首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Using membrane transport characterization and imaging analysis, we describe a series of studies that indicate that ethanol exposure permanently alters the ultrastructural morphology and the transport properties of PAN-PVC hollow fiber membranes (HFM). In particular, hydropermeability and solute diffusive permeability of ethanol treated sample groups displayed significant increases when compared to that of the untreated controls. Atomic force microscopic analysis revealed significant changes in the morphology of the permselective layer following HFM exposure to ethanol. The results call into question the mechanism by which cell encapsulation HFM confer immune protection when utilized in various transplantation sites in vivo.  相似文献   

2.
When transport-efficient membrane modules (such as those where the liquid flows outside hollow fibre membranes) or membranes with prolonged resistance to wetting are used for the oxygenation of blood or other cell suspensions, membrane contribution to the overall oxygen transfer resistance into the liquid may become significant. Thus, estimation of membrane diffusive permeability towards relevant gases (e.g., oxygen) is important to develop new membranes and to ensure reproducible commercial membrane performance.

In this paper, we report on a turbulent flow technique for the estimation of the oxygen diffusive permeability of membranes used in outside-flow oxygenators. Water is re-circulated under turbulent flow conditions in a closed-loop from a reservoir to the shell of lab-scale membrane modules. The overall oxygen transfer to water coefficient is estimated at increasing water flow rates from the time the change of dissolved oxygen tension in the stream leaving the water reservoir occurs. Oxygen diffusive permeability is estimated as the reciprocal overall transfer resistance at infinitely high water flow rates, for negligible gas-side oxygen transport resistance. The technique was used to estimate oxygen diffusive permeability of commercial Oxyphan® polypropylene membranes for blood oxygenation and of two laboratory polypropylene membranes, the one featuring a microporous wall structure with smaller-than-standard pore size, the other featuring an outer thin, dense layer supported by a thick spongy layer. The turbulent flow technique yields oxygen diffusive permeability estimates consistent both with membrane hydraulic permeability towards gaseous nitrogen, membrane wall structure, and with values in literature obtained using a liquid reactive with oxygen, but without the complications associated with reaction and physical transport kinetic characterisation. We conclude that the turbulent flow technique is a useful tool in the development and quality control of membranes for the oxygenation of blood and other cell suspensions.  相似文献   


3.
A precise and rapid transient diffusion experiment has been developed to measure the diffusive permeability of hollow fibers. In this experiment a sealed hollow fiber containing a radioactive solute is exposed sequentially to several well-stirred solute-free reservoirs. This method was used to measure the diffusive permeability of collagen and Cuprophan hollow fibers in an isotonic saline solution for a spectrum of 14C labelled solutes: urea, sucrose and polyethylene glycol (PEG). To study the effect of environment on membrane permeability, collagen membranes were investigated with urea, sucrose and tritiated water in the following solutions with varying ionic strength and hydrogen ion concentration: pH2 HCl, distilled water and pH2 HCl with 0.8 M NaCl.In each environment, the membranes showed the expected decreases in diffusive permeaability with increasing molecular weight. Collagen membranes ranged from 4 (urea) to 40 (PEG) times the permeability of Cuprophan membranes. The Cuprophan data are consistent with results obtained elsewhere using scaled-down dialyzers. In response to environmental changes, the diffusive permeability of collagen membranes changed overall by a factor of 3 with the following rank: pH 2 HCl > distilled water > pH2 HCl and 0.8 M NaCl. The hydraulic permeability of these membranes changed by a factor of 2 but in a different order pH2 HCl > pH2 HCl and 0.8 M NaCl > distilled water. These permeability changes can be explained in terms of the known environmental dependence for the structure of collagen membranes and have been shown to be consistent with trends predicted by simple transport models.  相似文献   

4.
Bisphenol A (BPA) imprinted polyethersulfone (PES) hollow fiber membrane was spun using a dry–wet spinning method, the membrane was then prepared as a filter with an effective area of 200 cm2. The hollow fiber filter was employed to study the BPA transport behavior. The transport ability of the prepared hollow fiber membrane was measured using 100 μmol/l BPA aqueous solutions at a flow flux of 50 and 75 ml/min, respectively. The BPA transfer rate increased for the imprinted hollow fiber membranes due to the larger amount of binding sites, comparing with the non-imprinted one. In the present study, hollow fiber membrane and the molecular imprinting technique were combined for advanced separation and the data suggested that small molecules could transfer in the direction opposite to the concentration gradient due to different pH.  相似文献   

