首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new silver(I) complex with N-acetyl-l-cysteine (NAC) of composition AgC5H8NO3S·H2O was synthesized and characterized by a set of chemical and spectroscopic measurements. Solid-state 13C nuclear magnetic resonance (SSNMR) and infrared (IR) analyses indicate the coordination of the ligand to Ag(I) through the sulfur atom. The Ag-NAC complex is slightly soluble in dimethyl sulfoxide. It is insoluble in water, methanol, ethanol, acetone and hexane. Antibacterial activity of the silver complex with N-acetyl-l-cysteine (Ag-NAC) was evaluated by antibiogram assays using the disc diffusion method. The compound showed an effective antibacterial activity against Staphylococcus aureus (Gram-positive), Escherichia coli and Pseudomonas aeruginosa (Gram-negative) bacterial cells. Biological analysis for evaluation of a potential cytotoxic effect of Ag-NAC was performed using HeLa cells derived from human cervical adenocarcinoma. The complex presented a significant cytotoxic activity, inducing 80% of cell death at a concentration of 200 μmol L−1.  相似文献   

2.
A series of N-(pyridin-2-yl)picolinamide derivatives was synthesized and characterized. Tetranickel complexes were obtained by stoichiometric reaction of NiBr2 and corresponding ligands, and characterized by elemental and spectroscopic analysis. Moreover, the coordination pattern of complex 3a was confirmed by single-crystal X-ray diffraction. In the structure, two ligands linked two nickel atoms to form a unit, and two units were bridged via μ3-OMe and μ2-Br to form a tetranickel cluster. These Ni(II) complexes were investigated in ethylene oligomerization and found to exhibit remarkable catalytic activities upon activation with MAO. Reaction conditions as well as ligand environment significantly affected the catalytic performance of the nickel complexes; the highest activity could be achieved to be 2.7 × 106 g mol−1 Ni h−1.  相似文献   

3.
[(RR′-admpzp)2Ti(OPri)2] complexes (2a-c), synthesized from reaction of Ti(OPri)3Cl (0.5 equiv) with 1-dialkylamino-3-(3,5-dimethyl-pyrazol-1-yl)-propan-2-ol compounds in the presence of triethylamine (0.5 equiv), are pseudo-octahedral with each RR′-admpzp ligand κ2-O,N(pyrazolyl) coordinated to the titanium center. In solution, 2a-c adopt isomeric structures that are in dynamic equilibrium. At 23 °C, 2a-c/1000 MAO catalyst systems furnished high molecular weight polymers with narrow molecular weight distributions (Mw/Mn = 2.7-2.8). At 100 °C, 2a-c/MAO catalyst systems exhibited increased polymerization activity and 2c/1000 MAO system furnished high molecular weight polyethylene with a molecular weight distribution (Mw/Mn = 2.1) that is close to that found for single-site catalysts.  相似文献   

4.
The reactions of N-(aryl)pyridine-2-aldimines (L-R; R = OCH3, CH3, H, Cl and NO2), derived from pyridine-2-aldehyde and para-substituted anilines, with CuI in methanol under ambient conditions afford a series of brown complexes of the type [{Cu(L-R)I}2]. The structure of the [{Cu(L-OCH3)I}2] complex has been determined by X-ray crystallography. In these dimeric complexes the two copper centers are linked through an iodo-bridge, and the L-R ligands are coordinated to the metal center through the pyridine-nitrogen and imine-nitrogen. All the complexes show characteristic 1H NMR signals and intense MLCT transitions in the visible region. These complexes also show an emission near 465 nm, whilst they are excited at 340 nm, with relatively poor quantum yields (φ ∼0.002 at 298 K). Cyclic voltammetry on all the complexes shows two successive Cu(I)-Cu(II) oxidations on the positive side of SCE, and a reduction of the coordinated imine ligand on the negative side. These copper(I) complexes are found to efficiently catalyze Suzuki type C-C coupling reactions.  相似文献   

