首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The four stereoisomers of (5E)-4,4-dimethyl-6-(2′,2′,3′-trimethylcyclopent-3′-en-1′-yl)-hex-5-en-3-ol, a homologue of the valuable sandalwood-type odorant Polysantol®, were enantiospecifically synthesized from (+)- and (−)-α-pinene, through (−)- and (+)-campholenic aldehyde, by aldol condensation with 3-pentanone, deconjugative α-methylation and reduction. The mixtures of epimeric alcohols obtained after reduction were separated by means of derivatization with (−)-(1S)-camphanic chloride. The enantiomerically pure final products were evaluated organoleptically.  相似文献   

2.
Diastereoselective and diverse synthesis of polyhydroxylated indolizidines and piperidines have been described, where a common chiral intermediate 2-(hydroxymethyl) piperidine-3-ol is converted into (−)-swainsonine, (+)-1,2-di-epi-swainsonine, (+)-8,8a-di-epi-castanospermine, pentahydroxy indolizidines, (−)-1-deoxynojirimycin, (−)-1-deoxy-altro-nojirimycin, and related diversity. The key steps were hydroxy directed intramolecular aminomercuration, Mitsunobu cyclization, and diastereoselective dihydroxylation.  相似文献   

3.
Proanthocyanidins, known as condensed tannins or oligomeric flavonoids, exist in many edible plants and show various interesting biological activities. We have developed a simple and versatile method of synthesizing procyanidin oligomers consisting of (−)-epicatechin and (+)-catechin. This method is applicable to the synthesis of various 3-O-substituted oligomers. We report here the stereoselective and length controlled synthesis of [4-8]-condensed (−)-epicatechin series procyanidin oligomers. We described the details of the synthesis of an two tetramers, (−)-epicatechin-(−)-epicatechin-(−)-epicatechin-(−)-epicatechin and (−)-epicatechin-(−)-epicatechin-(−)-epicatechin-(+)-catechin (arecatannin A1), (−)-epicatechin pentamer and two 3,3″,3?-tri-O-galloyl trimers, (−)-epicatechin-(−)-epicatechin-(−)-epicatechin-3,3″,3?-tri-O-gallate and (−)-epicatechin-(−)-epicatechin-(+)-catechin-3,3″,3?-tri-O-gallate with the condensation method using TMSOTf as a catalyst. The ability of DPPH radical scavenging activity and DNA polymerase inhibitory activity of these oligomeric compounds were investigated.  相似文献   

4.
Biotransformation of (+)-(1R,2S)-fenchol by the larvae of Spodoptera litura was carried out. Substrate was converted to three new terpenoids, (+)-(1R,2S)-10-hydroxyfenchol, (+)-(1R,2R,3S)-8-hydroxyfenchol and (−)-(1S,2S,6S)-6-exo-hydroxyfenchol, and one known terpenoid, (−)-(1R,2R,3R)-9-hydroxyfenchol. These structures were established by NMR, IR, specific rotation and mass spectral studies.  相似文献   

5.
Stereoselective synthesis of cruciferous indole phytoalexin (R)-(+)-1-methoxyspirobrassinin and its unnatural (S)-(−)-enantiomer was achieved by spirocyclization of 1-methoxybrassinin in the presence of (+)- and (−)-menthol and subsequent oxidation of the obtained menthyl ethers. Methanolysis of menthyl ethers in the presence of TFA afforded (2R,3R)-(−)-1-methoxyspirobrassinol methyl ether as well its unnatural (2S,3S)-, (2R,3S)-, and (2S,3R)-isomers.  相似文献   

