首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We carried out a prospective evaluation of the utility of the SIE (solvation interaction energy) scoring function for virtual screening and binding affinity prediction. Since experimental structures of the complexes were not provided, this was an exercise in virtual docking as well. We used our exhaustive docking program, Wilma, to provide high-quality poses that were rescored using SIE to provide binding affinity predictions. We also tested the combination of SIE with our latest solvation model, first shell of hydration (FiSH), which captures some of the discrete properties of water within a continuum model. We achieved good enrichment in virtual screening of fragments against trypsin, with an area under the curve of about 0.7 for the receiver operating characteristic curve. Moreover, the early enrichment performance was quite good with 50% of true actives recovered with a 15% false positive rate in a prospective calculation and with a 3% false positive rate in a retrospective application of SIE with FiSH. Binding affinity predictions for both trypsin and host-guest complexes were generally within 2 kcal/mol of the experimental values. However, the rank ordering of affinities differing by 2 kcal/mol or less was not well predicted. On the other hand, it was encouraging that the incorporation of a more sophisticated solvation model into SIE resulted in better discrimination of true binders from binders. This suggests that the inclusion of proper Physics in our models is a fruitful strategy for improving the reliability of our binding affinity predictions.  相似文献   

2.
We describe binding free energy calculations in the D3R Grand Challenge 2015 for blind prediction of the binding affinities of 180 ligands to Hsp90. The present D3R challenge was built around experimental datasets involving Heat shock protein (Hsp) 90, an ATP-dependent molecular chaperone which is an important anticancer drug target. The Hsp90 ATP binding site is known to be a challenging target for accurate calculations of ligand binding affinities because of the ligand-dependent conformational changes in the binding site, the presence of ordered waters and the broad chemical diversity of ligands that can bind at this site. Our primary focus here is to distinguish binders from nonbinders. Large scale absolute binding free energy calculations that cover over 3000 protein–ligand complexes were performed using the BEDAM method starting from docked structures generated by Glide docking. Although the ligand dataset in this study resembles an intermediate to late stage lead optimization project while the BEDAM method is mainly developed for early stage virtual screening of hit molecules, the BEDAM binding free energy scoring has resulted in a moderate enrichment of ligand screening against this challenging drug target. Results show that, using a statistical mechanics based free energy method like BEDAM starting from docked poses offers better enrichment than classical docking scoring functions and rescoring methods like Prime MM-GBSA for the Hsp90 data set in this blind challenge. Importantly, among the three methods tested here, only the mean value of the BEDAM binding free energy scores is able to separate the large group of binders from the small group of nonbinders with a gap of 2.4 kcal/mol. None of the three methods that we have tested provided accurate ranking of the affinities of the 147 active compounds. We discuss the possible sources of errors in the binding free energy calculations. The study suggests that BEDAM can be used strategically to discriminate binders from nonbinders in virtual screening and to more accurately predict the ligand binding modes prior to the more computationally expensive FEP calculations of binding affinity.  相似文献   

3.
As part of the SAMPL4 blind challenge, filtered AutoDock Vina ligand docking predictions and large scale binding energy distribution analysis method binding free energy calculations have been applied to the virtual screening of a focused library of candidate binders to the LEDGF site of the HIV integrase protein. The computational protocol leveraged docking and high level atomistic models to improve enrichment. The enrichment factor of our blind predictions ranked best among all of the computational submissions, and second best overall. This work represents to our knowledge the first example of the application of an all-atom physics-based binding free energy model to large scale virtual screening. A total of 285 parallel Hamiltonian replica exchange molecular dynamics absolute protein-ligand binding free energy simulations were conducted starting from docked poses. The setup of the simulations was fully automated, calculations were distributed on multiple computing resources and were completed in a 6-weeks period. The accuracy of the docked poses and the inclusion of intramolecular strain and entropic losses in the binding free energy estimates were the major factors behind the success of the method. Lack of sufficient time and computing resources to investigate additional protonation states of the ligands was a major cause of mispredictions. The experiment demonstrated the applicability of binding free energy modeling to improve hit rates in challenging virtual screening of focused ligand libraries during lead optimization.  相似文献   