5.
Synthesis and characterization of the new complex W(CO)4(2,2′-pq), (1), where 2,2′-pq = 2-(2′-pyridyl)quinoxaline, is presented. The non-symmetric ligand 2,2′-pq belongs to the general class of quinoxalines, which are natural products yielding a rich coordination chemistry. Complex (1) crystallizes in space group P21/n with α = 9.601(6) Å, b = 16.735(11) Å, c = 10.315(8) Å, Z = 4 and V = 1616.0(19) Å3. Although its structure resembles those of W(CO)4(phen) and W(CO)4(bpy), some distortions that stem from 2,2′-pq’s asymmetry are present. DFT calculations reveal a ground state consisting of HOMO, HOMO − 1 and HOMO − 2, mainly of metal and carbonyl character, while LUMO is diimine oriented. The bonding scheme of (1) is illustrated after its consideration as been consisted by two fragments, namely W(CO)4 and 2,2′-pq, acting as a donor and acceptor of electron density, respectively. In that scheme, back-bonding interaction of the main core to 2,2′-pq is mainly related to the mixing of HOMO − 2 from W(CO)4 moiety with LUMO from 2,2′-pq moiety. The performed TDDFT calculations, not only in the gas phase but also combined with the conductor like polarizable continuum model (CPCM), reveal that the lowest in energy highly solvatochromic transition of (1) can be ascribed as a HOMO − 2 → LUMO transition and it is better described as MLCT/LLCT, underlying the CO → diimine contribution. The solvatochromic behaviour of (1) is anticipated by DFT/CPCM calculations and is probed in detail by absorption and NMR spectroscopy. The correlation of the lowest-energy-band maximum to the dipole moment of the corresponding solvents provides overall good linear fits, while the correlation to the dielectric constant affords good linear patterns only after the segregation of the solvents into groups. The 1H NMR data of 2,2′-pq and (1) reveal an increase of the solvent influence to the chemical shifts of the diimine ligand after its coordination to the metal and suggest two different types of solvent-effects for the complex and the ligand, respectively. The observed proton shifts of (1) are related with the results of the Mülliken population analysis in solvents of different polarity; the transition from CCl4 to MeOH seems to signify a charge transfer from the axial COs and the central metal to the equatorial COs and the internal nuclei of 2,2′-pq.  相似文献   

6.
7.
Zinc(II) complexes of the formula [Zn(L)(X)2] (where X = Cl, N3, NCO and SCN (1a-d, respectively)) and {[Zn(L)(ClO4)(H2O)](ClO4)}n (2), were isolated in the pure form on the reaction of 1,3-bis(2-pyridylmethylthio)propane (L) with different zinc(II) salts. All the complexes were characterized by physicochemical and spectroscopic tools. The X-ray crystallographic analyses of the complexes 1d and 2 showed that the former is mononuclear while complex 2 is a 1D coordination polymer, {[Zn(L)(ClO4)(H2O)](ClO4)}n, due to a different coordination mode of the tetradentate ligand L. The zinc(II) ions present an octahedral coordination geometry in both compounds, which is more distorted in the mononuclear complex 1d. The study indicates that the counter anion of the zinc(II) salt used as reactant leads to a different type of complex when isolated as a crystalline material. A spectroscopic study of the interaction of complex, 2 with calf thymus-DNA (CT-DNA) in Tris-HCl buffer showed a significant non-intercalative interaction with a binding constant (Kb) of 4.7 × 104 M−1, and the linear Stern-Volmer quenching constant (Ksv) and the binding sites (n) were found to be 1.3 × 103 and 0.92 respectively, calculated from ethidium bromide (EB) fluorescence displacement experiments.  相似文献   

