首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Exchange coupled (Pr,Tb)2(Fe,Nb,Zr)14B/α-Fe nanocomposites have been produced by melt spinning. A trend for perpendicular and planar c-axis orientation of the 2:14:1 phase was observed in the free surface of ribbons spun at speeds below 10 m/s and at optimal speeds, respectively. Higher wheel speeds led to the formation of an amorphous phase that transformed to 2:14:1 phase around 680°C. Optimum magnetic properties were found in samples spun at 14–17 m/s and annealed at 700°C for 20 min. The loop squareness was also found to depend mainly on the microstructure that is very sensitive to the sample composition. A few percentage of Nb and Zr suppressed the grain growth, resulting in a drastic improvement of magnetic properties, with approximate 50% enhancement in the intrinsic coercivity and an increase in maximum energy product from 5.6 kOe and 14.7 MGOe for the (Nb,Zr)-free sample to 8.2 kOe and 20.3 MGOe for the (Nb,Zr)-substituted samples, respectively. The significant improvement in magnetic properties originated from a much finer and homogeneous nanocomposite microstructure with an average grain size of 20 nm, leading to a high remanence of 0.73 Ms. Henkel plots indicate the enhancement of exchange coupling between hard and soft magnetic phases.  相似文献   

2.
In this paper, we synthesize and characterize a thin film thermometer structure for infrared microbolometers. The structure is composed of alternating multilayers of Vanadium pentoxide (V2O5), 25 nm, and Vanadium (V), 5 nm, thin films deposited by rf magnetron and dc magnetron sputtering respectively and annealed for 20, 30 and 40 min at 300 °C in Nitrogen (N2) atmosphere. The best achieved temperature coefficient of resistance (TCR) was found to be −2.57%/K for 40 min annealed samples. Moreover, we apply, for the first time, the photo-thermal deflection (PTD) technique for measuring the thermal conductivity of the synthesized thin films. The thermal conductivity of the developed thin films reveals an increase in thermal conductivity from 2 W/m K to 5.8 W/m K for as grown and 40 min annealed samples respectively.  相似文献   

3.
Effects of layer thickness, deposition and annealing conditions on the magnetic properties of Fe/CoNbZr multilayers were investigated. When the multilayer comprising (Fe 40 nm/CoNbZr 10 nm)×10 was deposited under Ar 80%/H2 20% (by volume), an increase in high frequency (100 MHz) permeability was observed (2300 from pure Ar deposition vs. 2900 from mixed gas deposition). Ar/H2 mixed gas sputtering is believed to promote interface smoothness. Furthermore, when the same sample was annealed at 300°C for 30 min in a vacuum, we obtained even higher permeability reaching 3900 accompanying lower coercivity. Based upon X-ray diffraction analyses, annealing appeared to reduce residual stresses resulting in enhanced magnetic softness.  相似文献   

4.
Cobalt (Co) nanocapsules coated with boron nitride (BN) layers were synthesized by annealing of ammine complex. KBH4 and [Co(NH3)6]Cl3 were used as starting materials, and annealed these powders at 500–1000 °C with flowing nitrogen gas. Formation of fcc-Co nanocapsules coated with BN layers was observed from X-ray diffraction patterns and high-resolution electron microscopy. Particle size of fcc-Co prepared at 1000 °C with flowing 100 sccm N2 gas was approximately 40 nm, and the values of saturation magnetization and coercivity were 74.5 emu/g and 88 Oe, respectively. Good oxidation- and wear-resistances were obtained by encapsulating Co nanoparticles with BN layers.  相似文献   

5.
The change in characteristic magnetic fields of a spin-valve multilayer is investigated as a function of the size by computer simulation. The spin-valve modeled in this work is IrMn (9 nm)/CoFe (4 nm)/Cu (2.6 nm)/CoFe (2 nm)/NiFe (6 nm). The spin-valve dimensions are varied widely from 20 mm×10 mm to 0.5 μm×0.25 μm, but the aspect ratio defined by the ratio of the length to the width is fixed at 2.0. The magnetostatic interactions begin to affect the magnetic properties substantially at a spin-valve length of 5 μm, and, at a length of 1 μm, they become even more dominant. The main consequences of the magnetostatic interactions are a significant increase of the coercivity and a very large shift of the bias field in both the pinned and free layers. It is shown that these changes can be explained by two separate contributions to the total magnetostatic interactions: the coercivity change by the self-demagnetizing field and the change of the bias field by the interlayer magnetostatic interaction field.  相似文献   

