首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 966 毫秒
1.
Kallies B  Meier R 《Inorganic chemistry》2001,40(13):3101-3112
The metal-donor atom bonding along the series of 3d[M(H2O)6](3+) ions from Sc(3+) to Fe(3+) has been investigated by density-functional calculations combined with natural localized bond orbital analyses. The M-OH(2) bonds were considered as donor-acceptor bonds, and the contributions coming from the metal ion's 3d sigma-, 3d pi-, and 4s sigma-interactions were treated individually. In this way, the total amount of charge transferred from the water oxygen-donor atoms toward the appropriate metal orbitals could be analyzed in a straightforward manner. One result obtained along these lines is that the overall extent of ligand-to-metal charge transfer shows a strong correlation to the hydration enthalpies of the aqua metal ions. If the contributions to the total ligand-to-metal ion charge transfer are divided into sigma- and pi-contributions, it turns out that Cr(3+) is the best sigma-acceptor, but its pi-accepting abilities are the weakest along the series. Fe(3+) is found to be the best pi-acceptor among the 3d hexaaqua ions studied. Its aptitude to accept sigma-electron density is the second weakest along the series and only slightly higher than that of Sc(3+) (the least sigma-acceptor of all ions) because of the larger involvement of the Fe(3+) 4s orbital in sigma-bonding. The strengths of the three types of bonding interactions have been correlated with the electron affinities of the different metal orbitals. Deviations from the regular trends of electron affinities along the series were found for those [M(H2O)6](3+) ions that are subject to Jahn-Teller distortions. In these cases (d(1) = [Ti(H2O)6](3+), d(2) = [V(H2O)6](3+), and d(4) = [Mn(H2O)6](3+)), ligand-to-metal charge transfer is prevented to go into those metal orbitals that contain unpaired d electrons. A lowering of the complex symmetry is observed and coupled with the following variations: The Ti(3+)- and V(3+)-hexaaqua ions switch from T(h)() to C(i)() symmetry while the Mn(3+)-hexaaqua ion moves to D(2)(h)() symmetry. The loss of orbital overlap leading to a diminished ligand-to-metal charge transfer toward the single occupied metal orbitals is compensated by amplified bonding interactions of the ligand orbitals with the unoccupied metal orbitals to some extent.  相似文献   

2.
Rates of electron transfer from a series of one-electron reductants to a nonheme oxoiron(IV) complex, [(N4Py)Fe(IV)(O)](2+), are enhanced as much as 10(8)-fold by addition of metal ions such as Sc(3+), Zn(2+), Mg(2+), and Ca(2+); the metal ion effect follows the Lewis acidity of metal ions. The one-electron reduction potential of [(N4Py)Fe(IV)(O)](2+) is shifted to a positive direction by 0.84 V in the presence of Sc(3+) ion (0.20 M).  相似文献   

3.
The molecular structures of the titanium(III) borohydride complexes Ti(BH4)3(PEt3)2 and Ti(BH4)3(PMe2Ph)2 have been determined. If the BH4 groups are considered to occupy one coordination site, both complexes adopt distorted trigonal bipyramidal structures with the phosphines in the axial sites; the P-Ti-P angles deviate significantly from linearity and are near 156 degrees. In both compounds, two of the three BH4 groups are bidentate and one is tridentate. The deduced structures differ from the one previously described for the PMe3 analogue Ti(BH4)3(PMe3)2, in which two of the tetrahydroborate groups were thought to be bound to the metal in an unusual "side-on" (eta(2)-B,H) fashion. Because the PMe3, PEt3, and PMe2Ph complexes have nearly identical IR spectra, they most likely have similar structures. The current evidence strongly suggests that the earlier crystal structure of Ti(BH4)3(PMe3)2 was incorrectly interpreted and that these complexes all adopt structures in which two of the BH4 groups are bidentate and one is tridentate. The synthesis of the titanium(III) complex Ti(BH4)3(PMe2Ph)2 affords small amounts of a second product: the titanium(II) complex [Li(Et2O)2][Ti2(BH4)5(PMe2Ph)4]. The [Ti2(BH4)5(PMe2Ph)4]- anion consists of two Ti(eta(2)-BH4)2(PMe2Ph)2 centers linked by a bridging eta(2),eta(2)-BH4 group that forms a Ti...(mu-B)...Ti angle of 169.9(3) degrees. Unlike the distorted trigonal bipyramidal geometries seen for the titanium(III) complexes, the metal centers in this titanium(II) species each adopt nearly ideal tbp geometries with P-Ti-P angles of 172-176 degrees. All three BH4 groups around each Ti atom are bidentate. One of the BH4 groups on each Ti center bridges between Ti and an ether-coordinated Li cation, again in an eta(2),eta(2) fashion. The relationships between the electronic structures and the molecular structures of all these titanium complexes are briefly discussed.  相似文献   