8.
The aroylhydrazone Schiff base ligands (E)-N’-(2-hydroxybenzylidene)benzohydrazide = H2L1, (E)-N’-(2-hydroxy-3-methoxybenzylidene)benzohydrazide = H2L2 and = (E)-N’-(5-bromo-2-hydroxybenzylidene)benzohydrazide = H2L3 gave the vanadium(V)oxo-aroylhydrazone complexes [VVOL1(OCH3)(OHCH3] (1), [VVOL2(OCH3)(OHCH3]·CH3OH (2) and [VVOL3(OCH3)(OHCH3] (3) on reaction with vanadium(IV) oxide acetylacetonate. The complexes were characterized by spectroscopic methods in the solid state (IR) and in solution (UV–Vis, 1H NMR). Single crystal X-ray analysis was performed with 3. In methanol solution six-coordinated VVOL3(OCH3)(OHCH3) was formed. VIV was oxidized to Vv by aerial oxygen in the synthesis. In the VO5N coordination sphere the alcohol oxygen lies trans to the oxo oxygen. The general V–O bond length order is oxo < methoxylato < phenoxidic < enolato < alcoholic. The complexes are mononuclear, but intermolecular O–H?N hydrogen bonding affords a zigzag chain. DFT calculations on complex 3 reproduced the geometric parameters, IR and UV–Vis spectroscopic data well in a reasonable range.  相似文献   

9.
This work reports the development of a selective, sensitive and rapid spectrofluorimetric method for the determination of reduced glutathione (GSH) in the presence of relatively high levels of cysteine (Cys) in clinical and biological samples using 1,3,5,7-tetramethyl-8-phenyl-(2-maleimide)-difluoroboradiaza-s-indacene (TMPAB-o-M). The fluorescence from TMPAB-o-M is strongly quenched by its maleimide moiety, but after reaction with thiol, the fluorescence is restored with a 350-fold intensity increase (fluorescence quantum yield from 0.002 to 0.73). In H3Cit-Na2HPO4 buffer (pH 7.40), the derivatization is completed in just 5 min under 37 °C. The linear range is 0.005-0.2 μmol L−1, with detection limit of 1.1 × 10−10 mol L−1 (signal-to-noise ratio = 3). Almost all amino acids, including Cys, impose no interference even if present at relatively high concentrations (amino acids:GSH = 100:1, Cys:GSH = 1:1, molar ratio, CGSH = 3 × 10−7 mol L−1). The sample can be used directly without further treatment after the protein is removed. The developed method is precise with a relative standard deviation (R.S.D.) lower than 5.0% (n = 6) and has been applied to the determination of GSH in human blood and pig’s liver with recoveries between 94.4 and 105.6%.  相似文献   

10.
A new tetraimide-dicarboxylic acid (TIDA) I was synthesized starting from 3-aminobenzoic acid (m-ABA), 4,4′-oxydiphthalic anhydride (ODPA), and 1,4-bis(4-amino-2-trifluoromethylphenoxy)benzene (BAFPB) at a 2:2:1 molar ratio in N-methyl-2-pyrrolidone (NMP). A series of organosoluble, light-colored poly(amide-imide-imide)s (PAII, IIIa-j) was prepared by triphenyl phosphite-activated polycondensation from the tetraimide-diacid I with various aromatic diamines (IIa-j). All the polymers were readily soluble in a variety of organic solvents such as NMP, N,N-dimethyl acetamide (DMAc), dimethyl sulfoxide, and even in less polar m-cresol and pyridine. Polymer films cast from DMAc had the cutoff wavelengths between 374 and 384 nm and had the b values in the range of 14.8-30.2. Polymers IIIa-j afforded tough, transparent, and flexible films, which had tensile strengths ranging from 87 to 103 MPa, elongations at break from 11% to 37%, and initial moduli from 1.9 to 2.3 GPa. The glass transition temperatures of these polymers were in the range of 242-274 °C. They had 10% weight loss temperature above 526 °C and showed the char yield more than 55% residue at 800 °C in nitrogen.  相似文献   

11.
A new zinc(II) complex of the mycobactericidal drug isoniazid (complex 1) was synthesized and characterized by XRD, vibrational spectroscopy (IR, Raman) and thermogravimetric analysis. The complex is constituted by two isoniazid (INH) molecules, six hydration water molecules and two perchlorate counter-ions for each metal center (C12H26N6Cl2O16Zn). Zinc(II) adopts a distorted octahedral geometry, where two INH molecules coordinate in a bidentate manner through the hydrazide group (N, O) and the other two isoniazid residues complete the coordination sphere of zinc(II) through their aromatic nitrogen atoms. This coordination pattern gives rise to a 2-D coordination polymer. Complex 1 belongs to the monoclinic system [a = 8.1190(2) Å, b = 17.977(4) Å, c = 9.1051(2) Å and β = 100.87(3)°], space group P21. A biological assay with Artemia salina was also performed. Complex 1 is almost 8.5 times more active than the free ligand. Its toxicity against A. salina correlates well with the cytotoxic activity for some human solid tumors. Therefore, antitumoral properties could be expected from complex 1.  相似文献   