6.
Nd60Fe30Al10 alloys were rapidly quenched by the melt-spinning technique with different wheel surface speeds ranging from 5 to 30 m/s. The microstructure and the magnetic properties were strongly dependent on the quenching rate. A high quenching rate led to an amorphous structure with a low coercivity at room temperature, while a mixture of amorphous and crystalline phases was found after melt-spinning at 5 m/s, which exhibited hard magnetic properties at room temperature. For both the ribbons melt-spun at 5 and 30 m/s respectively, coercivity increased with decreasing temperature and reached a maximum at around 50 K. Maximum magnetization at 10 T increased dramatically at low temperature. Our magnetic study has shown that the presence of crystalline Nd was responsible for the increase of magnetization and the decrease of coercivity, as Nd became magnetically ordered at low temperatures. The Mössbauer study has shown that the magnetic microstructures of melt-spun ribbons were not uniform, as the spectra needed to be fitted by magnetic and non-magnetic components.  相似文献   

7.
We present detailed measurements of field—and temperature—dependence of magnetization in nanocrystalline YIG (Y3Fe5O12) particles. The fine powders were prepared using sol–gel method. Samples with particle sizes ranging from 45 to 450 nm were obtained. We observe that the saturation magnetization decreases as the particle size is reduced due to enhancement of the surface spin effects. Below a critical diameter Ds≅190 nm, the particles become single domains and the coercive forces reaches a maximum at diameters close to the critical value. As the particle size decreases the coercivity diminishes and at Dp≃35 nm diameters the upper limit of superparamagnetic behavior is reached. A quantitative comparison of temperature and particle size dependence of coercivity shows a satisfactory agreement that is expected for an assembly of randomly oriented particles.  相似文献   

8.
A blending process involving the mixing of powders of NdFeB and pure copper and pure cobalt has been developed. This process has been shown to be an effective and simple way of adding copper or cobalt and copper to the composition. This allows the composition and hence properties of the finished magnets to be adjusted subsequent to the casting and milling of the basic alloy. Additions of more than 0.4 at% Cu resulted in poor densification. The coercivities of the magnets containing Cu were very much dependent on the heat treatment. A treatment of 500°C for 1 h followed by rapid cooling, yielded an excellent coercivity for 0.25 at% addition of Cu; however, the same heat treatment decreased the coercivity significantly for an addition of 0.15 at% Cu. Examination of the microstructure showed that Cu was affecting the grain size and nature of the grain boundary phases. A combined addition of 0.25 at% Cu and Co allowed Co to be added without excessive loss in coercivity. Increased Co content led to improved Curie temperature and remanence. The combined addition led to the formation of Nd3Co as the main grain boundary phase. The optimal heat treatment for magnets containing both Co and Cu was 900°C for 10 h followed by 500°C for 1 h and a rapid cool. However, the lower temperature treatment on its own also yielded excellent properties.  相似文献   

9.
《Solid State Communications》2002,121(2-3):145-147
A gadolinium ternary complex, tris(1-phenyl-3-methyl-4-isobutyryl-5-pyrazolone) (phenanthroline) gadolinium [Gd(PMIP)3(Phen)] was synthesized and used as a light emitting material in the organic electroluminescent (EL) devices. The triple layer device with a structure of indium tin oxide (ITO)/N,N′-diphenyl-N,N′-bis(3-methylphenyl)-1,1′-biphenyl-4,4′-diamine (TPD) (20 nm)/Gd(PMIP)3(Phen) (80 nm)/2, 9-dimethyl-4, 7-diphenyl-1, 10-phenanthroline (bathocuproine or BCP) (20 nm)/Mg: Ag(200 nm)/Ag(100 nm) exhibited green emission peaking at 535 nm. A maximum luminance of 230 cd/m2 at 17 V and a peak power efficiency of 0.02 lm/w at 9 V were obtained.  相似文献   

10.
Nanostructured Mn3O4 sample with an average crystallite size of ∼15 nm is synthesized via the reduction of potassium permanganate using hydrazine. The average particle size obtained from the Transmission Electron Microscopy analysis is in good agreement with the average crystallite size estimated from X-ray diffraction analysis. The presence of Mn4+ ions at the octahedral sites is inferred from the results of Raman, UV–visible absorption and X-ray photoelectron spectroscopy analyzes. DC electrical conductivity of the sample in the temperature range 313–423 K, is about five orders of magnitude larger than that reported for single crystalline Mn3O4 sample. The dominant conduction mechanism is identified to be of the polaronic hopping of holes between cations in the octahedral sites. The zero field cooled and field cooled magnetization of the sample is studied in the range 20–300 K. The Curie temperature for the sample is about 45 K, below which the sample is ferrimagnetic. A blocking temperature of 35 K is observed in the field cooled curve. It is observed that the sample shows hysteresis at temperatures below the Curie temperature with no saturation, even at an applied field (20 kOe). The presence of an ordered core and disordered surface of spin arrangements is observed from the magnetization studies. Above the Curie temperature, the sample shows linear dependence of magnetization on applied field with no hysteresis characteristic of paramagnetic phase.  相似文献   

