首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Combustion calorimetry, Calvet-drop sublimation calorimetry, and the Knudsen effusion method were used to determine the standard (p o = 0.1 MPa) molar enthalpies of formation of monoclinic (form I) and gaseous paracetamol, at T = 298.15 K: \Updelta\textf H\textm\texto ( \textC 8 \textH 9 \textO 2 \textN,\text cr I ) = - ( 4 10.4 ±1. 3)\text kJ  \textmol - 1 \Updelta_{\text{f}} H_{\text{m}}^{\text{o}} \left( {{\text{C}}_{ 8} {\text{H}}_{ 9} {\text{O}}_{ 2} {\text{N}},{\text{ cr I}}} \right) = - ( 4 10.4 \pm 1. 3){\text{ kJ}}\;{\text{mol}}^{ - 1} and \Updelta\textf H\textm\texto ( \textC 8 \textH 9 \textO 2 \textN,\text g ) = - ( 2 80.5 ±1. 9)\text kJ  \textmol - 1 . \Updelta_{\text{f}} H_{\text{m}}^{\text{o}} \left( {{\text{C}}_{ 8} {\text{H}}_{ 9} {\text{O}}_{ 2} {\text{N}},{\text{ g}}} \right) = - ( 2 80.5 \pm 1. 9){\text{ kJ}}\;{\text{mol}}^{ - 1} . From the obtained \Updelta\textf H\textm\texto ( \textC 8 \textH 9 \textO 2 \textN,\text cr I ) \Updelta_{\text{f}} H_{\text{m}}^{\text{o}} \left( {{\text{C}}_{ 8} {\text{H}}_{ 9} {\text{O}}_{ 2} {\text{N}},{\text{ cr I}}} \right) value and published data, it was also possible to derive the standard molar enthalpies of formation of the two other known polymorphs of paracetamol (forms II and III), at 298.15 K: \Updelta\textf H\textm\texto ( \textC 8 \textH 9 \textO 2 \textN,\text crII ) = - ( 40 8.4 ±1. 3)\text kJ  \textmol - 1 \Updelta_{\text{f}} H_{\text{m}}^{\text{o}} \left( {{\text{C}}_{ 8} {\text{H}}_{ 9} {\text{O}}_{ 2} {\text{N}},{\text{ crII}}} \right) = - ( 40 8.4 \pm 1. 3){\text{ kJ}}\;{\text{mol}}^{ - 1} and \Updelta\textf H\textm\texto ( \textC 8 \textH 9 \textO 2 \textN,\text crIII ) = - ( 40 7.4 ±1. 3)\text kJ  \textmol - 1 . \Updelta_{\text{f}} H_{\text{m}}^{\text{o}} \left( {{\text{C}}_{ 8} {\text{H}}_{ 9} {\text{O}}_{ 2} {\text{N}},{\text{ crIII}}} \right) = - ( 40 7.4 \pm 1. 3){\text{ kJ}}\;{\text{mol}}^{ - 1} . The proposed \Updelta\textf H\textm\texto ( \textC 8 \textH 9 \textO 2 \textN,\text g ) \Updelta_{\text{f}} H_{\text{m}}^{\text{o}} \left( {{\text{C}}_{ 8} {\text{H}}_{ 9} {\text{O}}_{ 2} {\text{N}},{\text{ g}}} \right) value, together with the experimental enthalpies of formation of acetophenone and 4′-hydroxyacetophenone, taken from the literature, and a re-evaluated enthalpy of formation of acetanilide, \Updelta\textf H\textm\texto ( \textC 8 \textH 9 \textON,\text g ) = - ( 10 9. 2 ± 2. 2)\text kJ  \textmol - 1 , \Updelta_{\text{f}} H_{\text{m}}^{\text{o}} \left( {{\text{C}}_{ 8} {\text{H}}_{ 9} {\text{ON}},{\text{ g}}} \right) = - ( 10 9. 2\,\pm\,2. 2){\text{ kJ}}\;{\text{mol}}^{ - 1} , were used to assess the predictions of the B3LYP/cc-pVTZ and CBS-QB3 methods for the enthalpy of a isodesmic and isogyric reaction involving those species. This test supported the reliability of the theoretical methods, and indicated a good thermodynamic consistency between the \Updelta\textf H\textm\texto \Updelta_{\text{f}} H_{\text{m}}^{\text{o}} (C8H9O2N, g) value obtained in this study and the remaining experimental data used in the \Updelta\textr H\textm\texto \Updelta_{\text{r}} H_{\text{m}}^{\text{o}} calculation. It also led to the conclusion that the presently recommended enthalpy of formation of gaseous acetanilide in Cox and Pilcher and Pedley’s compilations should be corrected by ~20 kJ mol−1.  相似文献   

