首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cheng JY  Hsieh CJ  Chuang YC  Hsieh JR 《The Analyst》2005,130(6):931-940
This study develops a novel temperature cycling strategy for executing temperature cycling reactions in laser-etched poly(methylmethacrylate) (PMMA) microfluidic chips. The developed microfluidic chip is circular in shape and is clamped in contact with a circular ITO heater chip of an equivalent diameter. Both chips are fabricated using an economic and versatile laser scribing process. Using this arrangement, a self-sustained radial temperature gradient is generated within the microfluidic chip without the need to thermally isolate the different temperature zones. This study demonstrates the temperature cycling capabilities of the reported microfluidic device by a polymerase chain reaction (PCR) process using ribulose 1,5-bisphosphate carboxylase large subunit (rbcL) gene as a template. The temperature ramping rate of the sample inside the microchannel is determined from the spectral change of a thermochromic liquid crystal (TLC) solution pumped into the channel. The present results confirm that a rapid thermal cycling effect is achieved despite the low thermal conductivity of the PMMA substrate. Using IR thermometry, it is found that the radial temperature gradient of the chip is approximately 2 degrees C mm(-1). The simple system presented in this study has considerable potential for miniaturizing complex integrated reactions requiring different cycling parameters.  相似文献   

2.
J S Buch  P C Wang  D L DeVoe  C S Lee 《Electrophoresis》2001,22(18):3902-3907
The application of the field-effect for direct control of electroosmosis in a polydimethylsiloxane (PDMS)-based microfluidic system, constructed on a silicon wafer with a 2.0 microm electrically insulating layer of silicon dioxide, is demonstrated. This microfluidic system consists of a 2.0 cm open microchannel fabricated on a PDMS slab, which can reversibly adhere to the silicon wafer to form a hybrid microfluidic device. Aside from mechanically serving as a robust bottom substrate to seal the channel and support the microfluidic system, the silicon wafer is exploited to achieve field-effect flow control by grounding the semiconductive silicon medium. When an electric field is applied through the channel, a radial electric potential gradient is created across the silicon dioxide layer that allows for direct control of the zeta potential and the resulting electroosmotic flow (EOF). By configuring this microfluidic system with two power supplies at both ends of the microchannel, the applied electric potentials can be varied for manipulating the polarity and the magnitude of the radial electric potential gradient across the silicon dioxide layer. At the same time, the longitudinal potential gradient through the microchannel, which is used to induce EOF, is held constant. The results of EOF control in this hybrid microfluidic system are presented for phosphate buffer at pH 3 and pH 5. It is also demonstrated that EOF control can be performed at higher solution pH of 6 and 7.4 by modifying the silicon wafer surface with cetyltrimethylammonium bromide (CTAB) prior to assembly of the hybrid microfluidic system. Results of EOF control from this study are compared with those reported in the literature involving the use of other microfluidic devices under comparable solution conditions.  相似文献   

3.
This paper reports the shift in thermal stability of DNA duplex and its thermodynamics spectroscopically, caused by stretching and orientation of DNA strands in a microchannel laminar flow. For direct spectroscopic measurement of the microchannel, we prepared an in-house temperature-controllable microchannel-type flow cell. The melting curves of DNA oligomers in a microchannel laminar flow were measured. For DNA oligomers with more than 10 base pairs, the melting curve shifted to the high-temperature side with higher flow speed. However, for 8-base-pair DNA oligomers, a change in the melting profile was not observed in batchwise and microchannel flows. We undertook microfluidic thermodynamic analysis to elucidate details of the shift in thermal stability of the DNA duplex in a microchannel laminar flow. Enthalpy-entropy compensation is applicable to the microfluidic thermal stability shift. We studied the relationships between the enthalpy-entropy compensation and DNA strand length or flow speed. Results showed that the enthalpy-entropy compensation was influenced by both DNA strand length and flow speed, and the penalties of enthalpy were 2-12% greater than the benefits of entropy.  相似文献   