11.
Ta/Nd/NdFeB/Nd/Ta sandwiched films are deposited by magnetron sputtering on Si(100) substrates,and subsequently annealed in vacuum at different temperatures for different time.It is found that both the thickness of NdFeB and Nd layer and the annealing condition can affect the magnetic properties of Ta/Nd/NdFeB/Nd/Ta films.Interestingly,the thickness and annealing temperature show the relevant behaviors that can affect the magnetic properties of the film.The high coercivity of 24.1 kOe(1 Oe = 79.5775 A/m) and remanence ratio(remanent magnetization/saturation magnetization)of 0.94 can be obtained in a Ta/Nd(250 nm)/NdFeB(600 nm)/Nd(250 nm)/Ta film annealed for 3 min at 1023 K.In addition,the thermal stability of the film is also linked to the thickness of NdFeB and Nd layer and the annealing temperature as well.The excellent thermal stability can be achieved in a Ta/Nd(250 nm)/NdFeB(600 nm)/Nd(250 nm)/Ta film annealed at1023 K.  相似文献   

12.
The influences of O2 partial pressure on saturation magnetization, coercivity and effective permeability of the as-deposited Fe–Sm–O thin films, which were fabricated by RF magnetron reactive sputtering method, were investigated. The nanocrystalline Fe83.4Sm3.4O13.2 thin film fabricated at O2 partial pressure of 5% exhibited the best magnetic softness with a saturation magnetization of 1.43 MA/m, coercivity of 65.2 A/m and effective permeability of about 2600 in the frequency range from 0.5 to 100 MHz. The electrical resistivity of Fe83.4Sm3.4O13.2 was 130 μΩ cm. The microstructures and electrical resistivity were investigated in this work.  相似文献   

13.
Dongyoo Kim  Jisang Hong 《Surface science》2012,606(23-24):1960-1964
Using the full potential linearized augmented plane wave (FLAPW) method, we have investigated the thickness dependent magnetic properties of rare earth free exchange spring magnet FeCo/FePt(001). The FeCo adlayer thickness is increased from one monolayer (ML) to four ML coverage. It is observed that the FeCo adlayers and Fe atoms in FePt substrate show almost half metallic behavior, while an ordinary metallic feature is found in Pt atoms. The average magnetization increases with FeCo thickness and the estimated maximum energy product reaches 66 MGOe in FeCo(4 ML)/FePt(001). A giant perpendicular magnetocrystalline anisotropy (MCA) energy of 18.20 meV/cell is found in pure FePt(001) and it becomes 17.35 meV/cell even in FeCo(4 ML)/FePt(001). In addition, we find very large coercivity field in FeCo/FePt(001) systems. For instance, the calculated maximum coercivity field in FeCo(4 ML)/FePt(001) is about 188 kOe. Both energy product and coercivity field calculations may imply that the FeCo/FePt can be utilized for potential rare earth free exchange spring magnet material.  相似文献   

14.
Sm2Co17 alloy nanoparticles of 10–250 nm in size were prepared by mechanochemical processing involving the co-reduction of Sm2O3 and CoO with Ca. The crystal structure of the nano-sized Sm2Co17 particles was mainly of the ordered Th2Zn17-type. When embedded in the CaO matrix the Sm2Co17 nanoparticles exhibited a high coercivity of 14.2 kOe. The CaO by-product could be removed by a carefully controlled washing process without significant oxidation of the ultrafine alloy particles. After washing, the cold-pressed powder exhibited a coercivity value of 11.8 kOe and a maximum magnetization of 92.0 emu/g under an applied field of 50 kOe.  相似文献   

15.
Melt-spun Nd13Dy2Fe77−xCoxC6B2 (x=0, 5, 10, 15, 20) ribbons with a high coercivity more than 2 T have been obtained. It was found that the ribbons quenched at the optimum wheel speed 15 m/s (as-spun ribbons) mainly consist of ferromagnetic 2 : 14 : 1 phase and paramagnetic NdC2 phase, and the ribbons spun at 25 m/s and subsequently annealed at 973 K for 15 min (as-annealed ribbons) are primarily composed of the magnetic 2 : 14 : 1 and 2 : 17 phases. The magnetization process of as-spun ribbons controlled by a pinning of the domain wall is different from that of as-annealed ribbons determined by a nucleation of the reverse domain. This significant difference originates possibly from the existence of paramagnetic NdC2 phase acting as a pinning center in as-spun ribbons. In the as-annealed ribbons, the substitution of Co for Fe leads to increase of remanence (μ0Mr), maximum energy product ((BH)max) from 0.67 T, 9.7 MGOe for x=0 to 0.84 T, 14.4 MGOe for x=10, respectively. A coercivity of 2.74 T is obtained for as-quenched Nd13Dy2Fe77−xCoxC6B2 (x=0) ribbons.  相似文献   

