首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
The spin crossover phenomenon of the recently described spin crossover complex [FeII(DAPP)(abpt)](ClO4)2 [DAPP = bis(3-aminopropyl)(2-pyridylmethyl)amine, abpt = 4-amino-3,5-bis(pyridin-2-yl)-1,2,4-triazole] accompanying an order-disorder phase transition of the ligand was investigated by adiabatic heat capacity calorimetry, far-IR, IR, and Raman spectroscopies, and normal vibrational mode calculation. A large heat capacity peak due to the spin crossover transition was observed at T(trs) = 185.61 K. The transition enthalpy and entropy amounted to Delta(trs)H = 15.44 kJ mol-1 and Delta(trs)S = 83.74 J K-1 mol-1, respectively. The transition entropy is larger than the expected value 60.66 J K-1 mol-1, which is contributed from the spin multiplicity (R ln 5; R: the gas constant), disordering of the carbon atom of the six-membered metallocycle in the DAPP ligand, and one of the two perchlorate anions (2R ln 2), and change of the normal vibrational modes between the high-spin (HS) and low-spin (LS) states (35.75 J K-1 mol-1). The remaining entropy would be ascribed to changes of the lattice vibrations and molecular librations between the HS and LS states. Furthermore, [Fe(DAPP)(abpt)](ClO4)2 crystals disintegrated and became smaller crystallites whenever they experienced the phase transition. This may be regarded as a successive self-grinding effect, evidenced by adiabatic calorimetry, DSC, magnetic susceptibility, and microscope observation. The relationship between the crystal size and the physical quantities is discussed.  相似文献   

2.
The spin crossover system, [Fe(bzimpy)(2)](ClO(4))(2).0.25H(2)O, was reinvestigated above room temperature (bzimpy = 2,6-bis(benzimidazol-2-yl)pyridine). The system exhibits an abrupt low-spin to high-spin transition at T(c) = 403 K. Liberation of a fractional amount of water does not affect the spin crossover: the system is perfectly reversible with a hysteresis width of DeltaT = 12 K. The existence of the hysteresis at such high temperature determines that the lowest limit of the solid-state cooperativity parameter is J/k > 403 K despite long iron(II) separations (10 A). The high cooperativeness has been assigned to a perfect pi-stacking of the benzimidazole rings in the crystal lattice at a distance as short as 3.6 A. Variable-temperature IR data and the heat capacity measurements match well the magnetic data. The thermodynamic properties are DeltaH = 17 kJ mol(-)(1), DeltaS = 43 J K(-)(1) mol(-)(1), so that the entropy of the spin transition shows a considerable contribution from the molecular vibrations. A theoretical model has been applied in fitting the magnetic data along the whole hysteresis path. A statistical distribution of the cooperativity parameter led to the feature that angled walls of the hysteresis loop are well reproduced.  相似文献   