4.
9,10-Phenanthrenequinone (PQ) and 1,10-phenanthroline-5,6-dione (PTQ) form 1:1 and 2:1 complexes with metal ions (M (n+)=Sc (3+), Y (3+), Mg (2+), and Ca (2+)) in acetonitrile (MeCN), respectively. The binding constants of PQ--M (n+) complexes vary depending on either the Lewis acidity or ion radius of metal ions. The one-electron reduced species (PTQ(-)) forms 1:1 complexes with M (n+), and PQ(-) also forms 1:1 complexes with Sc(3+), Mg(2+), and Ca(2+), whereas PQ(-) forms 1:2 complexes with Y(3+) and La(3+), as indicated by electron spin resonance (ESR) measurements. On the other hand, semiquinone radical anions (Q(-) and NQ(-)) derived from p-benzoquinone (Q) and 1,4-naphthoquinone (NQ) form Sc(3+)-bridged pi-dimer radical anion complexes, Q(-)--(Sc(3+))(n)--Q and NQ(-)--(Sc(3+))(n)-NQ (n=2 and 3), respectively. The one-electron reduction potentials of quinones (PQ, PTQ, and Q) are largely positively shifted in the presence of M (n+). The rate constant of electron transfer from CoTPP (TPP(2-)=dianion of tetraphenylporphyrin) to PQ increases with increasing the concentration of Sc(3+) to reach a constant value, when all PQ molecules form the 1:1 complex with Sc(3+). Rates of electron transfer from 10,10'-dimethyl-9,9'-biacridine [(AcrH)(2)] to PTQ are also accelerated significantly by the presence of Sc(3+), Y(3+), and Mg(2+), exhibiting a first-order dependence with respect to concentrations of metal ions. In contrast to the case of o-quinones, unusually high kinetic orders are observed for rates of Sc(3+)-promoted electron transfer from tris(2-phenylpyridine)iridium(III) [Ir(ppy)(3)] to p-quinones (Q): second-order dependence on concentration of Q, and second- and third-order dependence on concentration of Sc(3+) due to formation of highly ordered radical anion complexes, Q()--(Sc(3+))(n)--Q (n=2 and 3).  相似文献   