16.
Iron-doped nickel oxide (Fe0.01Ni0.99O, abbreviated as FNO) nanoparticles were prepared by sol–gel process using 1,3-propanediol as a solvent and also as a chelating agent, and calcined at the various temperatures (400–1000 °C) for 2 h. The phase composition and the microstructure of the calcined products were investigated by X-ray diffraction and scanning electron microscopy techniques, respectively. Magnetic properties were measured at room temperature using a vibrating sample magnetometer. All calcined samples showed the single phase of FNO cubic rock-salt structure without the presence of any impurity phases. The crystallite size from XRD and particle size from SEM increased as calcining temperature increased. The FNO powders calcined at 400?600 °C revealed the uniform and dense spherical particles in nanosize. The room-temperature ferromagnetism was observed for all samples. When the calcining temperature was increased, the saturation magnetization decreased whereas the coercivity increased, corresponding to the less dense and larger particles. The calcined sample at 400 °C had the best magnetic properties with the highest Ms of 5.34 emu/g (at 10 kOe) and the lowest Hc of 372 Oe.  相似文献   

17.
Soft magnetic α-Fe nanoparticles were prepared by a coprecipitation route and hard magnetic Nd15Fe77B8 nanoparticles were prepared by ball milling for 20 h by using a shaker mill. A mechanical ball-mill technique was applied to build up exchange-coupled nanoparticles. A mixture of Nd2Fe14B and α-Fe nanoparticles in a stainless steel boat was milled for 2 h and annealed in a vacuum furnace under vacuum (∼10−5 Torr) at 650 °C for 30 min. The crystal structure of the nanoparticles was confirmed by using X-ray powder diffraction (XRD). The surface morphology was identified by FE-SEM. The magnetization curve was measured with a vibrating-sample magnetometer (VSM). Thermogravimetry using a microbalance with magnetic field gradient positioned below the sample was used for the measurement of a thermomagnetic analysis (TMA) curve showing the downward magnetic force versus temperature.  相似文献   

18.
We systematically synthesized self-aggregated iron nanoparticles in the perfluorinated sulfo-cation membrane (MF-4SK) by ion-exchange method. Our experimental results show that iron nanoparticles in MF-4SK exhibit superparamagnetic properties above the blocking temperature. Field-cooled and zero-field-cooled magnetization data show the blocking temperature, TB≅120 K for the iron concentration of 5×1019 atoms per 1 g of polymer film at 500 Oe applied field. This result is well matched with the calculation based on the temperature dependence of the coercivity, which shows TB≅110 K, with the zero temperature coercivity (HC0) ≅ 420 Oe. The radius of the typical iron particle is determined to be ∼2 nm from transmission electron microscopy (TEM), showing good agreement with the value acquired by Langevin function fit. These experimental evidences suggest that iron nanoparticles in the polymer film obey a single-domain theory.  相似文献   

19.
Magnetic–fluorescent nanocomposites (NCs) with 10 wt% of α-Fe2O3 in ZnO have been prepared by the high energy ball-milling. The crystallite sizes of α-Fe2O3 and ZnO in the NCs are found to vary from 65 nm to 20 nm and 47 nm to 15 nm respectively as milling time is increased from 2 to 30 h. XRD analysis confirms presence of α-Fe2O3 and ZnO in pure form in all the NCs. UV–vis study of the NCs shows a continuous blue-shift of the absorption peak and a steady increase of band gap of ZnO with increasing milling duration that are assigned to decreasing particle size of ZnO in the NCs. Photoluminescence (PL) spectra of the NCs reveal three weak emission bands in the visible region at 421, 445 and 485 nm along with the strong near band edge emission at 391 nm. These weak emission bands are attributed to different defect – related energy levels e.g. Zn-vacancy, Zn interstitial and oxygen vacancy. Dc and ac magnetization measurements show presence of weakly interacting superparamagnetic (SPM) α-Fe2O3 particles in the NCs. 57Fe-Mössbauer study confirms presence of SPM hematite in the sample milled for 30 h. Positron annihilation lifetime measurements indicate presence of cation vacancies in ZnO nanostructures confirming results of PL studies.  相似文献   

20.
We studied the structure and magnetic properties of co-sputtered Co1−xCx thin films using a transmission electron microscope (TEM) and a SQUID magnetometer. These properties were found to depend critically on deposition temperature, TS, and composition, x. Generally, phase separation into metallic Co and graphite-like carbon phases proceeds with increasing TS and decreasing x. Plan view and cross-sectional TEM images of the films prepared showed that Co grains about 10–20 nm in diameter and 30–50 nm in height are three-dimensionally separated by graphite-like carbon layers 1–2 nm thick. Optimum magnetic properties with saturation magnetization of 380 emu/cc and coercivity of 400 Oe were obtained for a film with x=0.5 and TS=350°C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号