12.
Two new inorganic–organic coordination networks based on a versatile and unsymmetric building block 5-(4-pyridyl)-1,3,4-oxadiazole-2-thione (Hpot) and inorganic CoII and CdII salts have been synthesized in mixed solvent media and structurally characterized by single-crystal X-ray diffraction analysis. Crystal Hpot (1) was obtained from methanol solution. Reaction of Co(NO3)2 · 6H2O with Hpot afforded a neutral two-dimensional (2-D) porous coordination polymer {[Co(pot)2] · 6H2O}n (2) with a (4,4) network, which shows a 3-D supramolecular network through O–H?O weak interactions. While substituting the transition metal ions used in 2 with Cd(NO3)2 · 6H2O, a neutral 2-D coordination polymer [Cd2(pot)4]n (3) with a (6,3) network which further extended to a 3-D supramolecular structure through versatile hydrogen bonds C–H?X (X = O, N and S) was obtained. It is remarkable that the building block “pot” anion exhibits versatile coordination modes in complexes 2 and 3. These results indicate that the versatile nature of this rigid unsymmetric ligand, together with the coordination preferences of the metal centers, plays a critical role in construction of novel coordination polymers. The properties of gas absorption, magnetism and luminescence of 2 and 3 have been investigated and discussed in detail.  相似文献   

13.
The reactions of 5,6-diphenyl-3-(2-pyridyl)-1,2,4-triazine with CuCl2 · 2H2O, Cu(NO3)2 · 3H2O and CuSO4 · 5H2O have been examined, and four [CuCl2(dppt)] (1), [CuCl2(dppt)2] · 2MeOH (2), [Cu(dppt)2(H2O)2](NO3)2 (3) and [Cu(SO4)(dppt)(H2O)]n · nH2O (4) complexes have been obtained. All the complexes have been structurally and spectroscopically characterized, and compound 4 has been additionally studied by magnetic measurements. The electronic structure of 1 has been calculated with the density functional theory (DFT) method, and the time-dependent DFT calculations have been employed to calculate the electronic spectrum of 1.  相似文献   

14.
The reaction of cis-[RuCl2(DMSO)4] with a family of aromatic and heterocyclic acid hydrazides yielded new complexes of the general formula trans-[RuCl2(DMSO)2(hydrazide)] · nH2O (n = 0; 16; n = 1; 7). The new complexes have been characterized by IR, UV–Vis and 1H NMR spectroscopic methods. In addition, the structure of one of the complexes, [RuCl2(DMSO)2(tcah)] · H2O (tcah = thiophene-2-carboxylic acid hydrazide), has been determined by single crystal X-ray diffraction. All the studies reveal the neutral bidentate coordination of the hydrazide ligands through the acyl oxygen and amine nitrogen atoms. The electron transfer properties of the complexes were studied by cyclic voltammetry and all the complexes except one show an irreversible/quasi-reversible reduction wave (RuII/RuI) and an uncoupled oxidation peak (RuIII/ RuII). The preliminary DNA-binding ability of the complexes, studied with herring sperm DNA, shows the binding of the complexes with DNA with a lesser affinity than classical intercalators. The complexes have also been screened for their antibacterial activity against five pathogenic bacteria.  相似文献   