4.
Lin F  Saadi W  Rhee SW  Wang SJ  Mittal S  Jeon NL 《Lab on a chip》2004,4(3):164-167
This paper describes a microfluidic approach to generate dynamic temporal and spatial concentration gradients using a single microfluidic device. Compared to a previously described method that produced a single fixed gradient shape for each device, this approach combines a simple "mixer module" with gradient generating network to control and manipulate a number of different gradient shapes. The gradient profile is determined by the configuration of fluidic inputs as well as the design of microchannel network. By controlling the relative flow rates of the fluidic inputs using separate syringe pumps, the resulting composition of the inlets that feed the gradient generator can be dynamically controlled to generate temporal and spatial gradients. To demonstrate the concept and illustrate this approach, examples of devices that generate (1) temporal gradients of homogeneous concentrations, (2) linear gradients with dynamically controlled slope, baseline, and direction, and (3) nonlinear gradients with controlled nonlinearity are shown and their limitations are described.  相似文献   

5.
This paper describes a microfluidic channel that allows for diffusion-based analysis of adsorbing species without passivation of the channel surfaces. The sheath flow configuration was used to measure the diffusion coefficient of fluorescently labeled species from their spatial distribution within the microchannel by analyzing the derivative of the intensity profile at the interface between two distinct core fluids. Measurements for both a small molecule (rhodamine B) and an intermediate-sized protein (wheat germ agglutinin) were made, demonstrating the utility of the sheath flow T-sensor.  相似文献   

6.
VanDersarl JJ  Xu AM  Melosh NA 《Lab on a chip》2011,11(18):3057-3063
Controlled chemical delivery in microfluidic cell culture devices often relies on slowly evolving diffusive gradients, as the spatial and temporal control provided by fluid flow results in significant cell-perturbation. In this paper we introduce a microfluidic device architecture that allows for rapid spatial and temporal soluble signal delivery over large cell culture areas without fluid flow over the cells. In these devices the cell culture well is divided from a microfluidic channel located directly underneath the chamber by a nanoporous membrane. This configuration requires chemical signals in the microchannel to only diffuse through the thin membrane into large cell culture area, rather than diffuse in from the sides. The spatial chemical pattern within the microfluidic channel was rapidly transferred to the cell culture area with good fidelity through diffusion. The cellular temporal response to a step-function signal showed that dye reached the cell culture surface within 45 s, and achieved a static concentration in under 6 min. Chemical pulses of less than one minute were possible by temporally alternating the signal within the microfluidic channel, enabling rapid flow-free chemical microenvironment control for large cell culture areas.  相似文献   

7.
Genotyping from saliva with a one-step microdevice   总被引:1,自引:0,他引:1  
Pjescic I  Crews N 《Lab on a chip》2012,12(14):2514-2519
This paper presents a disposable microfluidic device for on-chip lysing, PCR, and analysis in one continuous-flow process. Male-female sex determination was performed with human saliva in less than 20 min from spit to finish, and requiring only seconds of manual sample handling. This genetic analysis was based on the amplification and detection of the DYZ1 repeat region unique to the Y-chromosome. The flow-through microfluidic chip consisted of a single serpentine channel designed to guide samples through 42 heating and cooling cycles. Cycling was performed by matching the local channel geometry to a steady-state temperature gradient established across the microfluidic chip. 38 channel segments were designed for rapid low volume PCR, and four were optimized for spatial DNA melting analysis. Fluorescence detection was used to monitor the amplification and to capture the melting signature of the amplicon was performed with a basic 8-bit CCD camera. The microfluidic device itself was fabricated from microscope slides and a double-sided tape. The simplicity of the system and its robust performance combine in an elegant solution for lab-on-a-chip genetic analysis.  相似文献   