5.
Stepwise complex formation is observed between 2,3,5,6-tetrakis(2-pyridyl)pyrazine (TPPZ) and a series of metal ions (M(n+) = Sc3+, Y3+, Ho3+, Eu3+, Lu3+, Nd3+, Zn2+, Mg2+, Ca2+, Ba2+, Sr2+, Li+), where TPPZ forms a 2:1 complex [(TPPZ)2-M(n+)] and a 1:1 complex [TPPZ-M(n+)] with Mn+ at low and high concentrations of metal ions, respectively. The fluorescence intensity of TPPZ begins to increase at high concentrations of metal ions, when the 2:1 (TPPZ)2-M(n+) complex is converted to the fluorescent 1:1 TPPZ-M(n+) complex. This is regarded as an "OFF-OFF-ON" fluorescence sensor for metal ions depending on the stepwise complex formation between TPPZ and metal ions. The fluorescence quantum yields of the TPPZ-M(n+) complex vary depending on the metal valence state, in which the fluorescence quantum yields of the divalent metal complexes (TPPZ-M2+) are much larger than those of the trivalent metal complexes (TPPZ-M3+). On the other hand, the binding constants of (TPPZ)2-M(n+) (K1) and TPPZ-M(n+) (K2) vary depending on the Lewis acidity of metal ions (i.e., both K1 and K2 values increase with increasing Lewis acidity of metal ions). Sc3+, which acts as the strongest Lewis acid, forms the (TPPZ)2-Sc3+ and TPPZ-Sc3+ complexes stoichiometrically with TPPZ. In such a case, "OFF-OFF-ON" switching of electron transfer from cobalt(II) tetraphenylporphyrin (CoTPP) to O2 is observed in the presence of Sc3+ and TPPZ depending on the ratio of Sc3+ to TPPZ. Electron transfer from CoTPP to O2 occurs at Sc3+ concentrations above the 1:2 ratio ([Sc3+]/[TPPZ]0 > 0.5), when the (TPPZ)2-Sc3+ complex is converted to the TPPZ-Sc3+ complex and TPPZ-(Sc3+)2, which act as promoters of electron transfer (ON) by the strong binding of O2*- with Sc3+. In sharp contrast, no electron transfer occurs without metal ion (OFF) or in the presence at Sc3+ concentrations below the 1:2 ratio (OFF), when the (TPPZ)2-Sc3+ complex has no binding site available for O2*-.  相似文献   

6.
Metal ion complexes of semiquinone radical anions exhibit different types of thermochromism depending on metal ions and quinones. Metal ion complexes of 1,10-phenanthroline-5,6-dione radical anion (PTQ(.-)) produced by the electron-transfer reduction of PTQ by 1,1'-dimethylferrocene (Me(2)Fc) in the presence of metal ions (Mg(2+) and Sc(3+)) exhibit the color change depending on temperature, accompanied by the concomitant change in the ESR signal intensity. In the case of Mg(2+), electron transfer from Me(2)Fc to PTQ is in equilibrium, when the concentration of the PTQ(.-)-Mg(2+) complex (lambda(max) = 486 nm) increases with increasing temperature because of the positive enthalpy for the electron-transfer equilibrium. In contrast to the case of Mg(2+), electron transfer from Me(2)Fc to PTQ is complete in the presence of Sc(3+), which is a much stronger Lewis acid than Mg(2+), to produce the PTQ(.-)-Sc(3+) complex (lambda(max) = 631 nm). This complex is in disproportionation equilibrium and the concentration of the PTQ(.-)-Sc(3+) complex increases with decreasing temperature because of the negative enthalpy for the proportionation direction, resulting in the remarkable color change in the visible region. On the other hand, the p-benzosemiquinone radical anion (Q(.-)) forms a 2:2 pi-dimer radical anion complex [Q(.-)-(Sc(3+))(2)-Q] with Q and Sc(3+) ions at 298 K (yellow color), which is converted to a 2:3 pi-dimer radical anion complex [Q(.-)-(Sc(3+))(3)-Q] with a strong absorption band at lambda(max) = 604 nm (blue color) when the temperature is lowered to 203 K. The change in the number of binding Sc(3+) ions depending on temperature also results in the remarkable color change, associated with the change in the ESR spectra.  相似文献   

7.
The complexes formed by hydrogen with metal hydrides (LiH, NaH, BeH(2), MgH(2), BH(3), AlH(3), Li(2)H(2), Na(2)H(2), Be(2)H(4), and Mg(2)H(4)) have been theoretically studied at the MP2/aug-cc-pVTZ, MP2/aug-cc-pVQZ and CCSD(T)/aug-cc-pVTZ//CCSD/aug-cc-pVTZ levels of theory. The hydrogen molecule can act as a Lewis acid or base. In the first case, a dihydrogen bonded complex is obtained and in the second an interaction between the σ-bond of the hydrogen molecule and an empty orbital of the metal atoms is found. Quantum theory of atoms in molecules and natural bond orbitals methods have been applied to analyze the intermolecular interactions. Additionally, the cooperativity effects are analyzed for selected complexes with two H(2) molecules where both kinds of interactions exist simultaneously.  相似文献   