2.
The assumption that potassium permanganate may serve as a kinetics standard in solid decomposition kinetics made a priori on the basis of the mechanism of the congruent dissociative vaporization of KMnO4 and its crystal structure was successfully supported experimentally. As expected, the decomposition rate of KMnO4 does not depend on the kind of foreign gas (He, air, CO2 and Ar) and on the measurement technique (isothermal or dynamic). Other requirements for KMnO4 as an ideal kinetics standard are satisfied as well. The use of the third-law method for determining the molar enthalpy of a reaction ( \Updelta\textr H\textT\texto / n ) \left( {\Updelta_{\text{r}} H_{\text{T}}^{\text{o}} / \nu } \right) provides an excellent reproducibility of results. The mean value of \Updelta\textr H\textT\texto / n \Updelta_{\text{r}} H_{\text{T}}^{\text{o}} / \nu from 12 experiments in different gases is 138.3 ± 0.6 kJ mol−1, which coincides with the value of 138.1 kJ mol−1 calculated from the isothermal measurements in different gases by the second-law method. As predicted by theory, the random errors of the second-law and Arrhenius plot methods are 10–20 times greater. In addition, the use of these methods in the case of dynamic measurements is related to large systematic errors caused by an inaccurate selection of the geometrical (contraction) model. The third-law method is practically free of these errors.  相似文献   

3.
The standard enthalpies of formation of alkaline metals thiolates in the crystalline state were determined by reaction-solution calorimetry. The obtained results at 298.15 K were as follows: \Updelta\textf H\textm\texto (\textMSR,  \textcr) \Updelta_{\text{f}} H_{\text{m}}^{\text{o}} ({\text{MSR,}}\;{\text{cr}}) /kJ mol−1 = −259.0 ± 1.6 (LiSC2H5), −199.9 ± 1.8 (NaSC2H5), −254.9 ± 2.4 (NaSC4H9), −240.6 ± 1.9 (KSC2H5), −235.8 ± 2.0 (CsSC2H5). These results where compared with the literature values for the corresponding alkoxides and together with values for \Updelta\textf H\textm\texto ( \textMSH,  \textcr) \Updelta_{\text{f}} H_{\text{m}}^{\text{o}} \left( {{\text{MSH}},\;{\text{cr}}}\right) were used to derive a consistent set of lattice energies for MSR compounds based on the Kapustinskii equation. This allows the estimation of the enthalpy of formation for some non-measured thiolates.  相似文献   

4.
Dodecylamine hydrochloride C12H25NH3·Cl(s) and bis-dodecylammonium tetrachlorozincate (C12H25NH3)2ZnCl4(s) were synthesized by the method of liquid phase reaction. The constant-volume energy of combustion of dodecylamine hydrochloride was measured by means of a RBC-II precision rotating-bomb combustion calorimeter at T = (298.15 ± 0.001) K. The standard molar enthalpy of formation of C12H25NH3·Cl(s) was calculated to be \Updeltaf Hmo \Updelta_{\rm{f}} H_{\rm{m}}^{\rm{o}} (C12H25NH3·Cl, s) = −(706.79 ± 3.97) kJ mol−1 from the constant-volume energy of combustion. In accordance with Hess’ law, a reasonable thermochemical cycle was designed and the enthalpy change of the synthesis reaction of the complex (C12H25NH3)2ZnCl4(s) was determined by use of an isoperibol solution-reaction calorimeter. The standard molar enthalpy of formation of (C12H25NH3)2ZnCl4(s) was calculated as \Updeltaf Hmo \Updelta_{\rm{f}} H_{\rm{m}}^{\rm{o}} [(C12H25NH3)2ZnCl4, s] = −(1862.14 ± 7.95) kJ mol−1 from the standard molar enthalpy of formation of C12H25NH3·Cl(s) and other auxiliary thermodynamic data.  相似文献   

