首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Reaction of guaiazulene (1) with methyl terephthalaldehydate (2) in methanol in the presence of hexafluorophosphoric acid at 25 °C for 2 h under aerobic conditions gives (3-guaiazulenyl)[4-(methoxycarbonyl)phenyl]methylium hexafluorophosphate (5) in 94% yield. Similarly, reactions of 1 with 2-hydroxybenzaldehyde (3) and 4-hydroxybenzaldehyde (4) under the same reaction conditions as 2 give (3-guaiazulenyl)(2-hydroxyphenyl)methylium hexafluorophosphate (6) and (3-guaiazulenyl)(4-hydroxyphenyl)methylium hexafluorophosphate (7) in 89 and 97% yields, respectively. Comparative studies on the molecular structures as well as the spectroscopic, chemical and electrochemical properties of the monocarbocation compounds 5-7 stabilized by 3-guaiazulenyl and 4-(methoxycarbonyl)phenyl (or 2-hydroxy- or 4-hydroxyphenyl) groups are reported.  相似文献   

2.
Reaction of guaiazulene (1) with 2-methoxybenzaldehyde (2) in methanol in the presence of hexafluorophosphoric acid at 25 °C for 2 h gives (3-guaiazulenyl)(2-methoxyphenyl)methylium hexafluorophosphate (5a) in 93% yield. Similarly, reaction of 1 with 3-methoxybenzaldehyde (3) or 4-methoxybenzaldehyde (4) under the same reaction conditions as for 2 affords (3-guaiazulenyl)(3-methoxyphenyl)methylium hexafluorophosphate (6) (91% yield) or (3-guaiazulenyl)(4-methoxyphenyl)methylium hexafluorophosphate (7) (97% yield). The crystal structures as well as the spectroscopic, electrochemical, and chemical properties of these monocarbenium-ion compounds, possessing interesting resonance forms, stabilized by the 3-guaiazulenyl and anisyl (i.e., 2-, 3-, or 4-methoxyphenyl) groups are reported.  相似文献   

3.
Reaction of azulene (1) with all-trans-retinal in diethyl ether in the presence of hexafluorophosphoric acid at −10 °C for 1 h in a dark room gives the corresponding monocarbenium-ion compound, (2E,4E,6E,8E)-1-azulenyl-3,7-dimethyl-9-(2,6,6-trimethyl-1-cyclohexen-1-yl)-2,4,6,8-nonatetraen-1-ylium hexafluorophosphate (3), in 74% isolated yield. The spectroscopic, chemical, and electrochemical properties of 3 compared with those of the previously-documented (2E,4E,6E,8E)-1-(3-guaiazulenyl)-3,7-dimethyl-9-(2,6,6-trimethyl-1-cyclohexen-1-yl)-2,4,6,8-nonatetraen-1-ylium hexafluorophosphate (4) are reported. Along with the above delocalized monocarbenium-ion compounds 3 and 4, stabilized by the expanded π-electron systems possessing an azulenyl (or 3-guaiazulenyl) group, an efficient preparation as well as the spectroscopic, chemical, and electrochemical properties of (2E)-1-azulenyl-3-phenyl-2-propen-1-ylium and (2E)-1-(3-guaiazulenyl)-3-phenyl-2-propen-1-ylium hexafluorophosphates (5 and 6) (90 and 96% isolated yields), having a similar partial structure [i.e., the (2E)-1-azulenyl-2-propen-1-ylium-ion or (2E)-1-(3-guaiazulenyl)-2-propen-1-ylium-ion part] to those of 3 and 4, is documented. Moreover, the crystal structure of 6, whose carbenium-ion framework is planar, is shown.  相似文献   