8.
A pnicogen-hydride interaction has been predicted and characterized in FH(2)P-HM and FH(2)As-HM (M = ZnH, BeH, MgH, Li, and Na) complexes at the MP2/aug-cc-pVTZ level. For the complexes analyzed here, P(As) and HM are treated as a Lewis acid and a Lewis base, respectively. This interaction is moderate or strong since, for the strongest interaction of the FH(2)As-HNa complex, the interaction energy amounts to -24.79 kcal/mol, and the binding distance is equal to about 1.7 ?, much less than the sum of the corresponding van der Waals radii. By comparison with some related systems, it is concluded that the pnicogen-hydride interactions are stronger than dihydrogen bonds and lithium-hydride interactions. This interaction has been analyzed with natural bond orbitals, atoms in molecules, electron localization function, and symmetry adapted perturbation theory methods.  相似文献   

9.
The accelerating effect of Sc(3+) on the electron-transfer (ET) reduction of the p-benzoquinone derivative 1-(p-tolylsulfinyl)-2,5-benzoquinone (TolSQ) by 10,10'-dimethyl-9,9'-biacridine ((AcrH)(2)) at 233 K changes to a decelerating effect with increasing reaction temperature; the observed second-order rate constant k(et) decreases with increasing Sc(3+) concentration at high concentrations of Sc(3+) at 298 K. At 263 K the k(et) value remains constant with increasing Sc(3+) concentration. Such a remarkable difference with regard to dependence of k(et) on [Sc(3+)] between low and high temperatures results from the difference in relative activity of two ET pathways that depend on temperature, one of which affords 1:1 complex TolSQ*(-)-Sc(3+), and the other 1:2 complex TolSQ*(-)-(Sc(3+))(2) with additional binding of Sc(3+) to TolSQ*(-)-Sc(3+). The formation of TolSQ*(-)-Sc(3+) and TolSQ*(-)-(Sc(3+))(2) complexes was confirmed by EPR spectroscopy in the ET reduction of TolSQ in the presence of low and high concentrations of Sc(3+), respectively. The effects of metal ions on other ET reactions of quinones to afford 1:1 and 1:2 complexes between semiquinone radical anions and metal ions are also reported. The ET pathway affording the 1:2 complexes has smaller activation enthalpies DeltaH( not equal) and more negative activation entropies DeltaS( not equal) because of stronger binding of metal ions and more restricted geometries of the ET transition states as compared with the ET pathway to afford the 1:1 complexes.  相似文献   

10.
We investigated the influence of a substituent and a Lewis base on boron upon the thermodynamic stability of metal complexes of borane-Lewis base adducts, [M(CO)5(eta1-BH(2)R.L)] (M=Cr, W) and [CpMn(CO)2(eta1-BH2R.L)], where R=Cl, I, m-C6H4F, Ph, H, Me, Et; L=PMe3, PPh3, NMe3, quinuclidine. In these compounds, the stability of the metal-borane linkage was enhanced by increasing the electron-releasing ability of the substituent on boron. A stronger base L additionally stabilized the complexes. The strength of the borane-metal interaction is thus mainly ascribed to the electron donation from the BH sigma orbital to metal rather than the back-donation into the BH sigma* orbital. This result supports the bonding model for the B-H-M linkage in the borane complexes suggested by MO calculations, where the borane-to-metal electron donation is predominant while the metal back-donation into the BH sigma* orbital is negligible. Such a stability trend of the borane complexes makes a sharp contrast to that of many silane and dihydrogen complexes.  相似文献   