3.
The synthesis and characterization of new two-dimensional (2D) cyanide-bridged iron(II)-gold(I) bimetallic coordination polymers formulated, {Fe(3-Xpy)2[Au(CN)2]2} (py = pyridine; X = F (1), Cl (2), Br (3), and I (4)) and the clathrate derivative {Fe(3-Ipy)2[Au(CN)2]2}.1/2(3-Ipy) (5), are reported. The iron(II) ion lies in pseudoctahedral [FeN6] sites defined by four [Au(CN)2](-) bridging ligands and two 3-Xpy ligands occupying the equatorial and axial positions, respectively. Although only compounds 2 and 4 can be considered strictly isostructurals, all of the components of this family are made up of parallel stacks of corrugated {Fe[Au(CN)2]2}n grids. The grids are formed by edge sharing of {Fe4[Au(CN)2]4} pseudosquare moieties. The stacks are constituted of double layers sustained by short aurophilic contacts ranging from 3.016(2) to 3.1580(8) A. The Au...Au distances between consecutive double layers are in the range of 5.9562(9)-8.790(2) A. Compound 5, considered a clathrate derivative of 4, includes one-half of a 3-Ipy molecule per iron(II) atom between the double layers. Compound 1 undergoes a half-spin transition with critical temperatures Tc downward arrow = 140 K and Tc upward arrow = 145 K. The corresponding thermodynamic parameters derived from differential scanning calorimetry (DSC) are Delta H = 9.8 +/- 0.4 kJ mol(-1) and Delta S = 68.2 +/- 3 J K mol(-1). This spin transition is accompanied by a crystallographic phase transition from the monoclinic P2(1)/c space group to the triclinic P1 space group. At high temperatures, where 1 is 100% high-spin, there is only one crystallographically independent iron(II) site. In contrast, the low temperature structural analysis shows the occurrence of two crystallographically independent iron(II) sites with equal population, one high-spin and the other low-spin. Furthermore, 1 undergoes a complete two-step spin transition at pressures as high as 0.26 GPa. Compounds 2- 4 are high-spin iron(II) complexes according to their magnetic and [FeN6] structural characteristics. Compound 5, characterized for having two different iron(II) sites, displays a two-step spin transition with critical temperatures of Tc(1) = 155 K, Tc(2) downward arrow = 97 K, and Tc(2) upward arrow = 110 K. This change of spin state takes place in both sites simultaneously. All of these results are compared and discussed in the context of other {Fe(L) x [M(I)(CN)2]} coordination polymers, particularly those belonging to the homologous compounds {Fe(3-Xpy)2[Ag(CN)2]2} and their corresponding clathrate derivatives.  相似文献   

4.
The 1A1 left arrow over right arrow 5T2 spin transition has been investigated in the solid solutions of Fe(x)M(1-x)(pyrazine)[Pt(CN)4] (M = Ni or Co, 0 < or = x < or = 1) having a three-dimensional polynuclear structure. Both Ni and Co dilutions tend to decrease the hysteresis width and smooth the transition curves. The enthalpy (entropy) change associated with the spin transition was found to decrease from 26 kJ mol(-1) (84 J K(-1) mol(-1)) for x = 1 to 12 kJ mol(-1) (47 J K(-1) mol(-1)) for 47% Co dilution and to 15 kJ mol(-1) (54 J K(-1) mol(-1)) for 59% Ni dilution. Raman spectroscopy revealed a mixed one- and two-mode behavior in the solid solutions. For the first time, a correlation between vibrational frequencies exhibiting one-mode behavior and the entropy change, which drives the spin crossover, is established.  相似文献   

5.
A novel heteronuclear exchange-coupled complex [Cr(III)[(CN)Fe(III)((5)L)](3)(CN)(3)] containing a pentadentate blocking ligand (5)L was synthesized. The X-ray structure shows that a meridional isomer applies with inequivalent Fe(III) centers. The complex exhibits a thermally induced spin crossover along with the exchange coupling. M?ssbauer spectra indicate a spin transition between S = (1)/(2) and S = (5)/(2) states although a considerable amount of Fe(III) centers stays high-spin at T = 6 K. The magnetization, the magnetic susceptibility, and the M?ssbauer data were fitted in one run with a spin crossover model taking into account exchange interactions among all metal centers.  相似文献   