5.
l-cysteine undergoes facile electron transfer with heteropoly 10-tungstodivanadophosphate, [ \textPV\textV \textV\textV \textW 1 0 \textO 4 0 ]5 - , \left[ {{\text{PV}}^{\text{V}} {\text{V}}^{\text{V}} {\text{W}}_{ 1 0} {\text{O}}_{ 4 0} } \right]^{5 - } , at ambient temperature in aqueous acid medium. The stoichiometric ratio of [cysteine]/[oxidant] is 2.0. The products of the reaction are cystine and two electron-reduced heteropoly blue, [PVIVVIVW10O40]7−. The rates of the electron transfer reaction were measured spectrophotometrically in acetate–acetic acid buffers at 25 °C. The orders of the reaction with respect to both [cysteine] and [oxidant] are unity, and the reaction exhibits simple second-order kinetics at constant pH. The pH-rate profile indicates the participation of deprotonated cysteine in the reaction. The reaction proceeds through an outer-sphere mechanism. For the dianion SCH2CH(NH3 +)COO, the rate constant for the cross electron transfer reaction is 96 M−1s−1 at 25 °C. The self-exchange rate constant for the - \textSCH2 \textCH( \textNH3 + )\textCOO - \mathord
/ \vphantom - \textSCH2 \textCH( \textNH3 + )\textCOO - ·\textSCH2 \textCH( \textNH3 + )\textCOO - ·\textSCH2 \textCH( \textNH3 + )\textCOO - {{{}^{ - }{\text{SCH}}_{2} {\text{CH}}\left( {{{\text{NH}}_{3}}^{ + } } \right){\text{COO}}^{ - } } \mathord{\left/ {\vphantom {{{}^{ - }{\text{SCH}}_{2} {\text{CH}}\left( {{{\text{NH}}_{3}}^{ + } } \right){\text{COO}}^{ - } } {{}^{ \bullet }{\text{SCH}}_{2} {\text{CH}}\left( {{{\text{NH}}_{3}}^{ + } } \right){\text{COO}}^{ - } }}} \right. \kern-\nulldelimiterspace} {{}^{ \bullet }{\text{SCH}}_{2} {\text{CH}}\left( {{{\text{NH}}_{3}}^{ + } } \right){\text{COO}}^{ - } }} couple was evaluated using the Rehm–Weller relationship.  相似文献   

6.
The oxidation of aquaethylenediaminetetraacetatocobaltate(II) [Co(EDTA)(H2O)]−2 by N-bromosuccinimide (NBS) in aqueous solution has been studied spectrophotometrically over the pH 6.10–7.02 range at 25 °C. The reaction is first-order with respect to complex and the oxidant, and it obeys the following rate law:
\textRate = k\textet K 2 K 3 [ \textCo\textII ( \textEDTA )( \textH 2 \textO ) - 2 ]\textT [\textNBS] \mathord/ \vphantom [\textNBS] ( [ \textH + ] + K 2 ) ( [ \textH + ] + K 2 ) {\text{Rate}} = k^{\text{et} } K_{ 2} K_{ 3} \left[ {{\text{Co}}^{\text{II}} \left( {\text{EDTA}} \right)\left( {{\text{H}}_{ 2} {\text{O}}} \right)^{ - 2} } \right]_{\text{T}} {{[{\text{NBS}}]} \mathord{\left/ {\vphantom {{[{\text{NBS}}]} {\left( {\left[ {{\text{H}}^{ + } } \right]{ + }K_{ 2} } \right)}}} \right. \kern-\nulldelimiterspace} {\left( {\left[ {{\text{H}}^{ + } } \right]{ + }K_{ 2} } \right)}}  相似文献   

