首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
制备了功能化离子液体1-丁腈-3-甲基咪唑双三氟甲基磺酸亚胺。在T为283.15-353.15 K温度范围内,测定了该功能化离子液体的密度、动力粘度、电导率及折光率。讨论了亚甲基的增减对该类功能化离子液体的密度、动力粘度、电导率及折光率等性质的影响,并与传统咪唑类、吡啶类离子液体物理化学性质的变化趋势进行了对比。通过经验方程计算了该功能化离子液体的热膨胀系数、分子体积、标准摩尔熵及晶格能等热力学性质参数。讨论了Vogel-Fulcher-Tamman (VFT)方程和Arrhenius方程的适用性,得出VFT方程适用于该功能化离子液体,而Arrhenius方程并不适用。有关研究对新型离子液体的合成及其工业化的应用具有十分重要的意义。  相似文献   

2.
在无溶剂条件下,利用廉价无毒的酸性离子液体[Hnmp]HSO4为催化剂,醛、2-萘酚和吡咯烷酮一锅三组分合成了一系列新颖的N-(2-羟基-1-萘基)(苯基)甲基-吡咯烷-2-酮衍生物.与现有的方法相比该方法避免使用有机溶剂,且反应时间短,产率高,离子液体廉价易制备,且可回收重复再利用.  相似文献   

3.
酸性离子液体的合成和光谱表征   总被引:4,自引:1,他引:4  
合成了基于N-甲基咪唑、2-吡咯烷酮阳离子的两个Br nsted酸性离子液体系列:[Hmim]HSO4/BF4、[Hnhp]HSO4/BF4以及两种—SO3H功能化酸性离子液体1-(3-磺酸基)丙基-3-甲基咪唑硫酸氢盐([C3SO3Hmim]HSO4)、N-(3-磺酸基)丙基吡咯烷酮硫酸氢盐([C4SO4Hnnp]HSO4)。其中,[Hnhp]HSO4/BF4,[C4SO4Hnnp]HSO4是本实验设计合成的新型酸性离子液体,而咪唑类离子液体用于对照。上述6种离子液体均以核磁共振、电喷雾质谱、红外光谱和紫外光谱分析法对结构加以表征并确认;并以它们作为溶剂和催化剂对乙酸、乙醇酯化反应进行初步试验,结果表明所合成的新型酸性离子液体(尤其是引入磺酸基的)是酯化反应较理想的绿色液体酸催化剂。  相似文献   

4.
根据离子液体结构-性能的关系,设计合成了一种新的低熔点、低黏度的功能化离子液体二氰胺1-羟乙基-3-甲基咪唑[Hemim][N(CN)2],并在298.2~353.2K的温度范围内测定了α-D-木糖、α-D-葡萄糖、D-果糖、蔗糖、D-乳糖、麦芽糖、棉子糖和木聚糖在该离子液体中的溶解度,计算了糖类化合物在离子液体中的标准溶解热力学参数.实验结果表明,除木聚糖外其他糖类化合物在[Hemim][N(CN)2]中均具有较高的溶解度,且其溶解度随着温度的升高显著增大.木聚糖属于多聚糖,溶解度较小,但温度效应非常明显.糖类化合物的溶解热力学参数SΔGo、TΔSSo和ΔHSo均为正值,且ΔHSoTΔSSo,说明溶解为焓控制过程.红外光谱结果表明,在溶解过程中木聚糖的氢键受到了一定程度的破坏,但它的结构并未发生明显的变化.  相似文献   

5.
具有表面活性的新型绿色离子液体   总被引:4,自引:0,他引:4       下载免费PDF全文
离子液体作为一类新型的环境友好的“绿色溶剂”, 具有许多独特的性质, 在很多领域有着诱人的应用前景. 但是具有表面活性的离子液体很少报道. 以不同链长溴代烷烃(C10~C18)与N-甲基-2-吡咯烷酮进行季铵化反应得到一系列具有表面活性的新型离子液体. 这类含有吡咯烷酮基团的离子液体不但具有离子液体的性质, 同时也具有优良的表面活性和良好的生物相容性.  相似文献   

6.
1-烷基-3-甲基咪唑系列室温离子液体表面张力的研究   总被引:5,自引:0,他引:5  
王建英  赵风云  刘玉敏  胡永琪 《化学学报》2007,65(15):1443-1448
合成了系列1-烷基-3-甲基咪唑四氟硼酸盐([C2~7mim]BF4)及六氟磷酸盐([C4~7mim]PF6)室温离子液体, 并通过核磁氢谱、红外光谱、质谱等手段对其进行了结构表征; 采用Wilhelmy白金板法, 在293~338 K范围内测定了离子液体的表面张力, 测试结果显示, 同类离子液体表面张力γ随温度的升高而线性下降, 同种离子液体的表面张力呈现出较宽的变化范围, 如293 K下, 表面张力值从[C2mim]BF4的50.4 mJ/m2到[C7mim]BF4的36.1 mJ/m2. 最后对离子液体的表面性能进行了讨论.  相似文献   