5.
中空纤维复合膜是分离膜的一种,它是由两种(或两种以上)不同的材料采用一定的制备工艺复合而成的,其优点是将中空纤维的结构特点(如自支撑等)和复合膜的分离优势(如高选择性高通量等)有机结合.本文首先介绍了中空纤维复合膜的基膜及复合层所用到的材料(或添加材料),并按照中空纤维复合膜的结构特点对其进行了简单的分类,并重点论述了中空纤维复合膜的制备设备及工艺.最后论述了中空纤维复合膜在渗透汽化、气体分离和纳滤等领域的研究进展和应用情况,指出中空纤维复合膜需要继续深入的研究内容.  相似文献   

6.
Gas permeation through a typical state-of-the-art membrane can be described by defining three morphological features: namely skin thickness, skin integrity, and substructure resistance. Traditional gas permeation measurements tend to characterize skin thickness and skin integrity, but not substructure resistance. This presents a serious obstacle to the optimization of advanced hollow fiber membranes, since as skin thicknesses are reduced, substructure resistance becomes an increasingly significant contribution to the overall permeation rate. This paper illustrates how substructure resistance can affect permeation properties and demonstrates a new technique for characterizing this frequently important morphological feature. The technique involves applying a constant transmembrane pressure while varying the average gas pressure within the membrane. Thus, the mean free path of gas molecules permeating through the substructure can be altered while maintaining a constant driving force for permeation. Such experiments characterize the magnitude of the substructure resistance, as well as provide insight into the governing transport mechanism. These constant driving force/variable pressure permeation measurements can estimate the average pressure or mean free path at the transition where substructure resistance becomes negligible. This can then be used to compare the morphological features of different membranes. This technique is demonstrated on well-defined coated ceramic membranes, asymmetric polymeric flat sheet membranes, and asymmetric polymeric hollow fiber membranes.  相似文献   

7.
Inorganic membranes have been developed before 1945. The earlier application of inorganic membranes was primarily concentrate on military purpose. Carbon membrane is one type of porous inorganic membrane. Although the concept of carbon membrane for gas separation has been found in the early 1970, the interest to develop carbon membrane only increased, since Koresh and Soffer successfully prepared apparently crack-free molecular sieving hollow fiber carbon membranes. Nowadays, plenty of researchers have used different polymeric materials; including polyimides, to prepare carbon membranes by using pyrolysis. In general, carbon membranes can be divided into four major configurations: flat sheet, membrane supported on tube, capillary, and hollow fiber. Permeation properties of carbon membranes have been improved greatly in these 20 years. Carbon membranes offer advantages over polymeric membranes especially in terms of selectivity as well as thermal and chemical stability. More attention will be paid to carbon membranes in this century. This paper will review the development of carbon membranes in the last 30 years and give a clear future direction in research for carbon membrane.  相似文献   

8.
Transport of strontium through supported hollow fiber dichlorobenzene liquid membranes has been studied. The possible mechanism of strontium transport with 18-crown-6 ether as a carrier and picrate as co-counter-ion as well as the construction of a pertraction device with on-line radiometric detection of strontium using85Sr tracer is described. Preliminary results of strontium pertraction in a recycling and one-pass mode with different concentrations of crown are shown.  相似文献   

9.
The development of a liquid membrane enzyme reactor for the extraction of phenols from blood and plasma is described. Phenol permeation across the liquid membrane is studied, the transport of the toxins is linked with an enzymatic reaction. The encapsulation of the enzyme is described in detail. The stability of the multi-emulsion as well as the loss of enzyme activity during encapsulation and treatment axe examined thoroughly. The resulting liquid surfactant membrane emulsion is applied in in-vitro experiments to remove phenols from blood and plasma.  相似文献   

10.
以聚全氟乙丙烯(FEP)为成膜聚合物,复合无机粒子为成孔剂,邻苯二甲酸二辛酯(DOP)为稀释剂,采用熔融纺丝工艺制备得到FEP中空纤维膜.分析和讨论了不同成膜体系对FEP中空纤维膜热性能、动态力学性能和力学性能的影响,并对膜的纯水通量和孔径分布进行表征.用扫描电子显微镜(SEM)观察了膜的横断面和表面形貌.结果表明,所得FEP中空纤维膜为由溶出微孔和界面微孔组成的海绵状孔结构.随着成孔剂含量的增加,成孔剂在成膜体系中分散程度变差,容易发生团聚,最终导致膜孔径变大,孔径分布变宽.成孔剂和稀释剂对FEP中空纤维膜的热性能和动态力学性能影响较小.当FEP含量增加到70 wt%时,膜表面容易形成一层致密层,降低了膜的通透性.  相似文献   