7.
[ \textTp\textMe2 {\text{Tp}}^{{{\text{Me}}_{2} }} ]M (M = K, Tl) reacts with “GaI” to give a series of compounds that feature Ga–Ga bonds, namely [ \textTp\textMe2 {\text{Tp}}^{{{\text{Me}}_{2} }} ]Ga→GaI3, [ \textTp\textMe2 {\text{Tp}}^{{{\text{Me}}_{2} }} ]GaGaI2GaI2( \textHpz\textMe2 {\text{Hpz}}^{{{\text{Me}}_{2} }} ) and [ \textTp\textMe2 {\text{Tp}}^{{{\text{Me}}_{2} }} ]Ga(GaI2)2Ga[ \textTp\textMe2 {\text{Tp}}^{{{\text{Me}}_{2} }} ], in addition to the cationic, mononuclear Ga(III) complex {[ \textTp\textMe2 {\text{Tp}}^{{{\text{Me}}_{2} }} ]2Ga}+. Likewise, [ \textTp\textMe2 {\text{Tp}}^{{{\text{Me}}_{2} }} ]M (M = K, Tl) reacts with (HGaCl2) 2 and Ga[GaCl4] to give [ \textTp\textMe2 {\text{Tp}}^{{{\text{Me}}_{2} }} ]Ga→GaCl3, {[ \textTp\textMe2 {\text{Tp}}^{{{\text{Me}}_{2} }} ]2Ga}[GaCl4], and {[ \textTp\textMe2 {\text{Tp}}^{{{\text{Me}}_{2} }} ]GaGa[ \textTp\textMe2 {\text{Tp}}^{{{\text{Me}}_{2} }} ]}[GaCl4]2. The adduct [ \textTp\textMe2 {\text{Tp}}^{{{\text{Me}}_{2} }} ]Ga→B(C6F5)3 may be obtained via treatment of [ \textTp\textMe2 {\text{Tp}}^{{{\text{Me}}_{2} }} ]K with “GaI” followed by addition of B(C6F5)3. Comparison of the deviation from planarity of the GaY3 ligands in [ \textTp\textMe2 {\text{Tp}}^{{{\text{Me}}_{2} }} ]Ga→GaY3 (Y = Cl, I) and [ \textTm\textBu\textt {\text{Tm}}^{{{\text{Bu}}^{\text{t}} }} ]Ga→GaY3, as evaluated by the sum of the Y–Ga–Y bond angles, Σ(Y–Ga–Y), indicates that the [ \textTm\textBu\textt {\text{Tm}}^{{{\text{Bu}}^{\text{t}} }} ]Ga moiety is a marginally better donor than [ \textTp\textMe2 {\text{Tp}}^{{{\text{Me}}_{2} }} ]Ga. In contrast, the displacement from planarity for the B(C6F5)3 ligand of [ \textTp\textMe2 {\text{Tp}}^{{{\text{Me}}_{2} }} ]Ga→B(C6F5)3 is greater than that of [ \textTm\textBu\textt {\text{Tm}}^{{{\text{Bu}}^{\text{t}} }} ]Ga→B(C6F5)3, an observation that is interpreted in terms of interligand steric interactions in the former complex compressing the C–B–C bond angles.  相似文献   

8.
This article reports the values of the standard (p o = 0.1 MPa) molar enthalpies of formation, in the gaseous phase, \Updelta\textf H\textm\texto ( \textg ), {{\Updelta}}_{\text{f}} H_{\text{m}}^{\text{o}} \left( {\text{g}} \right), at T = 298.15 K, of 2-acetyl-5-nitrothiophene and 5-nitro-2-thiophenecarboxaldehyde as −(48.8 ± 1.6) and (4.4 ± 1.3) kJ mol−1, respectively. These values were derived from experimental thermodynamic parameters, namely, the standard (p o = 0.1 MPa) molar enthalpies of formation, in the crystalline phase, \Updelta\textf H\textm\texto ( \textcr ) , {{\Updelta}}_{\text{f}} H_{\text{m}}^{\text{o}} \left( {\text{cr}} \right) , at T = 298.15 K, obtained from the standard molar enthalpies of combustion, \Updelta\textc H\textm\texto , {{\Updelta}}_{\text{c}} H_{\text{m}}^{\text{o}} , measured by rotating bomb combustion calorimetry, and from the standard molar enthalpies of sublimation, at T = 298.15 K, determined from the temperature–vapour pressure dependence, obtained by the Knudsen mass loss effusion method. The results are interpreted in terms of enthalpic increments and the enthalpic contribution of the nitro group in the substituted thiophene ring is compared with the same contribution in other structurally similar compounds.  相似文献   