4.
Prospective validation of methods for computing binding affinities can help assess their predictive power and thus set reasonable expectations for their performance in drug design applications. Supramolecular host–guest systems are excellent model systems for testing such affinity prediction methods, because their small size and limited conformational flexibility, relative to proteins, allows higher throughput and better numerical convergence. The SAMPL4 prediction challenge therefore included a series of host–guest systems, based on two hosts, cucurbit[7]uril and octa-acid. Binding affinities in aqueous solution were measured experimentally for a total of 23 guest molecules. Participants submitted 35 sets of computational predictions for these host–guest systems, based on methods ranging from simple docking, to extensive free energy simulations, to quantum mechanical calculations. Over half of the predictions provided better correlations with experiment than two simple null models, but most methods underperformed the null models in terms of root mean squared error and linear regression slope. Interestingly, the overall performance across all SAMPL4 submissions was similar to that for the prior SAMPL3 host–guest challenge, although the experimentalists took steps to simplify the current challenge. While some methods performed fairly consistently across both hosts, no single approach emerged as consistent top performer, and the nonsystematic nature of the various submissions made it impossible to draw definitive conclusions regarding the best choices of energy models or sampling algorithms. Salt effects emerged as an issue in the calculation of absolute binding affinities of cucurbit[7]uril-guest systems, but were not expected to affect the relative affinities significantly. Useful directions for future rounds of the challenge might involve encouraging participants to carry out some calculations that replicate each others’ studies, and to systematically explore parameter options.  相似文献   

5.
We review our performance in the SAMPL5 challenge for predicting host–guest binding affinities using the movable type (MT) method. The challenge included three hosts, acyclic Cucurbit[2]uril and two octa-acids with and without methylation at the entrance to their binding cavities. Each host was associated with 6–10 guest molecules. The MT method extrapolates local energy landscapes around particular molecular states and estimates the free energy by Monte Carlo integration over these landscapes. Two blind submissions pairing MT with variants of the KECSA potential function yielded mean unsigned errors of 1.26 and 1.53 kcal/mol for the non-methylated octa-acid, 2.83 and 3.06 kcal/mol for the methylated octa-acid, and 2.77 and 3.36 kcal/mol for Cucurbit[2]uril host. While our results are in reasonable agreement with experiment, we focused on particular cases in which our estimates gave incorrect results, particularly with regard to association between the octa-acids and an adamantane derivative. Working on the hypothesis that differential solvation effects play a role in effecting computed binding affinities for the parent octa-acid and the methylated octa-acid and that the ligands bind inside the pockets (rather than on the surface) we devised a new solvent accessible surface area term to better quantify solvation energy contributions in MT based studies. To further explore this issue a, molecular dynamics potential of mean force (PMF) study indicates that, as found by our docking calculations, the stable binding mode for this ligand is inside (rather than surface bound) the octa-acid cavity whether the entrance is methylated or not. The PMF studies also obtained the correct order for the methylation-induced change in binding affinities and associated the difference, to a large extent to differential solvation effects. Overall, the SAMPL5 challenge yielded in improvements our solvation modeling and also demonstrated the need for thorough validation of input data integrity prior to any computational analysis.  相似文献   

6.
The ability to computationally predict protein-small molecule binding affinities with high accuracy would accelerate drug discovery and reduce its cost by eliminating rounds of trial-and-error synthesis and experimental evaluation of candidate ligands. As academic and industrial groups work toward this capability, there is an ongoing need for datasets that can be used to rigorously test new computational methods. Although protein–ligand data are clearly important for this purpose, their size and complexity make it difficult to obtain well-converged results and to troubleshoot computational methods. Host–guest systems offer a valuable alternative class of test cases, as they exemplify noncovalent molecular recognition but are far smaller and simpler. As a consequence, host–guest systems have been part of the prior two rounds of SAMPL prediction exercises, and they also figure in the present SAMPL5 round. In addition to being blinded, and thus avoiding biases that may arise in retrospective studies, the SAMPL challenges have the merit of focusing multiple researchers on a common set of molecular systems, so that methods may be compared and ideas exchanged. The present paper provides an overview of the host–guest component of SAMPL5, which centers on three different hosts, two octa-acids and a glycoluril-based molecular clip, and two different sets of guest molecules, in aqueous solution. A range of methods were applied, including electronic structure calculations with implicit solvent models; methods that combine empirical force fields with implicit solvent models; and explicit solvent free energy simulations. The most reliable methods tend to fall in the latter class, consistent with results in prior SAMPL rounds, but the level of accuracy is still below that sought for reliable computer-aided drug design. Advances in force field accuracy, modeling of protonation equilibria, electronic structure methods, and solvent models, hold promise for future improvements.  相似文献   