7.
以N-甲基咪唑、1,2-二甲基咪唑和2-氯乙醇为原料,经季铵化、硝化和复分解反应,合成了一系列咪唑类含能离子液体.通过紫外可见光谱、红外光谱、质谱、核磁共振和元素分析等对结构进行了表征.研究了其在常用有机溶剂中的溶解性,结果表明所合成的咪唑类含能离子液体在极性溶剂中具有良好的溶解性.采用热重分析法和差示扫描量热法研究了其热性能,结果表明所合成的含能离子液体具有良好的热稳定性,其中N-硝酰氧乙基咪唑硝酸盐的分解温度均在160℃左右,而N-羟乙基咪唑离子盐的分解温度均超过了190℃.差示扫描量热技术(DSC)实验表明,1-(2-硝酰氧乙基)-3-甲基咪唑硝酸盐和N-羟乙基咪唑类离子盐在二次升温过程中均发生了玻璃化转变,表现出了离子液体的特有性质.采用Kamlet-Jacobs方程估算了合成的含能离子液体的爆速和爆压等爆轰参数.  相似文献   

8.
设计合成并表征了N-甲基吡咯烷酮磷酸盐([NMPH]H2PO4)、己内酰胺磷酸盐([NHCH]H2PO4)、N,N'-二甲基甲酰胺磷酸盐([DMFH]H2PO4)和N,N'-二甲基乙酰胺磷酸盐([DMEH]H2PO4)等酰胺类质子酸离子液体;将其用于β-苯乙醇和丁烯酮的Oxa.Michael加成反应中,考察了离子液体阳...  相似文献   

9.
合成并表征了两种Brønsted酸性离子液体N-甲基-2吡咯烷酮硫酸氢盐([Hnmp]HSO4)和N-甲基-2吡咯烷酮对甲苯磺酸盐([Hnmp]PTSA),对两种离子液体在由甲缩醛和多聚甲醛缩合制备聚甲醛二甲醚(DMMn,n > 1)反应中的催化性能进行了研究.结果显示,离子液体的催化活性与其酸性相关,离子液体[Hnmp]HSO4具有较高的催化活性;当离子液体[Hnmp]HSO4 的用量为2.0%(质量分数)、m(甲缩醛)/m(多聚甲醛)= 2.00、反应温度110℃、反应时间6 h时,甲缩醛的转化率和DMM3~8 的选择性分别为52.28%和49.18%.反应结束后,离子液体[Hnmp]HSO4与产物自动分成两相,且该离子液体的稳定性好,重复使用五次后仍有较高的催化活性.  相似文献   

10.
以N-甲基咪唑、吡啶为起始原料,合成了二种新型Br(o)nsted酸性功能化离子液体:1-(4-磺酸基)苄基-3-甲基咪唑硫酸氢根盐(3a),N-(4-磺酸基)苄基吡啶硫酸氢根盐(3b),以其作为反应介质与催化剂,研究了2-取代-4(3H)-喹唑啉酮的三组分、一锅法微波合成.结果表明,当n(2-氨基苯甲酸):n(酰氯):n(乙酸铵):n(3a或3b)=1:1.2:1.5:0.1时,反应6 min即可完成,产率81%~95%.离子液体经减压蒸馏、真空干燥可重复使用3次,催化活性基本保持不变.  相似文献   

11.
New hydrophobic ionic liquids were synthesized from tricaprylmethylammonium chloride (Aliquat 336©) and selected Bronsted acids by a sustainable, simple and cost-saving deprotonation-metathesis route. Prepared ionic liquids were evaluated as potential extracting agents for cadmium from different aqueous solutions. High efficiency and selectivity were reached for the extraction of cadmium from a natural river matrix with tricaprylmethylammonium thiosalicylate, [A336][TS], a thiol-containing task specific ionic liquid.  相似文献   