9.
The standard molar enthalpies of solution at infinite dilution \Updelta\textsol H\textm \Updelta_{\text{sol}} H_{\text{m}}^{\infty } of glycylglycine, dl-alanyl-dl-alanine and glycylglycylglycine in aqueous solutions of potassium chloride and ethanol as well as of glycylglycine and glycylglycylglycine in the solutions containing urea and water have been determined by calorimetry at the temperature 298.15 K. Changes of solution enthalpy, expressed in a form so-called heterotactic interaction coefficients, h\textxy h_{\text{xy}} were used for analysis of interactions occurring between the investigated solutes in water. The group contributions illustrating the interactions of KCl, urea and ethanol with selected functional groups in the peptide molecules, namely CH2, “pep,” and “ion” groups, were calculated and discussed.  相似文献   

10.
From extraction experiments and γ-activity measurements, the exchange extraction constants corresponding to the general equilibrium M+ (aq) + NaL+ (nb) ⇔ ML+ (nb) + Na+ (aq) taking place in the two-phase water–nitrobenzene system (M= H3O+, \textNH4+ {\text{NH}}_{4}{}^{+} , Ag+, Tl+; L = hexaethyl p-tert-butylcalix[6]arene hexaacetate; aq = aqueous phase, nb = nitrobenzene phase) were evaluated. Furthermore, the stability constants of the ML+ complexes in nitrobenzene saturated with water were calculated; they were found to increase in the following order: \textAg +   <  NH4 +   <  \textH 3 \textO +   <  \textNa +   <  \textTl + . {\text{Ag}}^{ + } \, < \,\hbox{NH}_{4}{}^{ + } \, < \,{\text{H}}_{ 3} {\text{O}}^{ + } \, < \,{\text{Na}}^{ + } \, < \,{\text{Tl}}^{ + }.  相似文献   

11.
The curing kinetics of a bi-component system about o-cresol-formaldehyde epoxy resin (o-CFER) modified by liquid crystalline p-phenylene di[4-(2,3-epoxypropyl) benzoate] (p-PEPB), with 3-methyl-tetrahydrophthalic anhydride (MeTHPA) as a curing agent, were studied by non-isothermal differential scanning calorimetry (DSC) method. The relationship between apparent activation energy E a and the conversion α was obtained by the isoconversional method of Ozawa. The reaction molecular mechanism was proposed. The results show that the values of E a in the initial stage are higher than other time, and E a tend to decrease slightly with the reaction processing. There is a phase separation in the cure process with LC phase formation. These curing reactions can be described by the Šesták–Berggren (S–B) equation, the kinetic equation of cure reaction as follows: \frac\textda\textdt = Aexp( - \fracE\texta RT )am ( 1 - a )n {\frac{{{\text{d}}\alpha }}{{{\text{d}}t}}} = A\exp \left( { - {\frac{{E_{\text{a}} }}{RT}}} \right)\alpha^{m} \left( {1 - a} \right)^{n} .  相似文献   

12.
The power-time curves of the micelle formation process were determined for the nonionic surfactant Tween80/nonaqueous solvent (DMF)/long-chain alcohol (n-heptanol, n-octanol, n-nonanol, and n-decanol) systems by titration microcalorimetry at temperatures of (298.15, 303.15, 308.15, and 313.15) K. From the power-time curves, the CMC and DHm\uptheta\Delta H_{\mathrm{m}}^{\uptheta} values were obtained. The corresponding values of DGm\uptheta\Delta G_{\mathrm{m}}^{\uptheta} and DSm\uptheta\Delta S_{\mathrm{m}}^{\uptheta} were also calculated. The relationships of the CMC with the carbon number of the alcohol, the concentration of alcohol, and the temperature, along with the thermodynamic functions, are discussed.  相似文献   