4.
Reaction of guaiazulene (1) with thiophene-2,5-dicarbaldehyde (2) in methanol in the presence of hexafluorophosphoric acid at 25 °C for 3 h gives as high as 90% isolated yield of the delocalized dicarbenium-ion compound, 2,5-thienylenebis(3-guaiazulenylmethylium) bis(hexafluorophosphate) (3). Similarly, reaction of 1 with furan-2,5-dicarbaldehyde (4) under the same conditions as the above reaction affords the corresponding dicarbenium-ion compound, 2,5-furylenebis(3-guaiazulenylmethylium) bis(hexafluorophosphate) (5), in 84% isolated yield. Along with a facile preparation and the spectroscopic and electrochemical properties of 3 and 5, comparative studies on the 1H and 13C NMR spectral and chemical properties of 3 and 5 with those of the delocalized mono- and dicarbenium-ion compounds [i.e., (3-guaiazulenyl)(2-thienyl)methylium hexafluorophosphate (7), (2-furyl)(3-guaiazulenyl)methylium hexafluorophosphate (9), α,α′-bis(3-guaiazulenylmethylium) bis(tetrafluoroborate) (10), 1,2-phenylenebis(3-guaiazulenylmethylium) bis(hexafluorophosphate) (11), and 1,4-phenylenebis(3-guaiazulenylmethylium) bis(tetrafluoroborate) (12)] are reported. Moreover, referring to the results of the X-ray crystallographic analyses of 7, 9, 11, and 12, the optimized 2,5-thienylenebis(3-guaiazulenylmethylium)- and 2,5-furylenebis(3-guaiazulenylmethylium)-ion structures for 3 and 5, calculated by a WinMOPAC (version 3.0) program using PM3 as a semiempirical Hamiltonian, are described.  相似文献   

5.
Reactions of the title ethylene derivatives, (E)-1,2-di(3-guaiazulenyl)ethylene (1) and 2-(3-guaiazulenyl)-1,1-bis(4-methoxyphenyl)ethylene (2), with a 2 M amount of TCNE in benzene at 25 °C for 24 h under argon give new cycloaddition compounds, 1,1,2,2,11,11,12,12-octacyano-3-(3-guaiazulenyl)-8-isopropyl-5,10-dimethyl-1,2,3,6,9,10a-hexahydro-6,9-ethanobenz[a]azulene (3) from 1 and 1,1,2,2,11,11,12,12-octacyano-8-isopropyl-3,3-bis(4-methoxyphenyl)-5,10-dimethyl-1,2,3,6,9,10a-hexahydro-6,9-ethanobenz[a]-azulene (4) from 2, respectively, in 66 and 87% isolated yields. Comparative studies on the above reactions as well as the spectroscopic properties of the unique products 3 and 4, possessing interesting molecular structures, are reported and, further, a plausible reaction pathway for the formation of these products is described.  相似文献   

6.
Reaction of guaiazulene (8) with 2,3-dihydroxybenzaldehyde (9) in methanol in the presence of hexafluorophosphoric acid (i.e., 65% aqueous solution) at 25 °C for 2 h gives (3-guaiazulenyl)(2,3-dihydroxyphenyl)methylium hexafluorophosphate (13) in 86% yield. Similarly, reaction of 8 with 2-hydroxy-3-methoxybenzaldehyde (10) [or 3,4-dihydroxybenzaldehyde (11) or 4-hydroxy-3-methoxybenzaldehyde (12)] under the same reaction conditions as for 9 affords the corresponding monocarbenium ion compound 14 (63% yield) [or 15 (43% yield) or 16 (77% yield)], respectively, each product of which is stabilized by 3-guaiazulenyl and dihydroxyphenyl (or hydroxymethoxyphenyl) groups. A facile preparation and crystal structures as well as spectroscopic, chemical, and electrochemical properties of 13-16, possessing two interesting resonance structures, respectively, i.e., a protonated o- (or p-) benzoquinonemethide form and a 3-guaiazulenylium ion form, in a solution of acetonitrile and further, in a single crystal, are reported.  相似文献   