6.
We have successfully synthesized enantiomerically pure (+)- and (−)-tert-butyl 6-cyano-3-[3-ethoxy-1,1,1-trifluoro-2-hydroxy-3-oxopropan-2-yl]-1H-indole-1-carboxylate (+)-1 and (−)-1, which are key intermediates of non-steroidal glucocorticoid receptor modulators, by employing a cinchona alkaloid catalyzed addition of 6-cyanoindole to ethyl trifluoropyruvate. The optimized method can be applied to large-scale synthesis. Furthermore, using the key intermediates (+)-1 and (−)-1, enantiomerically pure glucocorticoid receptor modulators (+)-3 and (−)-3 can be synthesized (>99% ee for both compounds). The glucocorticoid receptor binding affinity was influenced by the stereogenic center at the trifluoromethyl alcohol moiety; compound (−)-3 showed a higher binding affinity compared to (+)-3.  相似文献   

7.
Enantioselective total synthesis of (+)-epiepoformin 1, (+)-epiepoxydon 2 and (+)-bromoxone 3 using a chiral building block, ethyl (1R,2S)-5,5-ethylenedioxy-2-hydroxycyclo- hexanecarboxylate 6, is described. Since the synthesis afforded intermediates 18, 2 and 25, it accomplished a formal synthesis of (−)-theobroxide 19, (−)-phyllostine 22, (+)-herveynone 27 and (−)-asperpentyn 28. The usefulness of 6 for the synthesis of natural epoxycyclohexene derivatives was demonstrated.  相似文献   

8.
Machiko Ono  Yuki Shida 《Tetrahedron》2007,63(41):10140-10148
(±)-(4,5-anti)-4-Benzyloxy-5-hydroxy-(2E)-hexenoic acid 6 was subjected to δ-lactonization in the presence of 2,4,6-trichlorobenzoyl chloride and pyridine to give the α,β-unsaturated-δ-lactone congener (±)-7 (87% yield) accompanied by trans-cis isomerization. This δ-lactonization procedure was applied to the chiral synthesis of (+)-(4S,5R)-7 or (−)-(4R,5S)-7 from the chiral starting material (+)-(4S,5R)-6 or (−)-(4R,5S)-6. Deprotection of the benzyl group in (+)-(4S,5R)-7 or (−)-(4R,5S)-7 by the AlCl3/m-xylene system gave the natural osmundalactone (+)-(4S,5R)-5 or (−)-(4R,5S)-5 in good yield, respectively. Condensation of (−)-(4R,5S)-5 and tetraacetyl-β-d-glucosyltrichloroimidate 22 in the presence of BF3·Et2O afforded the condensation product (−)-8 (97% yield), which was identical to tetra-O-acetylosmundalin (−)-8 derived from natural osmundalin 9.  相似文献   

9.
(+)-4-epi-Gabosine A 1 and (−)-gabosine A 2 have been synthesized starting from methyl α,d-glucopyranoside and methyl α,d-mannopyranoside, respectively, by utilizing Pd(0) catalyzed Stille coupling as the key step. On the other hand, syntheses of (+)-4-epi-gabosine E 3 and (−)-gabosine E 4 have been accomplished from methyl α,d-glucopyranoside and from methyl α,d-mannopyranoside, respectively, by utilizing DMAP catalyzed Morita-Baylis-Hillman reaction as the key step. Presence of acetyl group at C-6 position of sugar derived cyclic enone prevented the aromatization of MBH adduct. A plausible mechanism is also described.  相似文献   

10.
Carbocyclic nucleosides (−)-5′-homocarbovir and (+)-epi-4′-homocarbovir were prepared from an acylnitroso-derived hetero Diels-Alder cycloadduct. A kinetic enzymatic resolution generated an enantiopure aminocyclopentenol and Pd(0)-mediated decarboxylative allylations of allyl 2,2,2-trifluoroethyl malonates were used to install the 4′-hydroxyethyl groups. Late stage derivatization gave access to the cyclopropylamine analogs, (−)-5′-homoabacavir, and (+)-epi-4′-homoabacavir. All carbonucleoside target molecules were evaluated for antiviral activity.  相似文献   