13.
The stoichiometries, kinetics and mechanism of the reduction of tetraoxoiodate(VII) ion, IO4 to the corresponding trioxoiodate(V) ion, IO3 by n-(2-hydroxylethyl)ethylenediaminetriacetatocobaltate(II) ion, [CoHEDTAOH2] have been studied in aqueous media at 28 °C, I = 0.50 mol dm−3 (NaClO4) and [H+] = 7.0 × 10−3 mol dm−3. The reaction is first order in [Oxidant] and [Reductant], and the rate is inversely dependent on H+ concentration in the range 5.00 × 10−3 ≤ H+≤ 20.00 × 10−3 mol dm−3 studied. A plot of acid rate constant versus [H+]−1 was linear with intercept. The rate law for the reaction is:
- \frac[ \textCoHEDTAOH2 - ]\textdt = ( a + b[ \textH + ] - 1 )[ \textCoHEDTAOH2 - ][ \textIO4 - ] - {\frac{{\left[ {{\text{CoHEDTAOH}}_{2}^{ - } } \right]}}{{{\text{d}}t}}} = \left( {a + b\left[ {{\text{H}}^{ + } } \right]^{ - 1} } \right)\left[ {{\text{CoHEDTAOH}}_{2}^{ - } } \right]\left[ {{\text{IO}}_{4}^{ - } } \right]  相似文献   

14.
The mer-[Ru(pic)3] isomer, where pic is 2-pyridinecarboxylic acid, undergoes base hydrolysis at pH > 12. The reaction was monitored spectrophotometrically within the UV–Vis spectral range. The product of the reaction, the [Ru(pic)2(OH)2] ion, is formed via a consecutive two-stage process. The chelate ring opening is proceeded by the nucleophilic attack of OH ion at the carbon atom of the carboxylic group and the deprotonation of the attached hydroxo group. In the second stage, the fast deprotonation of the coordinated OH ligand leads to liberation of the monodentato bonded picolinate. The dependence of the observed pseudo-first-order rate constant on [OH] is given by k\textobs1 = \frack + k1 [\textOH - ] + k + k2 K1 [\textOH - ]2 k - + k1 + ( k + + k2 K1 )[\textOH - ] + k + K1 [\textOH - ]2 k_{{{\text{obs}}1}} = \frac{{k_{ + } k_{1} [{\text{OH}}^{ - } ] + k_{ + } k_{2} K_{1} [{\text{OH}}^{ - } ]^{2} }}{{k_{ - } + k_{1} + \left( {k_{ + } + k_{2} K_{1} } \right)[{\text{OH}}^{ - } ] + k{}_{ + }K_{1} [{\text{OH}}^{ - } ]^{2} }} and ( k\textobs2 = \frackca + kcb K2 [\textOH - ]1 + K2 [\textOH - ] ) \left( {k_{{{\text{obs}}2}} = \frac{{k_{ca} + k_{cb} K_{2} [{\text{OH}}^{ - } ]}}{{1 + K_{2} [{\text{OH}}^{ - } ]}}} \right) for the first and the second stage, respectively, where k 1, k 2, k -, k ca , k cb are the first-order rate constants and k + is the second-order one, K 1 and K 2 are the protolytic equilibria constants.  相似文献   

15.
The reaction mechanism of CH3SCH2CH3 with OH radical is studied at the CCSD(T)/6-311+G(3df,p)//MP2/6-31+G(2d,p) level of theory. Three hydrogen abstraction channels, one substitution process and five addition–elimination channels are identified in the title reaction. The result shows hydrogen abstraction is dominant. Substitution process and addition–elimination reactions may be negligible because of the high barrier heights. Enthalpies of formation [ \Updeltaf H(298.15\textK)o \Updelta_{f} H_{(298.15{\text{K}})}^{o} ] of the reactants and products are evaluated at the CBS-QB3, G3 and G3MP2 levels of theory, respectively. It is found that the calculated enthalpies of formation by the aforementioned three methods are in consistent with the available experimental data. Rate constants and branching ratios are estimated by means of the conventional transition state theory with the Wigner tunneling correction over the temperature range of 200–900 K. The calculation shows that the formations of P1 (CH2SCH2CH3 + H2O) and P2 (CH3SCHCH3 + H2O) are major products during 200–900 K. The three-parameter expressions for the total rate constant is fitted to be k\texttotal = 1.45 ×10 - 21 T3.24 exp( - 1384.54/T) k_{\text{total}} = 1.45 \times 10^{ - 21} T^{3.24} \exp ( - 1384.54/T) cm3 molecule−1 s−1 from 200 to 900 K.  相似文献   