11.
A defect-free as-spun hollow fiber membrane with an ultra-thin dense-selective layer is the most desirable configuration in gas separation because it may potentially eliminate post-treatments such as silicone rubber costing, simplify membrane manufacture, and reduce production costs. However, the formation of defect-free as-spun hollow fiber membranes with an ultra-thin dense-selective layer is an extremely challenging task because of the complexity of phase inversion process during the hollow fiber fabrication and the trade-off between the formation of an ultra-thin dense-selective layer and the generation of defects. We have for the first time successfully produced defect-free as-spun Torlon® hollow fiber membranes with an ultra-thin dense layer of around 540 Å from only a one polymer/one solvent binary system at reasonable take-up speeds of 10–50 m/min. The best O2/N2 permselectivity achieved is much higher than the intrinsic value of Torlon® dense films. This is also a pioneering work systematically studying the effects of spinneret dimension and hollow fiber dimension on gas separation performance. Several interesting and important phenomena have been discovered and never been reported: (1) as the spinneret dimension increases, a higher elongation draw ratio is required to produce defect-free hollow fiber membranes; (2) the bigger the spinneret dimension, the higher the selectivity; (3) the bigger the spinneret dimension, the thinner the dense-selective layer. Mechanisms to explain the above observation have been elaborated. The keys to produce hollow fiber with enhanced permselectivity are to (1) remove die swell effects, (2) achieve finer monodisperse interstitial chain space at the dense-selective layer by an optimal draw ratio, and (3) control membrane formation by varying spinneret dimension.  相似文献   

12.
Inorganic hollow fiber membranes were prepared by spinning a polymer solution containing suspended aluminum oxide (Al2O3) powders to a hollow fiber precursor, which is then sintered at elevated temperatures. In spinning these hollow fiber precursors, polyethersulfone (PESf), N-methyl-2-pyrrolidone (NMP), and polyvinyl pyrrolidone (PVP) were used as a polymer binder, a solvent, and an additive, respectively. The inorganic hollow fiber membranes prepared were characterized using scanning electron microscope (SEM), gas permeation techniques Coulter porometer, and gravimetric analysis. Some primary factors affecting the structure and performance of the membranes such as the sintering temperature and the ratio of the aluminum oxide to the PESf polymer binder were studied extensively. The prepared inorganic membranes show an asymmetric structure, which is similar to the conventional polymeric membranes prepared from the same phase-inversion technique. The inorganic hollow fiber membrane with a higher porosity and better mechanical strength could be prepared by blending the spinning solution with a smaller amount of aluminum oxide powder.  相似文献   

13.
The nonlinear optical phenomenon second harmonic light scattering (SHS) can be used for detecting molecules at the membrane surfaces of living biological cells. Over the last decade, SHS has been developed for quantitatively monitoring the adsorption and transport of small and medium size molecules (both neutral and ionic) across membranes in living cells. SHS can be operated with both time and spatial resolution and is even capable of isolating molecule‐membrane interactions at specific membrane surfaces in multi‐membrane cells, such as bacteria. In this review, we discuss select examples from our lab employing time‐resolved SHS to study real‐time molecular interactions at the plasma membranes of biological cells. We first demonstrate the utility of this method for determining the transport rates at each membrane/interface in a Gram‐negative bacterial cell. Next, we show how SHS can be used to characterize the molecular mechanism of the century old Gram stain protocol for classifying bacteria. Additionally, we examine how membrane structures and molecular charge and polarity affect adsorption and transport, as well as how antimicrobial compounds alter bacteria membrane permeability. Finally, we discuss adaptation of SHS as an imaging modality to quantify molecular adsorption and transport in sub‐cellular regions of individual living cells.  相似文献   

14.
The use of semipermeable membranes for multicomponent separations based on molecular size has long been recognized. In certain applications, however, it is often desirable not to effect a separation of chemical constituents, but to sustain a separation which already exists. As an example, the efficient and economical design of a. chemical reactor using an enzyme as a catalyst depends on the accessibility of the reactant to the catalyst as well as on the degree to which a physical separation between the enzyme and the reactor product stream is maintained. A particularly simple and attractive means of achieving this is through the use of semipermeable asymmetric hollow fiber membranes. For example, by sequestering an enzyme solution within the annular macroporous support regions of an asymmetric hollow fiber, a physical separation between enzyme and a reactant solution flowing through the fiber lumen is achieved. In this way, small reactant molecules are free to diffuse across the ultrathin membrane skin into the opencell support structure where reaction will occur. Product molecules will diffuse back into the lumen, and a compact chemical reactor results. The operating behavior of this type of catalytic reactor will be described and its application to the hydrolysis of o-nitro-phenyl-B-d-galactopyranoside and of lactose is discussed.  相似文献   