7.
Wittig reaction of 3-[4-(dimethylamino)phenyl]propanal (5) with (3-guaiazulenylmethyl)triphenylphosphonium bromide (4) in ethanol containing NaOEt at 25 °C for 24 h under argon gives the title (2E,4E)-1,3-butadiene derivative 6E in 19% isolated yield. Spectroscopic properties, crystal structure, and electrochemical behavior of the obtained new extended π-electron system 6E, compared with those of the previously reported (E)-2-[4-(dimethylamino)phenyl]-1-(3-guaiazulenyl)ethylene (12), are documented. Furthermore, reaction of 6E with 1,1,2,2-tetracyanoethylene (TCNE) in benzene at 25 °C for 24 h under argon affords a new Diels-Alder adduct 8 in 59% isolated yield. Along with spectroscopic properties of the [π4+π2] cycloaddition product 8, the crystal structure, possessing a cis-3,6-substituted 1,1,2,2-tetracyano-4-cyclohexene unit, is shown. Moreover, reaction of 6E with (E)-1,2-dicyanoethylene (DCNE) under the same reaction conditions as the above gives no product; however, this reaction in p-xylene at reflux temperature (138 °C) for four days under argon affords a new Diels-Alder adduct 9 in 54% isolated yield. Although reaction of 6E with DCNE in toluene at reflux temperature (110 °C) for four days under argon provides 9 very slightly, reaction of 6E with dimethyl acetylenedicarboxylate (DMAD) in toluene at reflux temperature for two days under argon yields a new Diels-Alder adduct 10, in 58% isolated yield, which upon oxidation with MnO2 in CH2Cl2 at 25 °C for 1 h gives 11, converting a (CH3)2N-4″ into CH3NH-4″ group, in 37% isolated yield. The crystal structure of 11 supports the molecular structure 10 possessing a partial structure cis-3,6-substituted 1,2-dimethoxycarbonyl-1,4-cyclohexadiene. The title basic studies on the above are reported in detail.  相似文献   

8.
A series of N-(2-pyridyl)benzamides (1)-(11) and their nickel complexes, [N-(2-pyridyl)benzamide]dinickel(II) di-μ-bromide dibromide (12)-(16) and (aryl)[N-(2-pyridyl)benzamido](triphenylphosphine)nickel(II) (17)-(24), were synthesized and characterized. The single-crystal X-ray analysis revealed that 12 and 14 are binuclear nickel complexes bridged by bromine atoms and each nickel atom adopts a distorted trigonal bipyramidal geometry. The key feature of the complexes 17, 19 and 23 is each has a six-membered nickel chelate ring including a deprotonated secondary nitrogen atom and an O-donor atom. The nickel complexes show moderate to high catalytic activity for ethylene oligomerization with methylaluminoxane (MAO) as cocatalyst. The activity of 12-16/MAO systems is up to 3.3 × 104 g mol−1 h−1 whereas for 17-24/MAO systems it is up to 4.94 × 105 g mol−1 atm−1 h−1. The influence of Al/Ni molar ratio, reaction temperature, reaction period and PPh3/Ni molar ratio on catalytic activity was investigated.  相似文献   

9.
Eight new compounds including 9′-[2-amino-3-(4″-O-methyl-α-rhamnopyranosyloxy) phenyl]nonanoic acid (1), 9′-[2-amino-3-(4″-O-methyl-α-ribopyranosyloxy)phenyl] nonanoic acid (2), 11′-[2-amino-3-(4″-O-methyl-α-rhamnopyranosyloxy)phenyl]undecanoic acid (3), 11′-[2-amino-3-(4″-O-methyl-α-ribopyranosyloxy)phenyl]undecanoic acid (4), 8-(4′-O-methyl-α-rhamnopyranosyloxy)-3,4-dihydroquinolin-2(1H)-one (5), 8-(4′-O-methyl-α-ribopyranosyloxy)-3,4-dihydroquinolin-2(1H)-one (6), 8-(4′-O-methyl-α-rhamnopyranosyloxy)-2-methyquinoline (7), and 8-(4′-O-methyl-α-ribopyranosyloxy)-2-methylquinoline (8) were isolated from Actinomadura sp. BCC27169. The chemical structures of these compounds were determined based on NMR and high-resolution mass spectroscopy. The absolute configurations of these monosaccharides were revealed by the hydrolysis of compounds 7 and 8. Compounds 3 and 8 exhibited antitubercular activity at MIC 50 μg/mL. Only compound 3 showed cytotoxicity against KB cell at IC50 18.63 μg/mL, while other isolated compounds were inactive at tested maximum concentration (50 μg/mL).  相似文献   