16.
Kinetics of aqua ligand substitution from cis-[Ru(bpy)2(H2O)2]2+ by three vicinal dioximes, namely dimethylglyoxime (L1H), 1,2-cyclohexane dionedioxime (L2H) and α-furil dioxime (L3H) have been studied spectrophotometrically in the 45–60 °C temperature range. The rate constants increase with increasing dioxime concentration and approach a limiting condition. We propose the following rate law for the reaction in the 3.5–5.5 pH range: where k 2 is the interchange rate constant from outer sphere to inner sphere complex and K E is the outer sphere association equilibrium constant. Activation parameters were calculated from the Eyring plots for all three systems: ΔH  = 59.2 ± 8.8, 63.1 ± 6.8 and 69.7 ± 8.5 kJ mol−1, ΔS  = −122 ± 27, −117 ± 21 and −99 ± 26 J K−1 mol−1 for L1H, L2H and L3H, respectively. An associative interchange mechanism is proposed for the substitution process. Thermodynamic parameters calculated from the temperature dependence of the outer sphere association equilibrium constants give negative ΔG 0 values for all the systems studied at all the temperatures (ΔH 0 = 30.05 ± 2.5, 18.9 ± 1.1 and 11.8 ± 0.2 kJ mol−1; ΔS 0 = 123 ± 8, 94 ± 3 and 74 ± 1 J K−1 mol−1 for L1H, L2H and L3H, respectively), which also support our proposition.  相似文献   

17.
The standard molar Gibbs free energy of formation of YRhO3(s) has been determined using a solid-state electrochemical cell wherein calcia-stabilized zirconia was used as an electrolyte. The cell can be represented by: ( - )\textPt - Rh/{ \textY2\textO\text3( \texts ) + \textYRh\textO3( \texts ) + \textRh( \texts ) }//\textCSZ//\textO2( p( \textO2 ) = 21.21  \textkPa )/\textPt - Rh( + ) \left( - \right){\text{Pt - Rh/}}\left\{ {{{\text{Y}}_2}{{\text{O}}_{\text{3}}}\left( {\text{s}} \right) + {\text{YRh}}{{\text{O}}_3}\left( {\text{s}} \right) + {\text{Rh}}\left( {\text{s}} \right)} \right\}//{\text{CSZ//}}{{\text{O}}_2}\left( {p\left( {{{\text{O}}_2}} \right) = 21.21\;{\text{kPa}}} \right)/{\text{Pt - Rh}}\left( + \right) . The electromotive force was measured in the temperature range from 920.0 to 1,197.3 K. The standard molar Gibbs energy of the formation of YRhO3(s) from elements in their standard state using this electrochemical cell has been calculated and can be represented by: D\textfG\texto{ \textYRh\textO3( \texts ) }/\textkJ  \textmo\textl - 1( ±1.61 ) = - 1,147.4 + 0.2815  T  ( \textK ) {\Delta_{\text{f}}}{G^{\text{o}}}\left\{ {{\text{YRh}}{{\text{O}}_3}\left( {\text{s}} \right)} \right\}/{\text{kJ}}\;{\text{mo}}{{\text{l}}^{ - 1}}\left( {\pm 1.61} \right) = - 1,147.4 + 0.2815\;T\;\left( {\text{K}} \right) . Standard molar heat capacity Cop,m C^{o}_{{p,m}} (T) of YRhO3(s) was measured using a heat flux-type differential scanning calorimeter in two different temperature ranges from 127 to 299 K and 305 to 646 K. The heat capacity in the higher temperature range was fitted into a polynomial expression and can be represented by: $ {*{20}{c}} {\mathop C\nolimits_{p,m}^{\text{o}} \left( {{\text{YRh}}{{\text{O}}_3},{\text{s,}}T} \right)\left( {{\text{J}}\;{{\text{K}}^{ - 1}}{\text{mo}}{{\text{l}}^{ - 1}}} \right)} & { = 109.838 + 23.318 \times {{10}^{ - 3}}T\left( {\text{K}} \right)} & { - 12.5964 \times {{10}^5}/{T^2}\left( {\text{K}} \right).} \\ {} & {\left( {305 \leqslant T\left( {\text{K}} \right) \leqslant 646} \right)} & {} \\ $ \begin{array}{*{20}{c}} {\mathop C\nolimits_{p,m}^{\text{o}} \left( {{\text{YRh}}{{\text{O}}_3},{\text{s,}}T} \right)\left( {{\text{J}}\;{{\text{K}}^{ - 1}}{\text{mo}}{{\text{l}}^{ - 1}}} \right)} & { = 109.838 + 23.318 \times {{10}^{ - 3}}T\left( {\text{K}} \right)} & { - 12.5964 \times {{10}^5}/{T^2}\left( {\text{K}} \right).} \\ {} & {\left( {305 \leqslant T\left( {\text{K}} \right) \leqslant 646} \right)} & {} \\ \end{array} The heat capacity of YRhO3(s) was used along with the data obtained from the electrochemical cell to calculate the standard enthalpy and entropy of formation of the compound at 298.15 K.  相似文献   