7.
Accurately predicting the binding affinities of small organic molecules to biological macromolecules can greatly accelerate drug discovery by reducing the number of compounds that must be synthesized to realize desired potency and selectivity goals. Unfortunately, the process of assessing the accuracy of current computational approaches to affinity prediction against binding data to biological macromolecules is frustrated by several challenges, such as slow conformational dynamics, multiple titratable groups, and the lack of high-quality blinded datasets. Over the last several SAMPL blind challenge exercises, host–guest systems have emerged as a practical and effective way to circumvent these challenges in assessing the predictive performance of current-generation quantitative modeling tools, while still providing systems capable of possessing tight binding affinities. Here, we present an overview of the SAMPL6 host–guest binding affinity prediction challenge, which featured three supramolecular hosts: octa-acid (OA), the closely related tetra-endo-methyl-octa-acid (TEMOA), and cucurbit[8]uril (CB8), along with 21 small organic guest molecules. A total of 119 entries were received from ten participating groups employing a variety of methods that spanned from electronic structure and movable type calculations in implicit solvent to alchemical and potential of mean force strategies using empirical force fields with explicit solvent models. While empirical models tended to obtain better performance than first-principle methods, it was not possible to identify a single approach that consistently provided superior results across all host–guest systems and statistical metrics. Moreover, the accuracy of the methodologies generally displayed a substantial dependence on the system considered, emphasizing the need for host diversity in blind evaluations. Several entries exploited previous experimental measurements of similar host–guest systems in an effort to improve their physical-based predictions via some manner of rudimentary machine learning; while this strategy succeeded in reducing systematic errors, it did not correspond to an improvement in statistical correlation. Comparison to previous rounds of the host–guest binding free energy challenge highlights an overall improvement in the correlation obtained by the affinity predictions for OA and TEMOA systems, but a surprising lack of improvement regarding root mean square error over the past several challenge rounds. The data suggests that further refinement of force field parameters, as well as improved treatment of chemical effects (e.g., buffer salt conditions, protonation states), may be required to further enhance predictive accuracy.  相似文献   

8.
An NMR fragment screening dataset with known binders and decoys was used to evaluate the ability of docking and re-scoring methods to identify fragment binders. Re-scoring docked poses using the Molecular Mechanics Poisson-Boltzmann Surface Area (MM-PBSA) implicit solvent model identifies additional active fragments relative to either docking or random fragment screening alone. Early enrichment, which is clearly most important in practice for selecting relatively small sets of compounds for experimental testing, is improved by MM-PBSA re-scoring. In addition, the value in MM-PBSA re-scoring of docked poses for virtual screening may be in lessening the effect of the variation in the protein complex structure used.  相似文献   

9.
As part of the SAMPL5 blinded experiment, we computed the absolute binding free energies of 22 host–guest complexes employing a novel approach based on the BEDAM single-decoupling alchemical free energy protocol with parallel replica exchange conformational sampling and the AGBNP2 implicit solvation model specifically customized to treat the effect of water displacement as modeled by the Hydration Site Analysis method with explicit solvation. Initial predictions were affected by the lack of treatment of ionic charge screening, which is very significant for these highly charged hosts, and resulted in poor relative ranking of negatively versus positively charged guests. Binding free energies obtained with Debye–Hückel treatment of salt effects were in good agreement with experimental measurements. Water displacement effects contributed favorably and very significantly to the observed binding affinities; without it, the modeling predictions would have grossly underestimated binding. The work validates the implicit/explicit solvation approach employed here and it shows that comprehensive physical models can be effective at predicting binding affinities of molecular complexes requiring accurate treatment of conformational dynamics and hydration.  相似文献   