8.
Choi CJ  Cunningham BT 《Lab on a chip》2006,6(10):1373-1380
A method for simultaneously integrating label-free photonic crystal biosensor technology into microfluidic channels by a single-step replica molding process is presented. By fabricating both the sub-micron features of the photonic crystal sensor structure and the >10 microm features of a flow channel network in one step at room temperature on a plastic substrate, the sensors are automatically self-aligned with the flow channels, and patterns of arbitrary shape may be produced. By measuring changes in the resonant peak reflected wavelength from the photonic crystal structure induced by changes in dielectric permittivity within an evanescent field region near its surface, detection of bulk refractive index changes in the fluid channel or adsorption of biological material to the sensor surface is demonstrated. An imaging detection instrument is used to characterize the spatial distribution of the photonic crystal resonant wavelength, gathering thousands of independent sensor readings within a single fluid channel.  相似文献   

9.
In this article, we report the design of a microchip based hydraulic pump that employs a sodium silicate derived sol–gel structure for generating pressure-driven flow within a microfluidic network. The reported sol–gel structure was fabricated in a chosen location of our device by selectively retaining sodium silicate solution within a sub-micrometer deep segment via capillary forces, and then providing the precursor material appropriate thermal treatment. It was shown that while the molecular weight cut-off for these membranes is at least an order of magnitude smaller than their photo-polymerized counterparts, their electrical conductance is significant. Moreover, unlike their polymeric counterparts these structures were found to be capable of blocking electroosmotic flow, thereby generating a pressure-gradient around their interface with an open microchannel upon application of an electric field across the microchannel–membrane junction. In this work, a fraction of the resulting hydrodynamic flow was successfully guided to an electric field-free analysis channel to implement a pressure-driven assay. Our experiments show that the pressure-driven velocity produced in the analysis channel of our device varied linearly with the voltage applied across the sol–gel membrane and was nearly independent of the cross-sectional dimensions of the membrane and the microfluidic channels. With our current design pressure-driven velocities up to 1.7 mm/s were generated for an applied voltage of 2 kV, which easily covers the range of flow speeds that can minimize the plate height in most microfluidic separations. Finally, the functionality of our device was demonstrated by implementing a reverse phase chromatographic separation in the analysis channel of our device using the pressure-driven flow generated on-chip.  相似文献   

10.
Zhang HD  Zhou J  Xu ZR  Song J  Dai J  Fang J  Fang ZL 《Lab on a chip》2007,7(9):1162-1170
A simple and robust chip-based temperature gradient capillary electrophoresis (TGCE) system was developed for DNA mutation/single-nucleotide polymorphism (SNP) analysis using a radiative heating system. Reproducible, stable and uniform temperature gradients were established along a 3 cm length of the electrophoretic separation channel using a single thermostated aluminium heater plate. The heater was slightly slanted relative to the plane of the glass chip at 0.2-1.3 degrees by inserting thin spacers between the plate and chip at one end to produce differences in radiative heating that created the temperature gradient. On-chip TGCE analyses of 4 mutant DNA model samples amplified from plasmid templates, each containing a single base substitution, with a wide range of melting temperatures, showed that mutations were successfully detected under a wide temperature gradient of 10 degrees C and within a short gradient region of about 3 cm (3.3 degrees C cm(-1) gradient). The radiative heating system was able to establish stable spatial temperature gradients along short microfluidic separation channels using simple peripheral equipment and manipulation while ensuring good resolution for detecting a wide range of mutations. Effectiveness of the system was demonstrated by the successful detection of K-ras gene mutations in 6 colon cancer cell lines.  相似文献   

11.
Microfluidic devices are a promising new tool for studying and optimizing (bio)chemical reactions and analyses. Many (bio)chemical reactions require accurate temperature control, such as for example thermocycling for PCR. Here, a new integrated temperature control system for microfluidic devices is presented, using chemical and physical processes to locally regulate temperature. In demonstration experiments, the evaporation of acetone was used as an endothermic process to cool a microchannel. Additionally, heating of a microchannel was achieved by dissolution of concentrated sulfuric acid in water as an exothermic process. Localization of the contact area of two flows in a microfluidic channel allows control of the position and the magnitude of the thermal effect.  相似文献   