6.
The six-coordinate mononuclear iron(III) complexes [Fe(salpm)2]ClO(4).0.5EtOH, [Fe(salpm)2]Cl, [Fe{(3,5-tBu2)-salpm}2]X (X=ClO4- or Cl-), and [Fe{(3,5-tBu2)-salpm}2]NO(3).2H2O [Hsalpm=N-(pyridin-2-ylmethyl)salicylideneamine; H(3,5-tBu2)-salpm=N-(pyridin-2-ylmethyl)-3,5-di-tert-butylsalicylideneamine] have been synthesized and isolated in crystalline form; their chemical identities have been ascertained by elemental analyses, FAB mass spectrometry, and infrared spectroscopy. The room-temperature effective magnetic moments [(8chiMT)1/2 approximately 5.85-5.90 microB] of these complexes are consistent with the high-spin (S=5/2) ground state. These complexes are intensely colored on account of the strong ppi-->dpi* LMCT visible absorptions. Definitive evidence for the structures of [Fe(salpm)2]ClO(4).0.5EtOH and [Fe{(3,5-tBu2)-salpm}2]NO(3).2H2O has been provided by single-crystal X-ray crystallography. The monomeric complex cations in both compounds comprise two uninegative phenolate-pyridyl tridentate Schiff-base ligands coordinated meridionally to the iron(III) to afford a distorted octahedral geometry with a trans,cis,cis-[FeO2N4] core. Whereas [Fe(salpm)2]ClO(4).0.5EtOH undergoes a thermally induced 6A1<-->2T2 crossover, [Fe{(3,5-tBu2)-salpm}2]NO(3).2H2O retains its spin state in the solid state down to 5 K. However, EPR spectroscopy reveals that the latter complex does exhibit a spin transformation in solution, albeit to a much lesser extent than does the former. The spin crossover in [Fe(salpm)2]ClO(4).0.5EtOH has resulted in an unprecedented crystallographic observation of the coexistence of high-spin and low-spin iron(III) complex cations in equal proportions around 100 K. At room temperature, the two crystallographically distinct ferric centers are both high spin; however, one [Fe(salpm)2]+ complex cation undergoes a complete spin transition over the temperature range approximately 200-100 K, whereas the other converts very nearly completely between 100 and 65 K; approximately 10% of the complex cations in [Fe(salpm)2]ClO(4).0.5EtOH remain in the high-spin state down to 5 K.  相似文献   

7.
Two new iron(III) complexes, Fe(III)(LF*)3 (1) and FeIII(L(t-Bu*))3 (2), of remote substituted o-aminophenol-based ligands are reported; complexes 1 and 2 contain three O,N-coordinated o-iminobenzosemiquinonate(1-) radical anions with ferric centers in high-spin and low-spin configurations. The crystal structures of 1 and 2 were determined by X-ray diffraction at 100 and 293 K, and the electronic structures were established by various physical methods including M?ssbauer (4-290 K) and variable-temperature (2-290 K) susceptibility measurements. Electrochemical measurements (cyclic and square-wave voltammetry) indicate primarily ligand-centered redox processes. Complex 1, with the more electron-withdrawing fluoro substituents, retains the high-spin character of the ferric ion throughout the temperature range studied (2-290 K) and exhibits, as expected, strong antiferromagnetic coupling operating between three radicals (SR = 1/2) and the high-spin Fe(III) center (SFe = 5/2) yielding an St = 1 as the ground state. In contrast, the occurrence of a thermally induced spin crossover process (SFe = 5/2 <--> SFe = 1/2) is observed for complex 2 FeIII(L(t-Bu*))3, in which more electron donating tert-butyl substituents in the ligand are present. A rationale for the control of the electronic state of ferric ions in 2 together with spin-coupling schemes for 1 and 2 are provided.  相似文献   

8.
Sonogashira coupling reactions of terminal alkynes with Fe[(p-IC6H4)B(3-Mepz)3]2 (pz = pyrazolyl ring) yield Fe[(p-PhC2C6H4)B(3-Mepz)3]2 (2), Fe[(p-Me3SiC2C6H4)B(3-Rpz)3]2 (R = H, 3a, R = Me, 3b), and Fe[(p-HC2C6H4)B(3-Mepz)3]2 (R = H, 4a, R = Me, 4b), a series of new complexes containing "third generation" poly(pyrazolyl)borate ligands. Complex 2 undergoes a fairly gradual iron(II) electronic spin-state crossover with a 30 K hysteresis, whereas complex 3b is an unusual example of a complex with equivalent iron(II) sites in the high-spin form that shows an abrupt 50% spin crossover. For complex 4b, 50% of the iron(II) sites undergo a gradual spin-state transition between 185 and 350 K with an activation energy of 1590 +/- 30 cm(-1) and a T(1/2) = 280 K and, for the remaining iron(II) sites, an abrupt cooperative spin-state crossover between 106 and 114 K. The crystal structures of 4b obtained for each of the three distinct electronic spin states reveal two crystallographically different iron(II) sites, and analysis of the molecular/supramolecular structures indicates that the difference in the degree of pyrazolyl ring tilting in the ligands between the two sites, rather than the strength of the intermolecular forces, play a prominent role in determining the temperature of the spin-state crossover.  相似文献   