10.
Although virtual screening through molecular docking has been widely applied in lead discovery, it is still challenging to distinguish true hits from high-scoring decoys because of the difficulty in accurately predicting protein-ligand binding affinities. Following the successful application of energy landscape analysis to both protein folding and biomolecular binding studies, we attempted to use protein-ligand binding energy landscape analysis to recognize true binders from high-scoring decoys. Two parameters describing the binding energy landscape were used for this purpose. The energy gap, defined as the difference between the binding energy of the native binding mode and the average binding energy of other binding modes in the "denatured binding phase", was used to describe the thermodynamic stability of binding, and the number of local binding wells in the landscapes was used to account for the kinetic accessibility. These parameters, together with the docking score, were combined using logistic regression to investigate their capability to discriminate true ligands from high-scoring decoys. Inhibitors and the noninhibitors of two enzyme systems, neuraminidase and cyclooxygenase-2, were used to test their discrimination capability. Using a five-fold cross-validation, the areas under the receiver operator characteristic curves (AUCs) from the best linear combinations of parameters reached 0.878 for neuraminidase and 0.776 for cyclooxygenase-2. To make a more independent test, inhibitors and high-scoring decoys in a directory of useful decoys (DUD), the largest and most comprehensive public data set for benchmarking virtual screen programs by far, were used as independent test sets to test the discrimination capability of these parameters. The AUCs of the best linear combinations of parameters for the independent test sets were 0.750 for neuraminidase and 0.855 for cyclooxygenase-2. Furthermore, combining these two parameters with the docking scoring function improved the enrichment ratio to 200-300% compared to that using the scoring function alone. This study suggests that incorporating information from binding energy landscape analysis can significantly increase the success rate of virtual screening.  相似文献   

11.
We have estimated the binding affinity of three sets of ligands of the heat-shock protein 90 in the D3R grand challenge blind test competition. We have employed four different methods, based on five different crystal structures: first, we docked the ligands to the proteins with induced-fit docking with the Glide software and calculated binding affinities with three energy functions. Second, the docked structures were minimised in a continuum solvent and binding affinities were calculated with the MM/GBSA method (molecular mechanics combined with generalised Born and solvent-accessible surface area solvation). Third, the docked structures were re-optimised by combined quantum mechanics and molecular mechanics (QM/MM) calculations. Then, interaction energies were calculated with quantum mechanical calculations employing 970–1160 atoms in a continuum solvent, combined with energy corrections for dispersion, zero-point energy and entropy, ligand distortion, ligand solvation, and an increase of the basis set to quadruple-zeta quality. Fourth, relative binding affinities were estimated by free-energy simulations, using the multi-state Bennett acceptance-ratio approach. Unfortunately, the results were varying and rather poor, with only one calculation giving a correlation to the experimental affinities larger than 0.7, and with no consistent difference in the quality of the predictions from the various methods. For one set of ligands, the results could be strongly improved (after experimental data were revealed) if it was recognised that one of the ligands displaced one or two water molecules. For the other two sets, the problem is probably that the ligands bind in different modes than in the crystal structures employed or that the conformation of the ligand-binding site or the whole protein changes.  相似文献   

12.
As part of the SAMPL5 blind prediction challenge, we calculate the absolute binding free energies of six guest molecules to an octa-acid (OAH) and to a methylated octa-acid (OAMe). We use the double decoupling method via thermodynamic integration (TI) or Hamiltonian replica exchange in connection with the Bennett acceptance ratio (HREM-BAR). We produce the binding poses either through manual docking or by using GalaxyDock-HG, a docking software developed specifically for this study. The root mean square deviations for our most accurate predictions are 1.4 kcal mol?1 for OAH with TI and 1.9 kcal mol?1 for OAMe with HREM-BAR. Our best results for OAMe were obtained for systems with ionic concentrations corresponding to the ionic strength of the experimental solution. The most problematic system contains a halogenated guest. Our attempt to model the σ-hole of the bromine using a constrained off-site point charge, does not improve results. We use results from molecular dynamics simulations to argue that the distinct binding affinities of this guest to OAH and OAMe are due to a difference in the flexibility of the host. We believe that the results of this extensive analysis of host-guest complexes will help improve the protocol used in predicting binding affinities for larger systems, such as protein-substrate compounds.  相似文献   