11.
The complexes formed by the simplest amino acid, glycine, with different bare and hydrated metal ions (Mn(2+), Fe(2+), Co(2+), Ni(2+), Cu(2+), Zn(2+)) were studied in the gas phase and in solvent in order to give better insight into the field of the metal ion-biological ligand interactions. The effects of the size and charge of each cation on the organization of the surrounding water molecules were analyzed. Results in the gas phase showed that the zwitterion of glycine is the form present in the most stable complexes of all ions and that it usually gives rise to an eta(2)O,O coordination type. After the addition of solvation sphere, a resulting octahedral arrangement was found around Ni(2+), Co(2+), and Fe(2+), ions in their high-spin states, whereas the bipyramidal-trigonal (Mn(2+) and Zn(2+)) or square-pyramidal (Cu(2+)) geometries were observed for the other metal species, according to glycine behaves as bi- or monodentate ligand. Despite the fact that the zwitterionic structure is in the ground conformation in solution, its complexes in water are less stable than those obtained from the canonical form. Binding energy values decrease in the order Cu(2+) > Ni(2+) > Zn(2+) approximately Co(2+) > Fe(2+) > Mn(2+) and Cu(2+) > Ni(2+) > Mn(2+) approximately Zn(2+) > Fe(2+) > Co(2+) for M(2+)-Gly and Gly-M(2+) (H(2)O)(n) complexes, respectively. The nature of the metal ion-ligand bonds was examined by using natural bond order and charge decomposition analyses.  相似文献   

12.
Interactions between metal ions and amino acids are common both in solution and in the gas phase. The effect of metal ions and water on the structure of L-arginine is examined. The effects of metal ions (Li(+), Na(+), K(+), Mg(2+), Ca(2+), Ni(2+), Cu(2+), and Zn(2+)) and water on structures of Arg x M(H2O)m , m = 0, 1 complexes have been determined theoretically by employing the density functional theories (DFT) and using extended basis sets. Of the three stable complexes investigated, the relative stability of the gas-phase complexes computed with DFT methods (with the exception of K(+) systems) suggests metallic complexes of the neutral L-arginine to be the most stable species. The calculations of monohydrated systems show that even one water molecule has a profound effect on the relative stability of individual complexes. Proton dissociation enthalpies and Gibbs energies of arginine in the presence of the metal cations Li(+), Na(+), K(+), Mg(2+), Ca(2+), Ni(2+), Cu(2+), and Zn(2+) were also computed. Its gas-phase acidity considerably increases upon chelation. Of the Lewis acids investigated, the strongest affinity to arginine is exhibited by the Cu(2+) cation. The computed Gibbs energies DeltaG(o) are negative, span a rather broad energy interval (from -150 to -1500 kJ/mol), and are appreciably lowered upon hydration.  相似文献   

13.
The electronic and geometric structures of the title species have been studied computationally using quasi-relativistic gradient-corrected density functional theory. The valence molecular orbital ordering of UO2(2+) is found to be pi g < pi u < sigma g < sigma u (highest occupied orbital), in agreement with previous experimental conclusions. The significant energy gap between the sigma g and sigma u orbitals is traced to the "pushing from below" mechanism: a filled-filled interaction between the semi-core uranium 6p atomic orbitals and the sigma u valence level. The U-N bonding in UON+ and UN2 is significantly more covalent than the U-O bonding in UON+ and UO2(2+). UO(NPH3)3+ and U(NPH3)2(4+) are similar to UO2(2+), UON+, and UN2 in having two valence molecular orbitals of metal-ligand sigma character and two of pi character, although they have additional orbitals not present in the triatomic systems, and the U-N sigma levels are more stable than the U-N pi orbitals. The inversion of U-N sigma/pi orbital ordering is traced to significant N-P (and P-H) sigma character in the U-N sigma levels. The pushing from below mechanism is found to destabilize the U-N f sigma molecular orbital with respect to the U-N d sigma level in U(NPH3)2(4+). The uranium f atomic orbitals play a greater role in metal-ligand bonding in UO2(2+), UN2, and U(NPH3)2(4+) than do the d atomic orbitals, although, while the relative roles of the uranium d and f atomic orbitals are similar in UO2(2+) and U(NPH3)2(4+), the metal d atomic orbitals have a more important role in the bonding in UN2. The preferred UNP angle in [UCl4(NPR3)2] (R = H, Me) and [UOCl4(NP(C6H5)3)]- is found to be close to 180 degrees in all cases. This preference for linearity decreases in the order R = Ph > R = Me > R = H and is traced to steric effects which in all cases overcome an electronic preference for bending at the nitrogen atom. Comparison of the present iminato (UNPR3) calculations with previous extended Hückel work on d block imido (MNR) systems reveals that in all cases there is little or no preference for linearity over bending at the nitrogen when R is (a) only sigma-bound to the nitrogen and (b) sterically unhindered. The U/N bond order in iminato complexes is best described as 3.  相似文献   