9.
The synthesis and detailed study of the new mononuclear spin crossover complex [Fe(II)H2L(2-Me)](ClO4)2 (where H2L(2-Me) = bis[((2-methylimidazol-4-yl)methylidene)-3-aminopropyl]ethylenediamine) are reported. Variable-temperature magnetic susceptibility measurements show the occurrence of a steep spin crossover centered at 171.5 K with a hysteresis loop of ca. 5 K width (T(/2)(increasing) = 174 K and T(1/2)(decreasing) = 169 K, for increasing and decreasing temperatures, respectively). The crystal structure has been resolved for the high-spin (HS) and low-spin (LS) states at 200 and 123 K, respectively, revealing a crystallographic phase transition that occurs concomitantly to the spin crossover: at 200 K, the complex crystallizes in the monoclinic system, space group P2(1)/n, while the space group is P2(1) at 123 K. The mean Fe-N distances are shortened by 0.2 A, but the thermal spin crossover is accompanied by significant structural changes: the rearrangement of the central atom C12 of a six-membered chelate ring of [Fe(II)H2L(2-Me)]2+ to two positions (C12A and C12B) and, consequently, the lack of an inversion center at 123 K (P2(1) space group). Both HS and LS supramolecular structures involve all possible hydrogen bonds between imidazole and amine NH functions, and perchlorate anions; however, the HS supramolecular structure is a one-dimensional (1D) network, and the LS phase may better be described as a two-dimensional (2D) extended structure of A and B molecules. The structural phase transition of [FeH2L(2-Me)](ClO4)2 seems to trigger the steep and hysteretic spin crossover. Discontinuities in the temperature dependence of the M?ssbauer parameters (isomer shift and quadrupole splitting) at the spin crossover temperature confirmed the occurrence of a structural phase transition. The experimental enthalpy and entropy variations were determined by differential scanning calorimetry (DSC) as 7.5 +/- 0.4 kJ/mol and 45 +/- 3 J K(-1) mol(-1), respectively. The regular solution theory was applied to the experimental data, yielding an interaction parameter of Gamma = 3.36 kJ/mol, which is larger than 2RT(1/2), which fulfills the condition for observing hysteresis.  相似文献   

10.
Compounds [Fe(tzpy)(3)](BF(4))(2) (1), [Fe(tzpy)(2)(NCS)(2)].S (S = 2CHCl(3) (2), H(2)O (3)), and [Fe(tzpy)(2)(NCSe)(2)] (4) (tzpy is 3-(2-pyridyl)[1,2,3]triazolo[1,5-a]pyridine) have been synthesized and characterized. 1 crystallizes in the monoclinic noncentrosymmetric system, Cc space group, Z = 4, with a = 11.4680(6) A, b = 27.449(2) A, c = 12.4510(8) A, beta = 108.860(5) degrees, V = 3709.0(4) A(3), and T = 293(2) K. The structure consists of mononuclear [Fe(tzpy)(3)](2+) diamagnetic species, which stack via pi-interactions. Disordered BF(4)(-) anions fill the voids generated by complex cations. 2 crystallizes in the triclinic system, P one macro space group, Z = 1, with a = 8.3340(4) A, b = 8.6520(4) A, c = 11.6890(6) A, alpha = 89.113(2) degrees, beta = 81.612(2) degrees, gamma = 77.803(2) degrees, V = 814.90(7) A(3), and T = 293(2) K. The structure consists of mononuclear [Fe(tzpy)(2)(NCS)(2)] neutral species, which interact each other via pi-staking defining layers separated by two-dimensional arrays of CHCl(3). The average Fe-N bond distance, 2.176(3) A, corresponds to what is expected for an iron(II) ion in the high-spin state. Compounds 2-4 undergo thermal-driven spin conversion. The regular solution model was applied to account for the corresponding to thermodynamic parameters. The intermolecular interaction parameter, the characteristic temperature, and the enthalpy and entropy changes associated with the spin conversion were estimated as Gamma = 0.86 (2), 0.89 (3), and 3.79 (4) kJ mol(-1), T(1/2) = 75 (2), 118 (3), and 251 K (4), Delta H = 3.67 (2) and 4.08 (3) kJ mol(-1), and Delta S = 34 (2) and 34.5 (3) J K(-1) mol(-1). Delta H = 8.75 kJ mol(-1) and Delta S = 34.8 J K(-1) mol(-1) were estimated from calorimetric measurements and used as fixed parameters for 4. A quantitative light-induced excited spin state trapping (LIESST) effect was observed for 3, and the high-spin to low-spin relaxation was studied in the temperature region 20-63 K.  相似文献   