13.
We have estimated free energies for the binding of nine cyclic carboxylate guest molecules to the octa-acid host in the SAMPL4 blind-test challenge with four different approaches. First, we used standard free-energy perturbation calculations of relative binding affinities, performed at the molecular-mechanics (MM) level with TIP3P waters, the GAFF force field, and two different sets of charges for the host and the guest, obtained either with the restrained electrostatic potential or AM1-BCC methods. Both charge sets give good and nearly identical results, with a mean absolute deviation (MAD) of 4 kJ/mol and a correlation coefficient (R 2) of 0.8 compared to experimental results. Second, we tried to improve these predictions with 28,800 density-functional theory (DFT) calculations for selected snapshots and the non-Boltzmann Bennett acceptance-ratio method, but this led to much worse results, probably because of a too large difference between the MM and DFT potential-energy functions. Third, we tried to calculate absolute affinities using minimised DFT structures. This gave intermediate-quality results with MADs of 5–9 kJ/mol and R 2 = 0.6–0.8, depending on how the structures were obtained. Finally, we tried to improve these results using local coupled-cluster calculations with single and double excitations, and non-iterative perturbative treatment of triple excitations (LCCSD(T0)), employing the polarisable multipole interactions with supermolecular pairs approach. Unfortunately, this only degraded the predictions, probably because of a mismatch between the solvation energies obtained at the DFT and LCCSD(T0) levels.  相似文献   

14.
This paper describes the validation of a molecular docking method and its application to virtual database screening. The code flexibly docks ligand molecules into rigid receptor structures using a tabu search methodology driven by an empirically derived function for estimating the binding affinity of a protein-ligand complex. The docking method has been tested on 70 ligand-receptor complexes for which the experimental binding affinity and binding geometry are known. The lowest energy geometry produced by the docking protocol is within 2.0 A root mean square of the experimental binding mode for 79% of the complexes. The method has been applied to the problem of virtual database screening to identify known ligands for thrombin, factor Xa, and the estrogen receptor. A database of 10,000 randomly chosen "druglike" molecules has been docked into the three receptor structures. In each case known receptor ligands were included in the study. The results showed good separation between the predicted binding affinities of the known ligand set and the database subset.  相似文献   

15.
The SAMPL4 challenges were used to test current automated methods for solvation energy, virtual screening, pose and affinity prediction of the molecular docking pipeline DOCK 3.7. Additionally, first-order models of binding affinity were proposed as milestones for any method predicting binding affinity. Several important discoveries about the molecular docking software were made during the challenge: (1) Solvation energies of ligands were five-fold worse than any other method used in SAMPL4, including methods that were similarly fast, (2) HIV Integrase is a challenging target, but automated docking on the correct allosteric site performed well in terms of virtual screening and pose prediction (compared to other methods) but affinity prediction, as expected, was very poor, (3) Molecular docking grid sizes can be very important, serious errors were discovered with default settings that have been adjusted for all future work. Overall, lessons from SAMPL4 suggest many changes to molecular docking tools, not just DOCK 3.7, that could improve the state of the art. Future difficulties and projects will be discussed.  相似文献   

16.
In this study, we have "blindly" assessed the ability of several combinations of docking software and scoring functions to predict the binding of a fragment-like library of bovine trypsine inhibitors. The most suitable protocols (involving Gold software and GoldScore scoring function, with or without rescoring) were selected for this purpose using a training set of compounds with known biological activities. The selected virtual screening protocols provided good results with the SAMPL3-VS dataset, showing enrichment factors of about 10 for Top 20 compounds. This methodology should be useful in difficult cases of docking, with a special emphasis on the fragment-based virtual screening campaigns.  相似文献   

17.
Here, we give an overview of the protein-ligand binding portion of the Statistical Assessment of Modeling of Proteins and Ligands 4 (SAMPL4) challenge, which focused on predicting binding of HIV integrase inhibitors in the catalytic core domain. The challenge encompassed three components—a small “virtual screening” challenge, a binding mode prediction component, and a small affinity prediction component. Here, we give summary results and statistics concerning the performance of all submissions at each of these challenges. Virtual screening was particularly challenging here in part because, in contrast to more typical virtual screening test sets, the inactive compounds were tested because they were thought to be likely binders, so only the very top predictions performed significantly better than random. Pose prediction was also quite challenging, in part because inhibitors in the set bind to three different sites, so even identifying the correct binding site was challenging. Still, the best methods managed low root mean squared deviation predictions in many cases. Here, we give an overview of results, highlight some features of methods which worked particularly well, and refer the interested reader to papers in this issue which describe specific submissions for additional details.  相似文献   