11.
Helically chiral azahexahelicene 3 was prepared in four steps using the Mizoroki-Heck coupling followed by classical oxidative photodehydrocyclisation. Resolution of this new chiral system was achieved through separation by HPLC providing (−)- and (+)-3 in high optical purity. The absolute configurations of (−)- and (+)-3 were assigned as M and P, respectively, by means of circular dichroism. Each of the hexacyclic systems (M)-(−)- and (P)-(+)-3 was reacted with boron tribromide to provide the corresponding helical pyridophenols in good yields.  相似文献   

12.
Tetrahydroisoquinoline alkaloids, (S)-(−)-trolline, (R)-(+)-crispin A, and (R)-(+)-oleracein E, have been synthesized stereoselectively from the both enantiomers of common intermediate (S)-4 and (R)-4. The key step in the synthesis include a stereoselective Bi(OTf)3-catalyzed intramolecular 1,3-chirality transfer reaction of chiral non-racemic amino allylic alcohols (S)-6 and (R)-6 to construct both enantiomers of (E)-1-propenyl tetrahydroisoquinoline 4.  相似文献   

13.
(±)-Untenone A, one of the marine cyclopentanoids, has been conveniently synthesized via (±)-cis-1-hexadecylcyclopent-2-en-1,4-diol 9 which has been produced from 1-hexadecylcyclopenta-1,3-diene 6 via photo-oxidation and the following reduction. The key step of the present synthesis is the selective alkylation of cyclopenta-1,3-diene to form 6. Optically active (−)- and (+)-untenone A have been prepared from (−)- and (+)-9, respectively, after enzymatic kinetic resolution of (±)-9.  相似文献   

14.
Sesquiterpenoids (+)-trans-dracuncuflifoliol (1) and (+)-4-hydroxyoppositan-7-one (2) were prepared stereoselectively from enantiomerically pure (7aR)-7a-methyl-1,2,5,6,7,7a-hexahydro-4H-inden-4-one ((−)-6), whose synthesis was described herein. Conjugate addition of the organocopper (I) reagent 10 to (−)-6, followed by epimerization of the ring junction, generated 3 of the 4 contiguous chiral centers of both natural products.  相似文献   

15.
Racemic 1-(1′-isoquinolinyl)-2-naphthalenemethanol rac-12 was prepared through a ligand coupling reaction of racemic 1-(tert-butylsulfinyl)isoquinoline rac-7 with the 1-naphthyl Grignard reagent 10. Resolution of rac-12 was achieved through chromatographic separation of the Noe-lactol derivatives 14 and 15, providing (R)-(−)-12 of >99% ee and (S)-(+)-12 of 90% ee. The ligand coupling reaction of optically enriched sulfoxide (S)-(−)-7 (62% ee) with Grignard reagent 10 furnished rac-12, with the absence of stereoinduction resulting from competing rapid racemisation of the sulfoxide 7. Reaction of optically enriched (S)-(−)-7 with 2-methoxy-1-naphthylmagnesium bromide was also accompanied by racemisation of the sulfoxide 7, and furnished optically active (+)-1-(2′-methoxy-1′-naphthyl)isoquinoline (+)-3b in low enantiomeric purity (14% ee). The absolute configuration of (+)-3b was assigned as R using circular dichroism spectroscopy, correcting an earlier assignment based on the Bijvoet method, but in the absence of heavy atoms. Optically active 2-pyridyl sulfoxides were found not to undergo racemisation analogous to the 1-isoquinolinyl sulfoxide 7, with the ligand coupling reactions of (R)-(+)- and (S)-(−)-2-[(4′-methylphenyl)sulfinyl]-3-methylpyridines, (R)-(+)-17 and (S)-(−)-17, with 2-methoxy-1-naphthylmagnesium bromide providing (−)- and (+)-2-(2′-methoxy-1′-naphthyl)-3-methylpyridines, (−)-18 and (+)-18, in 53 and 60% ee, respectively. The free energy barriers to internal rotation in 3b and 18 have been determined, and the isoquinoline (R)-(−)-12 examined as a ligand in the enantioselectively catalysed addition of diethylzinc to benzaldehyde; (R)-(−)-12 was also converted to (R)-(−)-N,N-dimethyl-1-(1′-isoquinolinyl)-2-naphthalenemethanamine (R)-(−)-19, and this examined as a ligand in the enantioselective Pd-catalysed allylic substitution of 1,3-diphenylprop-2-enyl acetate with dimethyl malonate.  相似文献   