18.
The standard (p o = 0.1 MPa) molar enthalpies of formation \Updelta\textf H\textm\texto ( \textl), {{\Updelta}}_{\text{f}} H_{\text{m}}^{\text{o}} ( {\text{l),}} of the liquid 2-methylfuran, 5-methyl-2-acetylfuran and 5-methyl-2-furaldehyde were derived from the standard molar energies of combustion, in oxygen, at T = 298.15 K, measured by static bomb combustion calorimetry. The Calvet high temperature vacuum sublimation technique was used to measure the enthalpies of vaporization of the three compounds. The standard (p o = 0.1 MPa) molar enthalpies of formation of the compounds, in the gaseous phase, at T = 298.15 K have been derived from the corresponding standard molar enthalpies of formation in the liquid phase and the standard molar enthalpies of vaporization. The results obtained were −(76.4 ± 1.2), −(253.9 ± 1.9), and −(196.8 ± 1.8) kJ mol−1, for 2-methylfuran, 5-methyl-2-acetylfuran, and 5-methyl-2-furaldehyde, respectively.  相似文献   

19.
The molar enthalpies of solution of 2-aminopyridine at various molalities were measured at T=298.15 K in double-distilled water by means of an isoperibol solution-reaction calorimeter. According to Pitzer’s theory, the molar enthalpy of solution of the title compound at infinite dilution was calculated to be DsolHm = 14.34 kJ·mol-1\Delta_{\mathrm{sol}}H_{\mathrm{m}}^{\infty} = 14.34~\mbox{kJ}\cdot\mbox{mol}^{-1}, and Pitzer’s ion interaction parameters bMX(0)L, bMX(1)L\beta_{\mathrm{MX}}^{(0)L}, \beta_{\mathrm{MX}}^{(1)L}, and CMXfLC_{\mathrm{MX}}^{\phi L} were obtained. Values of the relative apparent molar enthalpies ( φ L) and relative partial molar enthalpies of the compound ([`(L)]2)\bar{L}_{2}) were derived from the experimental enthalpies of solution of the compound. The standard molar enthalpy of formation of the cation C5H7N2 +\mathrm{C}_{5}\mathrm{H}_{7}\mathrm{N}_{2}^{ +} in aqueous solution was calculated to be DfHmo(C5H7N2+,aq)=-(2.096±0.801) kJ·mol-1\Delta_{\mathrm{f}}H_{\mathrm{m}}^{\mathrm{o}}(\mathrm{C}_{5}\mathrm{H}_{7}\mathrm{N}_{2}^{+},\mbox{aq})=-(2.096\pm 0.801)~\mbox{kJ}\cdot\mbox{mol}^{-1}.  相似文献   

20.
Abstract  From extraction experiments and γ-activity measurements, the exchange extraction constants corresponding to the general equilibrium taking place in the two-phase water–nitrobenzene system (M2+ = Ca2+, Ba2+, Cu2+, Zn2+, Cd2+, Pb2+, UO2 2+, Mn2+, Co2+, Ni2+; 1 = tetraphenyl p-tert-butylcalix[4]arene tetraketone; aq = aqueous phase, nb = nitrobenzene phase) were evaluated. Further, the stability constants of the 1 · M2+ complexes in water-saturated nitrobenzene were calculated; they were found to increase in the cation order Ba2+, Mn2+ < Co2+ < Cu2+, Ni2+ < Zn2+, Cd2+, UO2 2+ < Ca2+ < Pb2+. Graphical abstract     相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号