18.
Inspired by the current representation of the ligand-receptor binding process, a normal-mode-based methodology is presented to incorporate receptor flexibility in ligand docking and virtual screening. However, the systematic representation of the deformation space grows geometrically with the number of modes, and furthermore, midscale loop rearrangements like those found in protein kinase binding pockets cannot be accounted for with the first lowest-frequency modes. We thus introduced a measure of relevance of normal modes on a given region of interest and showed that only very few modes in the low-frequency range are necessary and sufficient to describe loop flexibility in cAMP-dependent protein kinase. We used this approach to generate an ensemble of representative receptor backbone conformations by perturbing the structure along a combination of relevant modes. Each ensemble conformation is complexed with known non-native binders to optimize the position of the binding-pocket side chains through a full flexible docking procedure. The multiple receptor conformations thus obtained are used in a small-scale virtual screening using receptor ensemble docking. We evaluated this algorithm on holo and apo structures of cAMP-dependent protein kinase that exhibit backbone rearrangements on two independent loop regions close to the binding pocket. Docking accuracy is improved, since the ligands considered in the virtual screening docked within 1.5 A to at least one of the structures. The discrimination between binders and nonbinders is also enhanced, as shown by the improvement of the enrichment factor. This constitutes a new step toward the systematic integration of flexible ligand-flexible receptor docking tools in structure-based drug discovery.  相似文献   

19.
Drug discovery research often relies on the use of virtual screening via molecular docking to identify active hits in compound libraries. An area for improvement among many state-of-the-art docking methods is the accuracy of the scoring functions used to differentiate active from nonactive ligands. Many contemporary scoring functions are influenced by the physical properties of the docked molecule. This bias can cause molecules with certain physical properties to incorrectly score better than others. Since variation in physical properties is inevitable in large screening libraries, it is desirable to account for this bias. In this paper, we present a method of normalizing docking scores using virtually generated decoy sets with matched physical properties. First, our method generates a set of property-matched decoys for every molecule in the screening library. Each library molecule and its decoy set are docked using a state-of-the-art method, producing a set of raw docking scores. Next, the raw docking score of each library molecule is normalized against the scores of its decoys. The normalized score represents the probability that the raw docking score was drawn from the background distribution of nonactive property-matched decoys. Assuming that the distribution of scores of active molecules differs from the nonactive score distribution, we expect that the score of an active compound will have a low probability of having been drawn from the nonactive score distribution. In addition to the use of decoys in normalizing docking scores, we suggest that decoy sets may be a useful tool to evaluate, improve, or develop scoring functions. We show that by analyzing docking scores of library molecules with respect to the docking scores of their virtually generated property-matched decoys, one can gain insight into the advantages, limitations, and reliability of scoring functions.  相似文献   

20.
Protein-ligand docking programs have been used to efficiently discover novel ligands for target proteins from large-scale compound databases. However, better scoring methods are needed. Generally, scoring functions are optimized by means of various techniques that affect their fitness for reproducing X-ray structures and protein-ligand binding affinities. However, these scoring functions do not always work well for all target proteins. A scoring function should be optimized for a target protein to enhance enrichment for structure-based virtual screening. To address this problem, we propose the supervised scoring model (SSM), which takes into account the protein-ligand binding process using docked ligand conformations with supervised learning for optimizing scoring functions against a target protein. SSM employs a rough linear correlation between binding free energy and the root mean square deviation of a native ligand for predicting binding energy. We applied SSM to the FlexX scoring function, that is, F-Score, with five different target proteins: thymidine kinase (TK), estrogen receptor (ER), acetylcholine esterase (AChE), phosphodiesterase 5 (PDE5), and peroxisome proliferator-activated receptor gamma (PPARgamma). For these five proteins, SSM always enhanced enrichment better than F-Score, exhibiting superior performance that was particularly remarkable for TK, AChE, and PPARgamma. We also demonstrated that SSM is especially good at enhancing enrichments of the top ranks of screened compounds, which is useful in practical drug screening.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号