11.
The 1H NMR spectra of iron(III) 5-ethynyl-10,15,20-tri(p-tolyl)porphyrin [(ETrTP)Fe(III)X(n)], iron(III) 5-(phenylethynyl)-10,15,20-tri(p-tolyl)porphyrin [(PETrTP)Fe(III)X(n)], iron(III) 5-(phenylbutadiynyl)-10,15,20-tri(p-tolyl)porphyrin [(PBTrTP)Fe(III)X(n)], iron(III) 5,10,15,20-tetra(phenylethynyl)porphyrin [(TPEP)Fe(III)X(n)], iron(III) 1,4-bis-[10,15,20-tri(p-tolyl)porphyrin-5-yl]-1,3-butadiyne {[(TrTP)Fe(III)X(n)]2 B}, and 5,10,15-triphenylporphyrin [(TrPP)Fe(III)X(n)] have been studied to elucidate the impact of meso-ethynyl substitution on the electronic structure and spin density distribution of high-spin (X = Cl-, n = 1) and low-spin (X = CN-, n = 2) derivatives. The meso substituents, i.e., ethynyl, phenylethynyl, and phenylbutadiynyl, provided insight into the efficiency of spin density delocalization along structural elements that are typically applied to transmit electronic effects along multipart polyporphyrinic systems. The positive spin density localized at the meso-carbon of high-spin iron(III) ethynylporphyrins is effectively delocalized along the ethyne or butadiyne fragment as illustrated by the comparison of isotropic shifts of C(meso)-H and -CC-H determined for (TrPP)Fe(III)Cl (-82.6 ppm, 293 K) and (ETrTP)Fe(III)Cl (-49.5 ppm, 298 K). The replacement of the ethynyl hydrogen by phenyl or phenylethynyl provided evidence for the pi spin density distribution around the introduced phenyl ring. An analysis of the isotropic shifts for the low-spin bis-cyanide iron(III) porphyrins series reveals the analogous mechanism of spin density transfer. Treatment of high-spin [(TrTP)Fe(III)Cl]2 B with a base resulted in formation of the cyclic [(TrTP)Fe(III)OFe(III)(TrTP)B]2 complex linked by two mu-oxo bridges. (TPEP)H2 has been characterized by X-ray crystallography as a porphyrin dication where two molecules of trifluoroacetic acid associate with two coordinated trifluoroacetate anions. The X-ray structure of bis-tetrahydrofuran 1,4-bis[10,15,20-tri(p-tolyl)porphyrinatozinc(II)-5-yl]-1,3-butadiyne complex {[(TrTP)Zn(II)(THF)]2 B} reveals two parallel, non-coplanar [(TrTP)Zn(THF)] subunits linked by the linear butadiyne moiety.  相似文献   

12.
The vibrational contribution to DeltaS of the low-spin ((3)T(1)) to high-spin ((5)E) spin transition in two 3d(4) octahedral systems [Mn(III)(pyrol)(3)tren] and [Cr(depe)(2)I(2)] have been estimated by means of DFT calculations (B3LYP/CEP-31G) of the vibrational normal-modes frequencies. The obtained value at the transition temperature for the Mn(iii) complex is DeltaS(vib)(44 K) = 6.3 J K(-1) mol(-1), which is comparable with the proposed Jahn-Teller contribution of R ln3 = 9.1 J K(-1) mol(-1) and which is approximately half of the experimentally determined 13.8 J K(-1) mol(-1). The corresponding value for the Cr(ii) complex is DeltaS(vib)(171.45 K) = 46.5 J K(-1) mol(-1), as compared to the experimental value of 39.45 J K(-1) mol(-1). The analysis of the vibrational normal modes reveals that for the d(4) systems under study, contrary to Fe(ii) d(6) systems, not all metal-ligand stretching vibrations make a contribution. For the Mn(iii) complex, the only vibration that contributes to DeltaS(vib) involve the nitrogens occupying the Jahn-Teller axis, while in the case of Cr(ii) the contributing vibrations involve the Cr-I bonds. Low-frequency modes due to ring vibrations, metal-ligand bending and movement of the molecule as a whole also contribute to the vibrational entropy associated with the spin transition.  相似文献   