10.
A series of dibutylbis{5-[(E)-2-(aryl)-1-diazenyl]-2-hydroxybenzoato}tin(IV) complexes, Bu2Sn(LH)2, have been prepared and characterized by 1H, 13C, 119Sn NMR and ESI mass spectrometry in solution. The structures of the complexes Bu2Sn(L1H)2 (1), Bu2Sn(L3H)2 (3), Bu2Sn(L4H)2 (4), and Bu2Sn(L6H)2 (6) (L = 5-[(E)-2-(aryl)-1-diazenyl]-2-hydroxybenzoate: aryl = phenyl (L1H), 3-methylphenyl (L3H), 4-methylphenyl (L4H) and 4-bromophenyl (L6H)) were determined by X-ray crystallography and 117Sn CP-MAS NMR spectroscopy in the solid state. In general, the complexes were found to adopt a skew-trapezoidal bipyramidal arrangement around the tin atom. In addition, there are weak bridging intermolecular Sn?O contacts in complexes 1 and 3, but not in 4 and 6, where one of the hydroxy oxygen atoms from a neighboring molecule coordinates weakly with the Sn atom, thereby completing a seventh coordination site in the extended Sn coordination sphere. The Sn?O distance is 3.080(2) and 3.439(2) Å in 1 and 3, respectively, which are significantly shorter than the sum of the van der Waals radii of the Sn and O atoms (∼3.8 Å). In 1, this Sn?O interaction links the molecules into polymeric chains. In 3, these interactions link pairs of molecules into head-to-head dimeric units. The in vitro cytotoxicity of compound 2 indicates better results than cisplatin and etoposide against seven well characterized human tumor cell lines.  相似文献   

11.
Reactions of nBu2SnCl(L1) (1), where L1 = acid residue of 5-[(E)-2-(4-methoxyphenyl)-1-diazenyl]quinolin-8-ol, with various substituted benzoic acids in refluxing toluene, in the presence of triethylamine, yielded dimeric mixed ligand di-n-butyltin(IV) complexes of composition [nBu2Sn(L1)(L2-6)]2 where L2 = benzene carboxylate (2), L3 = 2-[(E)-2-(2-hydroxy-5-methylphenyl)-1-diazenyl]benzoate (3), L4 = 5-[(E)-2-(4-methylphenyl)-1-diazenyl]-2-hydroxybenzoate (4), L5 = 2-{(E)-4-hydroxy-3-[(E)-4-chlorophenyliminomethyl]-phenyldiazenyl}benzoate (5) and L6 = 2-[(E)-(3-formyl-4-hydroxyphenyl)-diazenyl]benzoate (6). All complexes (1-6) have been characterized by elemental analyses, IR, 1H, 13C and 117Sn NMR and 119Sn Mössbauer spectroscopy and their structures were determined by X-ray crystallography, complemented by 117Sn CP-MAS NMR spectroscopy studies in the solid state. The crystal structure of 1 reveals a distorted trigonal bipyramidal coordination geometry around the Sn-atom where the Cl- and N-atoms of ligand L1 occupy the axial positions. In complexes 2-5, the molecules are centrosymmetric dimers in which the Sn-atoms are connected by asymmetric μ-O bridges through the quinoline O-atom to give an Sn2O2 core. The differences in the Sn-O bond lengths within the bridge range from 0.28 to 0.48 Å, with the longer of the Sn-O distances being in the range 2.56-2.68 Å and the most symmetrical bridge being in 5. The carboxylate group is almost symmetrically bidentate coordinated to the tin atom in 5 (Sn-O distances of 2.327(2) and 2.441(2) Å), unlike the other complexes in which the distance of the carboxylate carbonyl O-atom from the tin atom is in the range 2.92-3.03 Å. The structure of 5 displays a more regular pentagonal bipyramidal coordination geometry about each tin atom than in 2-4. In contrast, the centrosymmetric dimeric structure of 6 involves asymmetric carboxylate bridges, resulting in a different Sn2C2O4 motif. The Sn-O bond lengths in the bridge differ by about 0.6 Å, with the longer distance involving the carboxylate carbonyl O-atom (2.683(2) and 2.798(2) Å for two molecules in the asymmetric unit). The carboxylate carbonyl O-atom has a second, even longer intramolecular contact to the Sn-atom to which the carboxylate group is primarily coordinated, with these Sn?O distances being as high as 3.085(2) and 2.898(2) Å. If the secondary interactions are considered, all the di-n-butyltin(IV) complexes (2-6) display a distorted pentagonal bipyramidal arrangement about each tin atom in which the n-butyl groups occupy the axial positions.  相似文献   