12.
A microfluidic device is used to generate a complex gradient of diffusible molecules in a static solution. The gradient is precise and steady both in space and in time. This device, made from poly(dimethylsiloxane), consists of three layers. The molecules in reservoirs on the top layer diffuse through the flat middle layer of hydrogel and reach an equilibrium distribution. Microfluidic channels on the bottom layer that are in close contact with the hydrogel contain free solution that has concentration gradients based on the gradient in the gel. The gradient profile in the channel can be designed to have an arbitrary form (within the range of the existing gradient in the hydrogel) by controlling the local direction of the channel at each point.  相似文献   

13.
Product differentiation during continuous-flow thermal gradient PCR   总被引:1,自引:0,他引:1  
A continuous-flow PCR microfluidic device was developed in which the target DNA product can be detected and identified during its amplification. This in situ characterization potentially eliminates the requirement for further post-PCR analysis. Multiple small targets have been amplified from human genomic DNA, having sizes of 108, 122, and 134 bp. With a DNA dye in the PCR mixture, the amplification and unique melting behavior of each sample is observed from a single fluorescent image. The melting behavior of the amplifying DNA, which depends on its molecular composition, occurs spatially in the thermal gradient PCR device, and can be observed with an optical resolution of 0.1 degrees C pixel(-1). Since many PCR cycles are within the field of view of the CCD camera, melting analysis can be performed at any cycle that contains a significant quantity of amplicon, thereby eliminating the cycle-selection challenges typically associated with continuous-flow PCR microfluidics.  相似文献   

14.
Erickson D  Sinton D  Li D 《Lab on a chip》2003,3(3):141-149
Joule heating is a significant problem in electrokinetically driven microfluidic chips, particularly polymeric systems where low thermal conductivities amplify the difficulty in rejecting this internally generated heat. In this work, a combined experimental (using a microscale thermometry technique) and numerical (using a 3D "whole-chip" finite element model) approach is used to examine Joule heating and heat transfer at a microchannel intersection in poly(dimethylsiloxane)(PDMS), and hybrid PDMS/Glass microfluidic systems. In general the numerical predictions and the experimental results agree quite well (typically within +/- 3 degree C), both showing dramatic temperature gradients at the intersection. At high potential field strengths a nearly five fold increase in the maximum buffer temperature was observed in the PDMS/PDMS chips over the PDMS/Glass systems. The detailed numerical analysis revealed that the vast majority of steady state heat rejection is through lower substrate of the chip, which was significantly impeded in the former case by the lower thermal conductivity PDMS substrate. The observed higher buffer temperature also lead to a number of significant secondary effects including a near doubling of the volume flow rate. Simple guidelines are proposed for improving polymeric chip design and thereby extend the capabilities of these microfluidic systems.  相似文献   

15.
Yang M  Yang J  Li CW  Zhao J 《Lab on a chip》2002,2(3):158-163
We have developed a simple method to generate a concentration gradient in a microfluidic device. This method is based on the combination of controlled fluid distribution at each intersection of a microfluidic network by liquid pressure and subsequent diffusion between laminas in the downstream microchannel. A fluid dynamic model taking into account the diffusion coefficient was established to simulate the on-chip flow distribution and diffusion. Concentration gradients along a distance of a few hundred micrometers were generated in a series of microchannels. The gradients could be varied by carefully regulating the liquid pressure applied to the sample injection vials. The observed concentration gradients of fluorescent dyes generated on the microfluidic channel are consistent with the theoretically predicted results. The microfluidic design described in this study may provide a new tool for applications based on concentration gradients, including many biological and chemical analyses such as cellular reaction monitoring and drug screening.  相似文献   