14.
Tetravalent metal phosphates (M=Zr, Ti, and Sn) were prepared and characterized by XRD, surface properties, and TG-DTA. The cation exchange and sorption behavior of these metal phosphates toward transition metal ions such as Cu(2+), Co(2+), and Ni(2+) have been studied comparatively as a function of temperature and concentration. The adsorption process was found to increases with increase in temperature and concentration. The selectivity order for alpha-titanium and alpha-tin phosphates is Cu(2+)>Co(2+)>Ni(2+), whereas for alpha-zirconium phosphate it is Cu(2+)>Ni(2+)>Co(2+). The ion exchange capacity of alpha-titanium phosphate is greater than those of other phosphates, which is explained on the basis of the surface behavior, disorderness of the system, degree of hydrolysis of incoming guest adsorbate metal ions, and structural steric hindrance of the exchangers during adsorption and sorption. The distribution coefficient, Gibbs free energy, enthalpy, and entropy values indicate that the ion-exchange processes are spontaneous.  相似文献   

15.
Development and applications of fluorescent indicators for Mg2+ and Zn2+   总被引:1,自引:0,他引:1  
In a study of the spectroscopic behavior of two Schiff base derivatives, salicylaldehyde salicylhydrazone (1) and salicylaldehyde benzoylhydrazone (2), Schiff base 1 has high selectivity for Zn(2+) ion not only in abiotic systems but also in living cells. The ion selectivity of 1 for Zn(2+) can be switched for Mg(2+) by swapping the solvent from ethanol-water to DMF (N,N-dimethylformamide)-water mixtures. Imine 2 is a good fluorescent probe for Zn(2+) in ethanol-water media. Many other ions tested, such as Li(+), Na(+), Al(3+), K(+), Ca(2+), Cr(3+), Mn(2+), Fe(3+), Co(2+), Ni(2+), Cu(2+), Ag(+), Cd(2+), Sn(2+), Ba(2+), Hg(2+), and Pb(2+), failed to induce any spectral change in various solvents. The selectivity mechanism of 1 and 2 for metal ions is based on a combinational effect of proton transfer (ESPT), C═N isomerization, and chelation-enhanced fluorescence (CHEF). The coordination modes of the complexes were investigated.  相似文献   