12.
Six new chiral triorganotin(IV) complexes, {(R3Sn)2[C3H6(COO)2]}n (R = Me: 1; Bu: 2), {(R3Sn)2[C4H8(COO)2]}n (R = Me: 3; Bu: 4), and {(R3Sn)2[C2H4O(COO)2]}n (R = Me: 5; Bu: 6) have been prepared by treatment of (R)-(+)-methylsuccinic acid, (S)-(+)-methylglutaric acid and l-(−)-malic acid, with the corresponding R3SnCl (R = Me, Bu) and sodium ethoxide in methanol. All the complexes were characterized by elemental analysis, FT-IR, NMR (1H, 13C, 119Sn) spectroscopy and TGA. Except for 3, all of the complexes were also characterized by X-ray crystallography. The structural analyses reveal that complexes 1 and 5 have 2D network structures in which (R)-(+)-methylsuccinic acid and l-(−)-malic acid act as tetradentate ligands coordinated to trimethyltin(IV) ions. Complexes 2 and 4 have 3D metal-organic framework structures in which the deprotoned acids serve as tetradentate ligands. Complex 6 adopts a 1D zigzag chain structure and forms a 2D supramolecular framework through intermolecular C-H?O interactions. In addition, the antitumor activities of complexes 1-6 have been studied. We also have measured the specific rotation of the chiral dicarboxylic acids and the organotin derivatives.  相似文献   

13.
Shin-ichi Naya 《Tetrahedron》2005,61(31):7384-7391
The synthesis and properties of 4,9-methanoundecafulvene [5-(4,9-methanocycloundeca-2′,4′,6′,8′,10′-pentaenylidene)pyrimidine-2,4,6(1,3,5H)-trione] derivatives 8a,b were studied. Their structural characteristics were investigated on the basis of the 1H and 13C NMR and UV-vis spectra. The rotational barrier (ΔG) around the exocyclic double bond of 8a was found to be 12.55 kcal mol−1 by the variable temperature 1H NMR measurement. The electrochemical properties of 8a,b were also studied by CV measurement. Furthermore, the transformation of 8a,b to 3-substituted 7,12-methanocycloundeca[4,5]furo[2,3-d]pyrimidine-2,4(1H,3H)-diones 16a,b was accomplished by oxidative cyclization using DDQ and subsequent ring-opening and ring-closure. The structural details and chemical properties of 16a,b were clarified. Reaction of 16a with deuteride afforded C13-adduct 19 as the single product, and thus, the methano-bridge controls the nucleophilic attack to prefer endo-selectivity. The photo-induced oxidation reaction of 16a and a vinylogous compound, 3-methylcyclohepta[4,5]furo[2,3-d]pyrimidine-2,4(3H)-dione 2a, toward some amines under aerobic conditions were carried out to give the corresponding imines (isolated by converting to the corresponding 2,4-dinitrophenylhydrazones) with the recycling number of 6.1-64.0 (for 16a) and 2.7-17.2 (for 2a), respectively.  相似文献   