15.
Reactions of 5-[(E)-2-(aryl)-1-diazenyl]-2-hydroxybenzoic acids (LHH′, where the aryl group is an R-substituted phenyl ring such that for L1HH′: R = H; L2HH′: R = 2′-CH3; L3HH′: R = 3′-CH3; L4HH′: R = 4′-CH3; L5HH′: R = 4′-Cl; L6HH′: R = 4′-Br) with nBu2SnO in a 1:1 molar ratio yielded complexes of composition {[nBu2Sn(LH)]2O}2. The complexes have been characterized by 1H, 13C, 119Sn NMR, ESI-MS, IR and 119mSn Mössbauer spectroscopic techniques in combination with elemental analyses. The crystal structures of {[nBu2Sn(L1H)]2O}2 (1), {[nBu2Sn(L4H)]2O}2 (4), {[nBu2Sn(L5H)]2O}2 (5) and {[nBu2Sn(L6H)]2O}2 (6) were determined. The compounds are centrosymmetric tetranuclear bis(dicarboxylatotetrabutyldistannoxane) complexes containing a planar Sn4O2 core in which two μ3-oxo O-atoms connect an Sn2O2 ring to two exocyclic Sn-atoms. The four carboxylate ligands display two different modes of coordination where both modes involve bridging of two structurally distinct Sn-atoms. The solution structures were confirmed by 119Sn NMR spectroscopy by observing two tin resonances in compounds 1, and 4-6. The observed difference between the two tin resonances was about 3 ppm while the differences in 13C resonances were even smaller. Compounds {[nBu2Sn(L2H)]2O}2 (2) and {[nBu2Sn(L3H)]2O}2 (3) undergo a very complex exchange processes in deuteriochloroform solution. The in vitro cytotoxic activity of compounds 1 and 4 against WIDR, M19 MEL, A498, IGROV, H226, MCF7 and EVSA-T human tumour cell lines is reported.  相似文献   

16.
The reactions of Cu(ClO4)2·6H2O with 6-(benzylamino)purine derivatives in a stoichiometric 1:2 metal-to-ligand ratio led to the formation of penta-coordinated dinuclear complexes of the formula [Cu2(μ-L18)4(ClO4)2](ClO4)2·nsolv, where L1 = 6-(2-fluorobenzylamino)purine (complex 1), L2 = 6-(3-fluorobenzylamino)purine (2), L3 = 6-(4-fluorobenzylamino)purine (3), L4 = 6-(2-chlorobenzylamino)purine (4), L5 = 6-(3-chlorobenzylamino)purine (5), L6 = 6-(4-chlorobenzylamino)purine (6), L7 = 6-(3-methoxybenzylamino)purine (7) and L8 = 6-(4-methoxybenzylamino)purine (8); n = 0–4 and solv = H2O, EtOH or MeOH. All the complexes have been fully characterized by elemental analysis, FTIR, UV–Vis and EPR spectroscopy, and by magnetic and conductivity measurements. Variable temperature (80–300 K) magnetic susceptibility data of 18 showed the presence of a strong antiferromagnetic exchange interaction between two Cu(II) (S = 1/2) atoms with J ranging from −150.0(1) to −160.3(2) cm−1. The compound 6·4EtOH·H2O was structurally characterized by single crystal X-ray analysis. The Cu?Cu separation has been found to be 2.9092(8) Å. The antiradical activity of the prepared compounds was tested by in vitro SOD-mimic assay with IC50 in the range 8.67–41.45 μM. The results of an in vivo antidiabetic activity assay were inconclusive and the glycaemia in pre-treated animals did not differ significantly from the positive control.  相似文献   

17.
A new-type of sulfide containing diacid (1,1′-thiobis(2-naphthoxy acetic acid)) was synthesized from 2-naphthol in three steps. Reaction of 2-naphthol with sulfur dichloride afforded 1,1′-thiobis(2-naphthol) (TBN). 1,1′-Thiobis(2-naphthoxy acetic ester) (TBNAE) was successfully synthesized by refluxing the TBN with methylcholoroacetate in the presence of potassium carbonate. The related diacid was synthesized by basic solution reduction of TBNAE. The obtained diacid was fully characterized and used to prepare novel thermally stable poly(sulfide ether amide)s via polyphosphorylation reaction with different aromatic diamines. The properties of these new polyamides were investigated and compared with similar polyamides. These polyamides showed inherent viscosities in the range of 0.39-0.87 dL g−1 in N,N-dimethylacetamide (DMAc) at 30 °C and at a concentration of 0.5 g dL−1. All the polyamides were readily soluble in a variety of polar solvents such as DMAc and tetrahydrofuran (THF). These polyamides showed glass transition temperature (Tg) between 241-268 °C. Thermogravimetric analysis measurement revealed the decomposition temperature at 10% weight loss (T10) ranging from 441- 479 °C in argon atmosphere.  相似文献   