12.
By reaction of 5‐(chloromethyl)salicylaldehyde with triphenylphosphine and N‐methylimidazole in two separate reactions, salicylaldehydetriphenylphosphonium chloride (S2) and salicylaldehydemethylimidazolinium chloride (S3) were prepared. Reaction of 2‐(aminomethyl)pyridine with these aldehydes resulted in the task‐specific ionic liquid Schiff base ligands L1 and L2, respectively. Then six‐coordinated vanadium(IV) Schiff base complexes of VO(acac)L1–4 were synthesized by reactions of these tridentate Schiff base ligands and VO(acac)2 in 1:1 stoichiometry. The aldehydes, ligands and VO(acac)L1–4 complexes were characterized using infrared, 1H NMR, 13C NMR, 31P NMR, UV–visible and mass spectroscopies, as well as elemental analysis. Paramagnetic property of the complexes was also studied using magnetic susceptibility measurements. The complexes were used as catalysts in epoxidation of cyclooctene and oxidation of methylphenyl sulfide and the reaction parameters were optimized. The effect of the ionic nature of the complexes was investigated in these oxidation reactions. The catalytic activity of the complexes could be varied by changing the ionic (cationic or anionic) character of VO(acac)L1–4 catalysts in which counter anion variation showed a greater effect than cationic moiety variation.  相似文献   

13.
Ketones and β‐diketones were nitrosated and converted to their corresponding α‐oximinoketones using task‐specific ionic liquids, 1‐(4‐nitritobutyl)‐3‐methylimidazolium chloride, IL‐ONO, and 1‐butyl‐3‐methylimidazolium nitrite at room temperature. The results from two ionic liquids are comparable and showed that these IL's are effective nitrosonium sources for the preparation of oximinoketones. The protocol is rapid, the yields are excellent, and the method is simple.  相似文献   

14.
Ionic liquids have been functionalized for modern applications. The functional ionic liquids are also called task‐specific ionic liquids. Various task‐specific ionic liquids with certain groups have been constructed and exploited widely in the field of separation. To take advantage of their properties in separation science, task‐specific ionic liquids are generally used in techniques such as liquid–liquid extraction, solid‐phase extraction, gas chromatography, high‐performance liquid chromatography, and capillary electrophoresis. This review mainly covers original research papers published in the last five years, and we will focus on task‐specific ionic liquids as the chiral selectors in chiral resolution and as extractant or sensor for biological samples and metal ion purification.  相似文献   

15.
A novel 1‐butyl‐3‐methylimidazolium chloride ionic liquid surface imprinted solid‐phase sorbent was synthesized. The as‐prepared material was characterized by SEM, Brunauer–Emmett–Teller surface area analysis and Fourier Transform IR measurements. Then its adsorption properties for alkyl imidazolium ionic liquids, including adsorption capacities, adsorption kinetics, and properties of selective separation and enrichment were studied in detail. It was shown that the ionic liquid surface imprinted polymer exhibited high selective recognition characteristics for the imidazolium chloride ionic liquids with short alkyl chains (CnmimCl, n = 2, 4, 6, 8) and the adsorption equilibrium was achieved within 25 min. Various parameters were optimized for the 1‐butyl‐3‐methylimidazolium chloride ionic liquid surface imprinted polymer SPE column, such as flow rate, eluent solvent, selectivity, and reusability of the column. Then, the SPE column coupled with HPLC was used for the determination of alkyl imidazolium ionic liquids. Experimental results showed that the existence of their structural analogs and common concomitants in environmental matrices did not affect the enrichment of 1‐butyl‐3‐methyl imidazolium chloride ionic liquid. The average recoveries of 1‐butyl‐3‐methylimidazolium chloride ionic liquid in spiked water samples were in the range of 92.0–102.0% with the RSD lower than 5.8%.  相似文献   

16.
Task‐specific ionic liquid‐based ultrasound‐assisted dispersive liquid–liquid microextraction was used for the preconcentration of cadmium(II), cobalt(II), and lead(II) ions in tea samples, which were subsequently analyzed by liquid chromatography with UV detection. The proposed method of preconcentration is free of volatile organic compounds, which are often used as extractants and dispersing solvents in classic techniques of microextraction. A task‐specific ionic liquid trioctylmethylammonium thiosalicylate was used as an extractant and a chelating agent. Ultrasound was used to disperse the ionic liquid. After microextraction, the phases were separated by centrifugation, and the ionic liquid phase was solubilized in methanol and directly injected into the liquid chromatograph. Selected microextraction parameters, such as the volume of ionic liquid, the pH of the sample, the duration of ultrasound treatment, the speed and time of centrifugation, and the effect of ionic strength, were optimized. Under optimal conditions an enrichment factor of 200 was obtained for each analyte. The limits of detection were 0.002 mg/kg for Cd(II), 0.009 mg/kg for Co(II), and 0.013 mg/kg for Pb(II). The accuracy of the proposed method was evaluated by an analysis of the Certified Reference Materials (INCT‐TL‐1, INCT‐MPH‐2) with the recovery values in the range of 90–104%.  相似文献   