13.
Complexes of general formula [(TPA)Fe(R-Cat)]X.nS were synthesised with different catecholate derivatives and anions (TPA = tris(2-pyridylmethyl)amine, R-Cat2- = 4,5-(NO2)2-Cat2- denoted DNC(2-); 3,4,5,6-Cl4-Cat2- denoted TCC2-; 3-OMe-Cat(2-); 4-Me-Cat(2-) and X = BPh4-; NO3-; PF6-; ClO4-; S = solvent molecule). Their magnetic behaviours in the solid state show a general feature along the series, viz., the occurrence of a thermally-induced spin crossover process. The transition curves are continuous with transition temperatures ranging from ca. 84 to 257 K. The crystal structures of [(TPA)Fe(DNC)]X (X = PF6-; BPh4-) and [(TPA)Fe(TCC)]X.nS (X = PF6-; NO3- and n= 1, S = H2O; ClO4- and n= 1, S = H2O; BPh4- and n= 1, S = C3H6O) were solved at 100 (or 123 K) and 293 K. For those two systems, the characteristics of the [FeN(4)O(2)] coordination core and those of the dioxolene ligands appear to be consistent with a prevailing Fe(III)-catecholate formulation. This feature is in contrast with the large quantum mixing between Fe(III)-catecholate and Fe(II)-semiquinonate forms recently observed with the more electron donating simple catecholate dianion. The thermal spin crossover process is accompanied by significant changes of the molecular structures as shown by the average variation of the metal-ligand bond distances which can be extrapolated for a complete spin conversion from ca. 0.123 to 0.156 A. The different space groups were retained in the low- and high-temperature phases.  相似文献   

14.
Triply switchable [Co(II)(dpzca)(2)] shows an abrupt, reversible, and hysteretic spin crossover (T(1/2)↓ = 168 K, T(1/2)↑ = 179 K, and ΔT(1/2) = 11 K) between the high-spin (HS) and low-spin (LS) states of cobalt(II), both of which have been structurally characterized. The spin transition is also reversibly triggered by pressure changes. Moreover, in a third reversible switching mechanism for this complex, the magnetic properties can be switched between HS cobalt(II) and LS cobalt(III) by redox.  相似文献   

15.
The two-dimensional (2D) polymeric spin crossover (SCO) compound Fe(py)2[Ag(CN)2]2 has been synthesized. The compound shows a two-step spin transition detected by magnetic, heat capacity, and X-ray diffraction measurements. The magnetic moment shows a high-temperature step (step 1) occurring at 146.3 K without hysteresis, while the low-temperature step (step 2) happens at 84 K on cooling and 98.2 K on heating. These measurements reveal a large amount of residual high spin (HS) species (23%) and that HS state trapping occurs at cooling rates of around 1 K min(-1) or higher. The two-step behavior has been confirmed by heat capacity, which gives, for steps 1 and 2, respectively, DeltaH1 = 3.33 kJ mol(-1), DeltaS1 = 22.6 J mol(-1) K(-1), and DeltaH2 = 1.51 kJ mol(-1), DeltaS2 = 15.7 J mol(-1) K(-1). For step 2 a hysteresis of 10 K has been determined with dynamic measurements. Powder X-ray diffraction at room temperature shows that the compound is isostructural to Cd(py)2[Ag(CN)2]2 previously reported. Powder X-ray diffraction indicates that there is only one crystallographic site for iron(II) in the whole temperature range, confirmed by M?ssbauer spectroscopy. The X-ray diffraction study at different temperatures do not show any superstructure in the region between the transitions, discarding a crystallographic phase transition as the origin of the two-step behavior. However, an unexpected increase of the thermal factor is detected on lowering the temperature and considered as a manifestation of a disordered state between the two steps, consisting of a mixing of HS and LS species without long-range order.  相似文献   