15.
熔纺聚氨酯系中空纤维膜的结构与性能   总被引:1,自引:0,他引:1  
将聚氨酯/聚偏氟乙烯/聚乙二醇(PU/PVDF/PEG)熔融共混纺丝制得中空纤维膜,对纤维膜的微孔结构与性能进行研究,分析影响其水通量衰减的因素。结果表明:所得纤维膜具有界面及非界面微孔结构;随着水通量工作环境的变化,膜孔结构发生相应变化,表现出压力及温度响应性能;而经热处理后,所得膜部分微孔闭合,水通量下降;随测试时间延长,膜结构趋于致密化,水通量衰减。  相似文献   

16.
Basic drug substances were transported across a thin artificial organic liquid membrane by the application of 300 V d.c. From a 300 microl aqueous donor compartment (containing 10 mM HCl), the drugs migrated through a 200 microm artificial liquid membrane of 2-nitrophenyl octyl ether immobilized in the pores of a polypropylene hollow fiber, and into a 30 microl aqueous acceptor solution of 10 mM HCl inside the lumen of the hollow fiber. The transport was forced by an electrical potential difference sustained over the liquid membrane, resulting in electrokinetic migration of drug substances from the donor compartment to the acceptor solution. Within 5 min of operation at 300 V, pethidine, nortriptyline, methadone, haloperidol, and loperamide were extracted with recoveries in the range 70-79%, which corresponded to enrichments in the range 7.0-7.9. The chemical composition of the organic liquid membrane strongly affected the permeability, and may serve as an efficient tool for controlling the transport selectivity. Water samples, human plasma, and human urine were successfully processed, and in light of the present report, electrokinetic migration across thin artificial liquid membranes may be an interesting tool for future isolation within chemical analysis.  相似文献   

17.
Zirconia bio-ceramic hollow fiber membranes were developed using a sequence of mixing, extrusion, phase inversion and sintering steps. ZrO2 partially stabilized by Y2O3 was chosen as the starting membrane material. The prepared membranes were characterized by SEM, EDX, XRD and gas permeation techniques. Effects of the starting ZrO2 particle size and sintering temperature on the physical properties of the resulted hollow fiber membranes were extensively studied. Sintered at 1400 °C for 10 h, membranes made from 80 nm sized ZrO2 particles display cubic fluorite as the major crystalline phase and give rise to interesting microstructure for cell response. Without any surface modification, this tailor-made membrane with high mechanical strength and pore size less than 1 μm was selected for further test of osteoblast attachment. In vitro bio-compatibility was evaluated by using mouse MC-3T3-E1 osteoblast cell culture. A series of cell interactions with fiber surface (i.e. cell adhesion, proliferation, formation of bone nodules, mineralization, etc.) verified the bio-compatibility of the prepared membranes.  相似文献   

18.
The mass transfer characteristics of gas permeable, hollow fiber membranes in a liquid jet mixed reactor are studied. A membrane module, operated in the sealed-end mode, was pressurized with oxygen at the base of the fibers and centered within a submerged jet discharge. Unlike conventional membrane module designs, this configuration did not have the hollow fibers enclosed within a tubular shell. The membranes were unconfined and free to move within the generated flow field. This design is especially well suited for use in waters containing high solid concentrations. The membranes have a greater degree of freedom for movement and are therefore less likely to become fouled due to solids being lodged within the fiber bundle. Mass transfer rates were measured over a practical range of physical and process parameters. A mass transfer correlation for the unconfined configuration is presented and the transfer performance of this configuration is compared with conventional membrane contactor designs.  相似文献   

19.
Asymmetric carbon hollow fiber membranes were prepared by pyrolysis of an asymmetric polyimide hollow fiber membrane, and their mechanical and permeation properties were investigated. The carbon membrane had higher elastic modulus and lower breaking elongation than the polyimide membrane. Permeation experiments were performed for single gases such as H2, CO2, and CH4, and for mixed gases such as H2/CH4 at high feed pressure ranging from 1 to 5 MPa with or without toluene vapor. The permeation properties of the carbon membranes and the polyimide membrane were compared. There was little change in the properties of the carbon membranes with a passage of time. The properties were hardly affected by the feed pressure, whether the feed was accompanied with the toluene vapor or not, because the carbon membranes were not affected by compaction and plasticization.  相似文献   

20.
熔融纺丝制备中空纤维膜研究进展   总被引:1,自引:0,他引:1  
中空纤维膜作为一种重要的分离膜材料,其制备方法一直以来是膜技术研究领域的热点。相对于溶液法纺丝制膜方法而言,熔融纺丝法具有使用溶剂量少、环境友好、所得中空纤维膜力学性能较优等特点,已成为目前中空纤维膜制备的重要技术之一。本文根据工艺将熔融纺丝制膜方法区分为熔融纺丝-拉伸法和热致相分离法,分别就这两种方法中空纤维膜的制备技术及致孔机理进行介绍,并对二者的研究历史及现状进行了论述,最后,还指出了熔融纺丝制备中空纤维膜研究领域有待解决的问题。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号