16.
This paper describes a method to create stable chemical gradients without requiring fluid flow. The absence of fluid flow makes this device amenable to cell signaling applications where soluble factors can impact cell behavior. This device consists of a membrane-covered source region and a large volume sink region connected by a microfluidic channel. The high fluidic resistance of the membrane limits fluid flow caused by pressure differences in the system, but allows diffusive transport of a chemical species through the membrane and into the channel. The large volume sink region at the end of the microfluidic channel helps to maintain spatial and temporal stability of the gradient. The chemical gradient in a 0.5 mm region near the sink region experiences a maximum of 10 percent change between the 6 and 24 h data points. We present the theory, design, and characterization of this device and provide an example of neutrophil chemotaxis as proof of concept for future quantitative cell-signaling applications.  相似文献   

17.
A way of using gravity flow to induce a linear convection within a microfluidic system is presented. It is shown and mathematically supported that tilting a 1 cm long covered microchannel is enough to generate flow rates up to 1000 nL.min(-1), which represents a linear velocity of 2.4 mm.s(-1). This paper also presents a method to monitor the microfluidic events occurring in a covered microchannel when a difference of pressure is applied to force a solution to flow in said covered microchannel, thanks to electrodes inserted in the microfluidic device. Gravity-induced flow monitored electrochemically is applied to the performance of a parallel-microchannel enzyme-linked immunosorbent assay (ELISA) of the thyroid-stimulating hormone (TSH) with electrochemical detection. A simple method for generating and monitoring fluid flows is described, which can, for instance, be used for controlling parallel assays in microsystems.  相似文献   

18.
Micellar affinity gradient focusing (MAGF) is a microfluidic counterflow gradient focusing technique that combines the favorable features of MEKC and temperature gradient focusing. MAGF separates analytes on the basis of a combination of electrophoretic mobility and partitioning with the micellar phase. A temperature gradient is produced along the separation channel containing an analyte/micellar system to create a gradient in interaction strength (retention factor) between the analytes and micelles. Combined with a bulk counterflow, species concentrate at a unique point where their total velocity sums to zero. MAGF can be used in scanning mode by varying the bulk flow so that a large number of analytes can be sequentially focused and passed by a single detection point. In this work, we develop a bilinear temperature gradient along the separation channel that improves separation performance over the conventional linear designs. The temperature profile along the channel consists of a very sharp gradient used to preconcentrate the sample followed by a shallow gradient that increases resolution. We fabricated a hybrid PDMS/glass microfluidic chip with integrated micro heaters that generate the bilinear profile. Performance is characterized by separating several different samples including fluorescent dyes using SDS surfactant and pI markers using both SDS and poly-SUS surfactants as the micellar phase. The new design shows a nearly two times improvement in peak capacity and resolution in comparison to the standard linear temperature gradient.  相似文献   

19.
A device for cell culture is presented that combines MEMS technology and liquid-phase photolithography to create a microfluidic chip that influences and records electrical cellular activity. A photopolymer channel network is formed on top of a multichannel microelectrode array. Preliminary results indicated successful local thermal control within microfluidic channels and control of lamina position over the electrode array. To demonstrate the biological application of such a device, adult dissociated dorsal root ganglion neurons with a subpopulation of thermally-sensitive cells are attached onto the electrode array. Using laminar flow, dynamic control of local temperature of the neural cells was achieved while maintaining a constant chemical culture medium. Recording the expected altered cellular activity confirms the success of the integrated device.  相似文献   

20.
We developed a microfluidic analogue of the classic Wheatstone bridge circuit for automated, real-time sampling of solutions in a flow-through device format. We demonstrate precise control of flow rate and flow direction in the "bridge" microchannel using an on-chip membrane valve, which functions as an integrated "variable resistor". We implement an automated feedback control mechanism in order to dynamically adjust valve opening, thereby manipulating the pressure drop across the bridge and precisely controlling fluid flow in the bridge channel. At a critical valve opening, the flow in the bridge channel can be completely stopped by balancing the flow resistances in the Wheatstone bridge device, which facilitates rapid, on-demand fluid sampling in the bridge channel. In this article, we present the underlying mechanism for device operation and report key design parameters that determine device performance. Overall, the microfluidic Wheatstone bridge represents a new and versatile method for on-chip flow control and sample manipulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号