16.
The hydrolysis of uranium(VI) in tetraethylammonium perchlorate (0.10 mol dm(-3) at 25 degrees C) was studied at variable temperatures (10-85 degrees C). The hydrolysis constants (*beta(n,m)) and enthalpy of hydrolysis (Delta H(n,m)) for the reaction mUO(2)(2+) + nH(2)O = (UO(2))(m)(OH)(n)((2m-n))+) + nH(+) were determined by titration potentiometry and calorimetry. The hydrolysis constants, *beta(1,1), *beta(2,2), and *beta(5,3), increased by 2-5 orders of magnitude as the temperature was increased from 10 to 85 degrees C. The enthalpies of hydrolysis, Delta H(2,2) and Delta H(5,3), also varied: Delta H(2,2) became more endothermic while Delta H(5,3) became less endothermic as the temperature was increased. The heat capacities of hydrolysis, Delta C(p(2,2)) and Delta C(p(5,3)), were calculated to be (152 +/- 43) J K(-1) mol(-1) and -(229 +/- 34) J K(-1) mol(-1), respectively. UV/Vis absorption spectra supported the trend that hydrolysis of U(VI) was enhanced at elevated temperatures. Time-resolved laser-induced fluorescence spectroscopy provided additional information on the hydrolyzed species at different temperatures. Approximation approaches to predict the effect of temperature were tested with the data from this study.  相似文献   

17.
A series of catecholatoiron(III) complexes, [Fe(III)L(4Cl-cat)]BPh4 (L = (4-MeO)2TPA (1), TPA (2), (4-Cl)2TPA (3), (4-NO2)TPA (4), (4-NO2)2TPA (5); TPA = tris(pyridin-2-ylmethyl)amine; 4Cl-cat = 4-chlorocatecholate), have been characterized by magnetic susceptibility measurements and EPR, 1H NMR, and UV-vis-NIR spectroscopies to clarify the correlation of the spin delocalization on the catecholate ligand with the O2 reactivity as well as the spin-state dependence of the O2 reactivity. EPR spectra in frozen CH3CN at 123 K clearly showed that introduction of electron-withdrawing groups effectively shifts the spin equilibrium from a high-spin to a low-spin state. The effective magnetic moments determined by the Evans method in a CH3CN solution showed that 5 contains 36% of low-spin species at 243 K, while 1-4 are predominantly in a high-spin state. Evaluation of spin delocalization on the 4Cl-cat ligand by paramagnetic 1H NMR shifts revealed that the semiquinonatoiron(II) character is more significant in the low-spin species than in the high-spin species. The logarithm of the reaction rate constant is linearly correlated with the energy gap between the catecholatoiron(III) and semiquinonatoiron(II) states for the high-spin complexes 1-3, although complexes 4 and 5 deviate negatively from linearity. The lower reactivity of the low-spin complex, despite its higher spin density on the catecholate ligand compared with the high-spin analogues, suggests the involvement of the iron(III) center, rather than the catecholate ligand, in the reaction with O2.  相似文献   

18.
In this study, we perform steady-state and time-resolved X-ray absorption spectroscopy (XAS) on the iron K-edge of [Fe(tren(py)3)](PF6)2 dissolved in acetonitrile solution. Static XAS measurements on the low-spin parent compound and its high-spin analogue, [Fe(tren(6-Me-py)3)](PF6)2, reveal distinct spectroscopic signatures for the two spin states in the X-ray absorption near-edge structure (XANES) and in the X-ray absorption fine structure (EXAFS). For the time-resolved studies, 100 fs, 400 nm pump pulses initiate a charge-transfer transition in the low-spin complex. The subsequent electronic and geometric changes associated with the formation of the high-spin excited state are probed with 70 ps, 7.1 keV, tunable X-ray pulses derived from the Advanced Light Source (ALS). Modeling of the transient XAS data reveals that the average iron-nitrogen (Fe-N) bond is lengthened by 0.21+/-0.03 A in the high-spin excited state relative to the ground state within 70 ps. This structural modification causes a change in the metal-ligand interactions as reflected by the altered density of states of the unoccupied metal orbitals. Our results constitute the first direct measurements of the dynamic atomic and electronic structural rearrangements occurring during a photoinduced FeII spin crossover reaction in solution via picosecond X-ray absorption spectroscopy.  相似文献   