14.
The synthesis and properties of a novel type of bis(heteroazulen-3-yl)methyl cations, bis(2-oxo-2H-cyclohepta[b]furan-3-yl)methyl cation salt and nitrogen analogues, (9a-c·PF6) and (9a-c·BF4), as well as bis(heteroazulen-3-yl)ketones (12a-d) are studied. The synthetic method was based on a TFA-catalyzed electrophilic aromatic substitution on the heteroazulenes (6a-d) with paraformaldehyde to afford the corresponding disubstituted methane derivatives 7a-d, followed by oxidative hydrogen abstraction with DDQ, and subsequent exchange of the counter-anion by using aq. HPF6 or aq. HBF4. In addition, the reaction of 7a-d with 2.2 equiv. amounts of DDQ afforded carbonyl compounds 12a-d. The delocalization of the positive charge of 9a-c was evaluated by the 1H and 13C NMR spectral data. The thermodynamic stability of cations 9a-c was evaluated to be in the order 9a<9b<9c on the basis of their reduction potentials measured by cyclic voltammetry (CV) and pKR+ values (2.6-10.3) obtained spectrophotometrically. The reduction waves of cations 9a-c were irreversible, suggesting the dimerization of the radical species generated by one-electron reduction. This was demonstrated by the reduction of 9a·BF4 with Zn powder to give dimerized product 14a. In addition, the quenching of 9a·BF4 with MeOH/NaHCO3 gives ether derivative 15a, which is proposed for the precursor for synthesizing tris(heteroazulene)-substituted methyl cations bearing two different heteroazulene-units.  相似文献   

15.
Catalytically-induced ring expansion of 2H-azaphosphirene complex 1 using ferrocenium hexafluorophosphate and acetone (2), diethylketone (3), cyclohexanone (4), benzaldehyde (5) or para-hydroxy-benzaldehyde (6) furnished selectively the Δ3-1,3,5-oxazaphospholene complexes 7-11, whereas with ortho- and para-hydroxy- or ortho- and para-amino-substituted benzonitriles the 2H-1,4,2-diazaphosphole complexes 16-19 were obtained. Two further findings are noteworthy: (1) The significant decreased reaction time in the case of the sterically more demanding carbonyl derivatives 2-4 and (2) the formation of diastereomers in the case of 10 and 11 with a ratio of 8:1 and 9:1, respectively. All products were characterized by NMR, MS and elemental analysis and the configuration of complexes 7 and 10a were determined by X-ray single-crystal diffraction analysis.  相似文献   

16.
The synthesis of novel 6,7-[15-crown-5]-3-[p-(3,4-dicyanophenoxy)phenyl]coumarin (1)/6,7-[15-crown-5]-3-[p-(2,3-dicyanophenoxy)phenyl]coumarin (2) and their peripherally/non-peripherally cobalt and copper phthalocyanine complexes (3-6) have been prepared and characterized by elementel analysis, 1H-NMR, MALDI-TOF, FT-IR and UV-Vis spectral data. Fluorescence intensity changes of compound 1 and 2 have been determined by addition of Na+ or K+ ions at 25 °C in THF. The effect of substitution type on the redox and aggregation behaviour of the compounds was investigated by voltammetry and in situ spectroelectrochemistry.  相似文献   

17.
Reactions of 2-(1H-benzimidazol-2-yl)phenol (1) and SnPh3Cl, SnPh2Cl2 and SnCl4 were investigated. One tetracoordinated triphenyltin(IV) compound: triphenyltin-2-(1H-benzimidazol-2-yl)phenolate] (3) and its adducts: [O → Sn] dimethylsulfoxide triphenyltin-[2-(1H-benzimidazol-2-yl)phenolate] (4), [O → Sn] aqua triphenyltin-[2-(1H-benzimidazol-2-yl)phenolate] (5) [O → Sn] ethanol triphenyltin-[2-(1H-benzimidazol-2-yl)phenolate] (6), [N → Sn] pyridine triphenyltin-[2-(1H-benzimidazol-2-yl)phenolate] (7), where 1 acts as a monodentate ligand bound through the phenol oxygen, were obtained. In the pentacoordinated compounds 4-7, the tin atom has tbp geometry. The three phenyl groups are in equatorial positions, whereas the benzimidazole and the Lewis base are in apical positions. Two hexacoordinated tin compounds: diphenyltin-bis[2-(1H-benzimidazol-2-yl-κN)phenolate-κO] (8), dichlorotin-bis[2-(1H-benzimidazol-2-yl-κN)phenolate-κO] (9) bearing two bidentate ligands are reported. The coplanar ligands in 8 and 9 form six membered rings by oxygen and nitrogen coordination. The tin geometry is all-trans octahedral. In 8 the two phenyl groups, and in 9 the two chlorine atoms are perpendicular to the plane of the ligands. Compounds were identified in solution mainly by 1H, 13C and 119Sn NMR and in the solid state by X-ray diffraction analysis.  相似文献   