17.
A new type of "task specific ionic liquid", tetrabutylphosphonium amino acid [P(C4)4][AA], was synthesized by the reaction of tetrabutylphosphonium hydroxide [P(C4)4][OH] with amino acids, including glycine, L-alanine, L-beta-alanine, L-serine, and L-lysine. The liquids produced were characterized by NMR, IR spectroscopies, and elemental analysis, and their thermal decomposition temperature, glass transition temperature, electrical conductivity, density, and viscosity were recorded in detail. The [P(C4)4][AA] supported on porous silica gel effected fast and reversible CO2 absorption when compared with bubbling CO2 into the bulk of the ionic liquid. No changes in absorption capacity and kinetics were found after four cycles of absorption/desorption. The CO2 absorption capacity at equilibrium was 50 mol % of the ionic liquids. In the presence of water (1 wt %), the ionic liquids could absorb equimolar amounts of CO2. The CO2 absorption mechanisms of the ionic liquids with and without water were different.  相似文献   

18.
We have prepared ionic liquids by mixing either iron(II) chloride or iron(III) chloride with 1-butyl-3-methylimidazolium chloride (BMIC). Iron(II) chloride forms ionic liquids from a mole ratio of 1 FeCl(2)/3 BMIC to almost 1 FeCl(2)/1 BMIC. Both Raman scattering and ab initio calculations indicate that FeCl(4)(2-) is the predominant iron-containing species in these liquids. Iron(III) chloride forms ionic liquids from a mole ratio of 1 FeCl(3)/1.9 BMIC to 1.7 FeCl(3)/1 BMIC. When BMIC is in excess, Raman scattering indicates the presence of FeCl(4-). When FeCl(3) is in excess, Fe(2)Cl(7-) begins to appear and the amount of Fe(2)Cl(7-) increases with increasing amounts of FeCl(3). Ionic liquids were also prepared from a mixture of FeCl(2) and FeCl(3) and are discussed. Finally, we have used both Hartree-Fock and density functional theory methods to compute the optimized structures and vibrational spectra for these species. An analysis of the results using an all-electron basis set, 6-31G, as well as two different effective core potential basis sets, LANL2DZ and CEP-31G is presented.  相似文献   

19.
The designed synthesis of a series of copper(II) specific fluorogenic hydrophobic task‐specific ionic liquids (TSILs) from a new naphthalene‐based tetradentate ligand is reported. Absorption and fluorescence spectral studies reveal both the ligand and its derivative TSILs show exclusive selectivity towards copper(II) ions. The Stern–Volmer method for calculation of the detection limit for ligand and TSIL1–3 shows values of 0.12, 20, 17, and 15 μM , respectively. Extraction and striping studies by doping these TSILs in [bmim][NTf2] demonstrated that these TSILs are recyclable extractants for the selective recovery of CuII ions from a mixture of 14 relevant metal chloride aqueous solutions in biphasic liquid–liquid extraction with approximately 95 % recovery.  相似文献   

20.
A deep-eutectic solvent with the properties of an ionic liquid is formed when choline chloride is mixed with copper(II) chloride dihydrate in a 1:2 molar ratio. EXAFS and UV-vis-near-IR optical absorption spectroscopy have been used to compare the coordination sphere of the cupric ion in this ionic liquid with that of the cupric ion in solutions of 0.1 M of CuCl(2)·2H(2)O in solvents with varying molar ratios of choline chloride and water. The EXAFS data show that species with three chloride ions and one water molecule coordinated to the cupric ion as well as species with two chloride molecules and two water molecules coordinated to the cupric ion are present in the ionic liquid. On the other hand, a fully hydrated copper(II) ion is formed in an aqueous solution free of choline chloride, and the tetrachlorocuprate(II) complex forms in aqueous choline chloride solutions with more than 50 wt % of choline chloride. In solutions with between 0 and 50 wt % of choline chloride, mixed chloro-aquo complexes occur. Upon standing at room temperature, crystals of CuCl(2)·2H(2)O and of Cu(choline)Cl(3) formed in the ionic liquid. Cu(choline)Cl(3) is the first example of a choline cation coordinating to a transition-metal ion. Crystals of [choline](3)[CuCl(4)][Cl] and of [choline](4)[Cu(4)Cl(10)O] were also synthesized from molecular or ionic liquid solvents, and their crystal structures were determined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号