16.
B3LYP geometry optimizations for the [MNH2]+ complexes of the first-row transition metal cations (Sc+-Cu+) were performed. Without any exception the ground states of these unsaturated amide complexes were calculated to possess planar geometries. CASPT2 binding energies that were corrected for zero-point energies and including relativistic effects show a qualitative trend across the series that closely resembles the experimental observations. The electronic structures for the complexes of the early and middle transition metal cations (Sc+-Co+) differ from the electronic structures derived for the complexes of the late transition metal cations (Ni+ and Cu+). For the former complexes the relative higher position of the 3d orbitals above the singly occupied 2p(pi) HOMO of the uncoordinated NH2 induces an electron transfer from the 3d shell to 2p(pi). The stabilization of the 3d orbitals from the left to the right along the first-row transition metal series causes these orbitals to become situated below the HOMO of the NH2 ligand for Ni+ and Cu+, preventing a transfer from occurring in the [MNH2]+ complexes of these metal cations. Analysis of the low-lying states of the amide complexes revealed a rather unique characteristic of their electronic structures that was found across the entire series. Rather exceptionally for the whole of chemistry, pi-type interactions were calculated to be stronger than the corresponding sigma-type interactions. The origin of this extraordinary behavior can be ascribed to the low-lying sp2 lone pair orbital of the NH2 ligand with respect to the 3d level.  相似文献   

17.
Surface complex formation of K(+), NO(3)(-), SO(4)(2-), Ca(2+), F(-), Co(2+), and Cr(3+) ions was determined on the surface of silica gel. Experimental data obtained by acid-base titration of suspensions were interpreted in terms of the triple-layer model. The value of the deprotonation constant of surface OH could be determined precisely but the protonation constant was rather uncertain. The logarithms of ion pair formation constants for K(+), NO(3)(-), Ca(2+), and SO(4)(2-) adsorbed in the beta-plane are log K(ipM,X) approximately 0, therefore these species can be considered inert ions in the investigated pH range. F(-), Co(2+), and Cr(3+) ions were found to be strongly sorbed in the o-plane. In order to provide a good fit and to obtain parameters independent of their initial values, all possible equilibrium must be accounted for in the models. Copyright 2001 Academic Press.  相似文献   

18.
Oxidation reactions of bare and ligated, monopositive, and dipositive Pa ions in the gas phase were studied by Fourier transform ion cyclotron resonance mass spectrometry. Seven oxidants were employed, ranging from the thermodynamically robust N(2)O to the relatively weak CH(2)O-all oxidized Pa(+) to PaO(+) and PaO(+) to PaO(2)(+). On the basis of experimental observations, it was established that D[Pa(+)-O] and D[OPa(+)-O] > or = 751 kJ mol(-1). Estimates for D[Pa(+)-O], D[OPa(+)-O], IE[PaO], and IE[PaO(2)] were also obtained. The seven oxidants reacted with Pa(2+) to produce PaO(2+), indicating that D[Pa(2+)-O] > or = 751 kJ mol(-1). A particularly notable finding was the oxidation of PaO(2+) by N(2)O to PaO(2)(2+), a species, which formally comprises Pa(VI). Collision-induced dissociation of PaO(2)(2+) suggested the protactinyl connectivity, {O-Pa-O}(2+). The experimentally determined IE[PaO(2)(+)] approximately 16.6 eV is in agreement with self-consistent-field and configuration interaction calculations for PaO(2)(+) and PaO(2)(2+). These calculations provide insights into the electronic structures of these ions and indicate the participation of 5f orbitals in bonding and a partial "6p hole" in the case of protactinyl. It was found that PaO(2)(2+) catalyzes the oxidation of CO by N(2)O-such O atom transport via a dipositive metal oxide ion is distinctive. It was also observed that PaO(2)(2+) is capable of activating H(2) to form the stable PaO(2)H(2+) ion.  相似文献   