18.
Novel condensation reaction of tropone with N-substituted and N,N′-disubstitued barbituric acids in Ac2O afforded 5-(cyclohepta-2′,4′,6′-trienylidene)pyrimidine-2(1H),4(3H),6(5H)-trione derivatives (8a-f) in moderate to good yields. The 13C NMR spectral study of 8a-f revealed that the contribution of zwitterionic resonance structures is less important as compared with that of 8,8-dicyanoheptafulvene. The rotational barriers (ΔG) around the exocyclic double bond of mono-substituted derivatives 8a-c were obtained to be 14.51-15.03 kcal mol−1 by the variable temperature 1H NMR measurements. The electrochemical properties of 8a-f were also studied by CV measurement. Upon treatment with DDQ, 8a-c underwent oxidative cyclization to give two products, 7 and 9-substituted cyclohepta[b]pyrimido[5,4-d]furan-8(7H),10(9H)-dionylium tetrafluoroborates (11a-c·BF4 and 12a-c·BF4) in various ratios, while that of disubstituted derivatives 8d-f afforded 7,9-disubstituted cyclohepta[b]pyrimido[5,4-d]furan-8(7H),10(9H)-dionylium tetrafluoroborate (11d-f·BF4) in good yields. Similarly, preparation of known 5-(1′-oxocycloheptatrien-2′-yl)-pyrimidine-2(1H),4(3H),6(5H)-trione derivatives (14a-d) and novel derivatives 14e,f was carried out. Treatment of 14a-c with aq. HBF4/Ac2O afforded two kinds of novel products 11a-c·BF4 and 12a,c·BF4 in various ratios, respectively, while that of 14d-f afforded 11d-f. The product ratios of 11a-c·BF4 and 12a-c·BF4 observed in two kinds of cyclization reactions were rationalized on the basis of MO calculations of model compounds 20a and 21a. The spectroscopic and electrochemical properties of 11a-f·BF4 and 12a-c·BF4 were studied, and structural characterization of 11c·BF4 based on the X-ray crystal analysis and MO calculation was also performed.  相似文献   

19.
Reactions of sodium 5-[(E)-2-(aryl)-1-diazenyl]quinolin-8-olates (LH, where the aryl group is an R-substituted phenyl ring such that for L1H: R = H; L2H: R = 2′-CH3; L3H: R = 3′-CH3; L4H: R = 4′-CH3; L5H: R = 4′-OCH3 and L6H: R = 4′-OC2H5) with Ph3SnCl in a 1:1 molar ratio yielded complexes of composition Ph3SnL. The complexes have been characterized by 1H, 13C, 119Sn NMR, IR and 119mSn Mössbauer spectroscopic techniques in combination with elemental analyses. The crystal structures of Ph3SnL1 · 0.5C6H6 (1), Ph3SnL2 (2), Ph3SnL5 · C6H6 (5) and Ph3SnL6 · 0.5C6H6 (6) were determined. The results of the X-ray studies indicated that the benzene solvated compounds 1, 5 and 6 are distorted square pyramid, with one of the phenyl C atoms in the apex while the ligand arrangement around central Sn atom in 2 is distorted trigonal-bipyramidal, with a phenyl C and the oxinato N atoms in axial positions.  相似文献   

20.
β-CF3-α,β-diphenylvinyl sulfide 3a was prepared stereoselectively in 77% yield from the reaction of 2 with phenyllithium at room temperature for 5 h. Oxidation of 3a with MCPBA afforded the corresponding vinyl sulfone 4a, in which (E)-4a can be crystallized in a mixture of CH2Cl2 and hexane. The addition-elimination reaction of (E)-4a with phenyllithium having substituents on the benzene ring provided 5a-j in 51-82% yields stereospecifically. Similarly, the treatment of (E)-4a with p-chloroethoxyphenyllithium in the presence of 12-crown-4 (20 mol %) at −10 °C, followed by slowly warming to room temperature, resulted in the formation of the corresponding panomifene precursor 6 in 82% yield.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号