18.
A series of cis-bis{5-[(E)-2-(aryl)-1-diazenyl]quinolinolato}diphenyltin(IV) complexes have been synthesized and characterized by 1H, 13C, 119Sn NMR, ESI-MS, IR and 119mSn Mössbauer spectroscopic techniques in combination with elemental analysis. The structures of a ligand L6H (i.e., 5-[(E)-2-(4-ethoxyphenyl)-1-diazenyl]quinolin-8-ol) and three diphenyltin(IV) complexes, viz., Ph2Sn(L1)2 · (CH3)2CO (1), Ph2Sn(L4)2 (4) and Ph2Sn(L5)2 (5) (L = 5-[(E)-2-(aryl)-1-diazenyl]quinolin-8-ol: aryl = phenyl - (L1H); 4′-methylphenyl - (L4H) and 4′-bromophenyl - (L5H)) were determined by single crystal X-ray diffraction. In general, the complexes were found to adopt a distorted cis-octahedral arrangement around the tin atom. These complexes retain their solid-state structure in non-coordinating solvent as evidenced by 119Sn NMR spectroscopic results. The in vitro cytotoxicity of 1 is reported and compared with Ph2Sn(Ox)2 (Ox = deprotonated quinolin-8-ol) against seven well characterized human tumor cell lines.  相似文献   

19.
The triphenyltin(IV) complexes of 4-[((E)-1-{2-hydroxy-5-[(E)-2-(2-carboxyphenyl)-1-diazenyl]phenyl}methylidene)amino]aryls (aryls = 4-CH3, 4-Br, 4-Cl, 4-OCH3) have been synthesized and characterized by 1H-, 13C-, 119Sn-NMR, ESI mass spectrometry, IR and 119mSn Mössbauer spectroscopic techniques in combination with elemental analysis. The crystal structures of a representative carboxylate ligand (aryl = 4-CH3) and three Sn complexes, viz., polymeric (Ph3Sn[O2CC6H4{NN(C6H3-4-OH(C(H)NC6H4X-4))}-o])n (X = Me (1) and Br (2)) and dimeric (Ph3Sn[O2CC6H4{NN(C6H3-4-OH(C(H)NC6H4X-4))}-o])2 (X = OMe (4)) complexes are reported. The coordination environment in each complex is trigonal bipyramidal trans-Ph3SnO2. A single zwitterionic carboxylate ligand bridges adjacent Sn atoms via the carboxylate and phenoxide O atoms.  相似文献   

20.
To explore the anion receptor potential of [Co(phen)2(CO)3]+ for the pentafluorobenzoate ion, [Co(phen)2(CO)3](Pfbz)·6H2O (where phen = 1,10-phenanthroline and Pfbz = pentafluorobenzoate) was synthesized by reacting appropriate salts in aqueous medium. A detailed packing analysis has been undertaken to delineate the role of second sphere C-H?F interactions amid other heteroatom interactions. The complex salt has been characterized by elemental analyses, spectroscopic studies (IR, UV/Vis, multinuclear NMR) and solubility product measurement. The complex salt crystallizes in the monoclinic crystal system with space group P21/n having the cell dimensions a = 13.377(3) Å, b = 17.204(3) Å, c = 15.408(3) Å, β = 108.11(3)°, V = 3370.1(12) Å3 and Z = 4. Single crystal X-ray structure determination revealed ionic structure consisting of complex cation, [Co(phen)2(CO)3]+, Pfbz anion and six lattice water molecules. In the crystal lattice, discrete ions [Co(phen)2CO3]+ are forming rectangular voids in which the Pfbz anions are entrapped. Crystal lattice is stabilized by electrostatic forces of attraction and hydrogen bonding interactions, i.e. O-H?O, C-H?O, and C-H?F, involving second sphere coordination besides π?π interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号