19.
The complex Tp(Ph,Me)NiS(2)CNMe(2) [Tp(Ph,Me) = hydrotris(3-phenyl-5-methyl-1-pyrazolyl)borate] features a bioinspired N(3)S(2) ligand set supporting a five-coordinate, trigonally distorted square-pyramidal geometry in the solid state. Spin crossover of Ni(II) was demonstrated by temperature-dependent X-ray crystallography and magnetic susceptibility measurements. The crystal lattice contains two independent molecules (i.e., Ni1 and Ni2). At 293 K, the observed bond lengths and susceptibility are consistent with high-spin (S = 1) Ni(II), and both molecules exhibit relatively short axial Ni-N bonds and long Ni-N and Ni-S equatorial bonds. At 123 K, the Ni1 complex remains high-spin, but the Ni2 molecule substantially crosses to a structurally distinct diamagnetic (S = 0) state with significant elongation of the axial Ni-N bond and offsetting contraction of the equatorial bonds. The temperature-dependent susceptibility data were fit to a spin equilibrium at Ni2 [ΔH° = 1.13(2) kcal/mol and ΔS° = +7.3(1) cal mol(-1) K(-1)] consistent with weak coupling to lattice effects. Cooling below 100 K results in crossover of the Ni1 complex.  相似文献   

20.
The structure and spin-crossover magnetic behavior of [Fe(II)1(6)][BF(4)](2) (1 = isoxazole) and [Fe(II)1(6)][ClO(4)](2) have been studied. [Fe(II)1(6)][BF(4)](2) undergoes two reversible spin-crossover transitions at 91 and 192 K, and is the first two-step spin transition to undergo a simultaneous crystallographic phase transition, but does not exhibit thermal hysteresis. The single-crystal structure determinations at 260 [space group P3, a = 17.4387(4) A, c = 7.6847(2) A] and at 130 K [space group P1, a = 17.0901(2) A, b = 16.7481(2) A, c = 7.5413(1) A, alpha = 90.5309(6) degrees, beta = 91.5231(6) degrees, gamma = 117.8195(8) degrees ] reveal two different iron sites, Fe1 and Fe2, in a 1:2 ratio. The room-temperature magnetic moment of 5.0 mu(B) is consistent with high-spin Fe(II). A plateau in mu(T) having a moment of 3.3 mu(B) centered at 130 K suggests a mixed spin system of some high-spin and some low-spin Fe(II) molecules. On the basis of the Fe-N bond distances at the two temperatures, and the molar fraction of high-spin molecules at the transition plateau, Fe1 and Fe2 can be assigned to the 91 and 192 K transitions, respectively. [Fe(II)1(6)][ClO(4)](2) [space group P3, a = 17.5829(3) A, c = 7.8043(2) A, beta = 109.820 (3) degrees, T = 295 K] also possesses Fe1:Fe2 in a 1:2 ratio, and magnetic measurements show a single spin transition at 213 K, indicating that both Fe1 and Fe2 undergo a simultaneous spin transition. [Fe(II)1(6)][ClO(4)](2) slowly decomposes in solutions containing acetic anhydride to form [Fe(III)(3)O(OAc)(6)1(3)][ClO(4)] [space group I2, a = 10.1547(7) A, b = 16.5497(11) A, c = 10.3205(9) A, beta = 109.820 (3) degrees, T = 200 K]. The isosceles Fe(3) unit contains two Fe.Fe distances of 3.2844(1) A and a third Fe.Fe distance of 3.2857(1) A. The magnetic data can be fit to a trinuclear model with H = -2J(S(1)xS(2) + S(2)xS(3)) - 2J(13)(S(1)xS(3)), where J = -27.1 and J(13) = -32.5 cm(-1).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号