19.
The stability constants of the 1:1 complexes formed between Mg(2+), Ca(2+), Sr(2+), Ba(2+), Mn(2+), Co(2+), Ni(2+), Cu(2+), Zn(2+), or Cd(2+) (=M(2+)) and 1-methyl-4-aminobenzimidazole (MABI) or 1,4-dimethylbenzimidazole (DMBI) were determined by potentiometric pH titrations in aqueous solution (25 degrees C; I = 0.5 M, NaNO(3)). Some of the stability constants were also measured by UV spectrophotometry. The acidity constants of the species H(2)(MABI)(2+) and H(DMBI)(+) were determined by the same methods, some twice. Comparison of the stability constants of the M(MABI)(2+) and M(DMBI)(2+) complexes with those calculated from log versus p straight-line plots, which were established previously for sterically unhindered benzimidazole-type ligands (=L), reveals that the stabilities of the M(MABI)(2+) and M(DMBI)(2+) complexes are significantly reduced due to steric effects of the C4 substituents on metal ion binding at N3. This effect is more pronounced in the M(DMBI)(2+) complexes. Considering the steric equivalence of methyl and (noncoordinating) amino groups (as they occur in adenines), it is concluded that the same extent of steric inhibition by the (C6)NH(2) group is to be expected on metal ion binding at N7 with adenine derivatives. The basicity of the amino group in MABI is significantly higher than in its corresponding adenine derivative. Indeed, it is concluded that in the M(MABI)(2+) complexes chelate formation involving the amino group occurs to some extent. The formation degrees of these "closed" species are calculated; they vary for the complexes of Mn(2+), Co(2+), Ni(2+), Cu(2+), Zn(2+), or Cd(2+) between about 50 and 90%. The stability of the M(MABI)(2+) and M(DMBI)(2+) complexes with the alkaline earth ions is very low but unaffected by the C4 substituent; this probably indicates that in these instances outersphere complexes (with a water molecule between N3 and the metal ion) are formed.  相似文献   

20.
1-Benzyl-4-tert-butyl-1,4-dihydronicotinamide (t-BuBNAH) reacts efficiently with p-benzoquinone (Q) to yield a [2+3] cycloadduct (1) in the presence of Sc(OTf)(3) (OTf = OSO(2)CF(3)) in deaerated acetonitrile (MeCN) at room temperature, while no reaction occurs in the absence of Sc(3+). The crystal structure of 1 has been determined by the X-ray crystal analysis. When t-BuBNAH is replaced by 1-benzyl-1,4-dihydronicotinamide (BNAH), the Sc(3+)-catalyzed cycloaddition reaction of BNAH with Q also occurs to yield the [2+3] cycloadduct. Sc(3+) forms 1:4 complexes with t-BuBNAH and BNAH in MeCN, whereas there is no interaction between Sc(3+) and Q. The observed second-order rate constant (k(obs)) shows a first-order dependence on [Sc(3+)] at low concentrations and a second-order dependence at higher concentrations. The first-order and the second-order dependence of the rate constant (k(et)) on [Sc(3+)] was also observed for the Sc(3+)-promoted electron transfer from CoTPP (TPP = tetraphenylporphyrin dianion) to Q. Such dependence of k(et) on [Sc(3+)] is ascribed to formation of 1:1 and 1:2 complexes between Q(*)(-) and Sc(3+) at the low and high concentrations of Sc(3+), respectively, which results in acceleration of the rate of electron transfer. The formation constants for the 1:2 complex (K(2)) between the radical anions of a series of p-benzoquinone derivatives (X-Q(*)(-)) and Sc(3+) are determined from the dependence of k(et) on [Sc(3+)]. The K(2) values agree well with those determined from the dependence of k(obs) on [Sc(3+)] for the Sc(3+)-catalyzed addition reaction of t-BuBNAH and BNAH with X-Q. Such an agreement together with the absence of the deuterium kinetic isotope effects indicates that the addition proceeds via the Sc(3+)-promoted electron transfer from t-BuBNAH and BNAH to Q. When Sc(OTf)(3) is replaced by weaker Lewis acids such as Lu(OTf)(3), Y(OTf)(3), and Mg(ClO(4))(2), the hydride transfer reaction from BNAH to Q also occurs besides the cycloaddition reaction and the k(obs) value decreases with decreasing the Lewis acidity of the metal ion. Such a change in the type of reaction from a cycloaddition to a hydride transfer depending on the Lewis acidity of metal ions employed as a catalyst is well accommodated by the common reaction mechanism featuring the metal-ion promoted electron transfer from BNAH to Q.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号