16.
The novel optically active derivatives of 2,2′-disubstituted-1-aminocyclopropane-1-carboxylic acid (−)-2 and (+)-3 were synthesised from the spiro-azlactone (+)-1. Oxidation of the diol moiety of (+)-3 gave by ring enlargement the racemic mixture of 2,3-dihydrofuran derivative (±)-6. This conversion is explained by stepwise rearrangement of the initially formed tetrasubstituted cyclopropanecarbaldehyde 4 through zwitterionic's reactive intermediate 5. The formation of (±)-6 is preferred energetically as established by ab initio calculations of the ground states and possible intermediates for that rearrangement. The crystal structure and absolute configuration of the compounds (+)-1, (−)-2, (+)-3 and (−)-7 were determined by single-crystal X-ray diffraction method. All four compounds possess Z-configuration of the cyclopropane ring. The dioxolane ring in the structures (+)-1 and (−)-2 adopts half-chair conformation, while the cyclopropane ring and geminally substituted groups in the structures (−)-2, (+)-3 and (−)-7 possess the anticlinal conformation. The molecules of the compound (+)-1 are connected by very weak intermolecular hydrogen bond of C-H?O type. In the compounds (−)-2, (+)-3 and (−)-7inter- and intramolecular hydrogen bonds of N-H?O type were observed. The spiro-compound (+)-1 exhibited a more pronounced inhibitory activity against the proliferation of murine leukemia and human T-lymphocytes cells than other type of tumor cell lines and normal human fibroblast cells.  相似文献   

17.
Total synthesis of (−) Radicamine-B is achieved in eight steps from (R)-(+)-Garner aldehyde in a stereoflexible manner involving Stille coupling and one-pot domino epoxidation-pyrrolidine formation as key steps.  相似文献   

18.
Four new chiral organotin derivatives are reported with their crystal structure. They were synthesized by reaction of diphenyltin oxide and four different ligands obtained from the Schiff base condensation of 4-(diethylamino)salicylaldehyde and (1R,2S)-(+)-norephedrine, (R)-(−)-phenylglycinol, (R)-(−)-1-amino-2-propanol and (1S,2R)-2-amino-1,2-diphenylethanol. Their nonlinear optical properties were investigated experimentally in solid state and with the electric field induced second harmonic (EFISH) technique. In particular, the compound obtained with (R)-(−)-phenylglycinol exhibits an efficiency 11 times that of urea in second harmonic generation at 1.907 μm. The properties are discussed in relation with computational studies conducted within the framework of the DFT theory.  相似文献   

19.
(1S,5R)-(−)- and (1R,5S)-(+)-7-phenyl-3-borabicyclo[3.3.1]non-6-enes of 97-98% de that differed only by the location of the double bond were prepared by the resolution of diastereomeric intramolecular chelates with l- and d-prolinol. Deboronation of chiral bicyclic boranes obtained was used for synthesis of optically active 3,5-dimethyl- and 3,5-dihydroxymethyl-1-phenylcyclohexenes.  相似文献   

20.
The highly stereoselective synthesis of (−)-epi-, (−)-allo- and neo-quercitols as well as stereospecific synthesis of (−)-talo- and (+)-gala-quercitols have been achieved. The general strategy is employing dihydroxylation of the isolated double bond of various kinds of protected chiral (1,4,5)-cyclohex-2-ene-triols, which are derived from d-(−)-quinic acid. The choosing of protecting groups from either BBA (butane 2,3-bisacetal) or acetyl groups will result in the various degrees of stereoselectivity of dihydroxylation. On the other hand, the cyclohexylidene acetal moiety is attributed to the stereospecificity during dihydroxylation to afford the request molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号