand [(N,N-bis(2-hydroxy-3,5-di-t-butylbenzyl)-N′,N′-dimethylethylenediamine)], H2L2, yields a uranyl complex with the formula [UO2(HL2)(NO3)] · 2CH3CN (3) and the ligand [N-(2-pyridylmethyl)-N,N-bis(2-hydroxy-3,5-dimethylbenzyl)amine], H2L3, in the presence of a base yields a uranyl complex with the formula [UO2(HL3)2] · 2CH3CN (4). The molecular structures of 14 were verified by X-ray crystallography. The complexes 14 are zwitter ions with a neutral net charge. Compounds 1 and 3 are rare neutral mononuclear [UO2(HLn)(NO3)] complexes with the nitrate bonded in η2-fashion to the uranyl ion. Furthermore, the ability of the ligands H2L1–H2L4 to extract the uranyl ion from water to dichloromethane, and the selectivity of extraction with ligands H2L1, H3L5 (N,N-bis(2-hydroxy-3,5-dimethylbenzyl)-3-amino-1-propanol), H2L6 · HCl (N,N-bis(2-hydroxy-5-tert-butyl-3-methylbenzyl)-1-aminobutane · HCl) and H3L7 · HCl (N,N-bis(2-hydroxy-5-tert-butyl-3-methylbenzyl)-6-amino-1-hexanol · HCl) under varied chemical conditions were studied. As a result, the most efficient and selective ligand for uranyl ion extraction proved to be H3L7 · HCl.  相似文献   

18.
Four new compounds [Ni2(4,4′-bpy)(3,4-bptc)(H2O)4]n (1), [Ni(4,4′-bpy)(3,4-H2bptc)(H2O)3]n (2), [Mn2(2,2′-bpy)4(3,4-H2bptc)2] (3) and {[Mn(1,10-phen)2(3,4-H2bptc)]·4H2O}n (4) (3,4-H4bptc=3,3′,4,4′-biphenyltetracarboxylic acid, 4,4′-bpy=4,4′-bipyridine, 2,2′-bpy=2,2′-bipyridine, 1, 10-phen=1, 10-phenanthroline), have been prepared and structurally characterized. In all compounds, the derivative ligands of 3,4-H4bptc (3,4-bptc4− and 3,4-H2bptc2−) exhibit different coordination modes and lead to the formation of various architectures. Compounds 1 and 2 display the three-dimensional (3D) framework: 1 shows a 3,4-connected topological network with (83)(85·10) topology symbol based on the coordination bonds while in 2, the hydrogen-bonding interactions are observed to connect the 1D linear chain generating a final 3D framework. 3 exhibits the 2D layer constructed from the hydrogen-bonding interactions between the dinuclear manganese units. Complex 4 shows the double layers motif through connecting the 1D zigzag chains with hydrogen-bonded rings. The thermal stability of 1-4 and magnetic property of 1 were also reported.  相似文献   

19.
Three novel polymers, {[Cd(m-bdc)(L)]·H2O}n (1), [Co(m-bdc)(L)0.5(H2O)]n (2) and [Zn5(L)2(p-bdc)5(H2O)]n (3) based on 1,1′-bis(pyridin-3-ylmethyl)-2,2′-biimidazole (L) ligand and benzenedicarboxylate isomers, have been prepared and structurally characterized. Compound 1 exhibits a 2D architecture with (42·6)(42·67·8) topology, which is synthesized by L and 1,3-benzenedicarboxylate (m-bdc) ligands. Compound 2 is constructed from 1D chains that are linked by L ligands extending a 2D (4,4) grid. Compound 3 is a 3D framework with (43)(46·618·84) topology, which is composed of trinuclear clusters and five-coordinated metal centers joined through 1,4-benzenedicarboxylate (p-bdc) and L ligands. Moreover, the fluorescent properties of L ligand, compounds 1 and 3 are also determined.  相似文献   

20.
A series of four metal–organic frameworks, namely, [Cu(sdpa)0.5(2,2′-bpy)]·H2O (1), [Zn2(sdpa)(2,2′-bpy)2(H2O)2]·3H2O (2), [Zn2(sdpa)(4,4′-bpy)]·3H2O (3), [Cd2(sdpa)(4,4′-bpy)1.5(H2O)2](4), have been hydro(solvo)thermally synthesized through the reaction of 2,3,2′,3′-sulfonyldiphthalic acid (H4sdpa) with divalent copper, zinc and cadmium salts in the presence of ancillary nitrogen ligands (4,4′-bpy = 4,4′-bipyridine, 2,2′-bpy = 2,2′-bipyridine) and structurally characterized by elemental analysis, IR and X-ray diffraction. Both complex 1 and 2 show metal–organic chain structure, and the adjacent chains are further linked by π?π and C–H?π interactions for 1 and hydrogen bonds and π?π interactions for 2 to form 3D supramolecular structure. In complex 3, two Zn1 and two Zn2 atoms appear alternately and are bridged by sdpa4− anion ligands to form an infinite Zn-sdpa chain. Such chains are further linked together through 4,4′-bpy ligands in four orientations to form a robust 3D metal–organic network. In compound 4, a 3D Cd-sdpa metal–organic network is accomplished through sdpa4− anion ligands, and further stabilized by 4,4′-bpy in six orientations. Their luminescence and thermal analysis have also been investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号