首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 314 毫秒
1.
Nitric oxide laser-induced-fluorescence (NO-LIF) 2-D imaging measurements using a new multi-spectral detection strategy are reported for high-pressure flames (1-60 bar). This work builds on previous research that identified interference LIF from O2 and CO2 in high-pressure flames and optimized the choice of excitation strategies as a function of application conditions. In this study, design rules are presented to optimize the LIF detection wavelengths for quantitative 2-D NO-LIF measurements over a wide range of pressures (1-60 bar) and temperatures. Simultaneous detection of LIF in multiple wavelength regions enables correction of the NO signal for interference from O2 and CO2 and allows simultaneous imaging of all three species. New experiments of wavelength-resolved 1-D LIF in slightly lean (? = 0.9) and slightly rich (? = 1.1) methane/air flames are used to evaluate the design rules and estimate the NO detection limits for a wide range of flame conditions. The quantitative 2-D measurements of NO in the burnt gas are compared with model calculations (using GRI-Mech 3.0) versus pressure for slightly lean and slightly rich flames. The discussions and demonstrations reported in this study provide a practical guideline for application of instantaneous 1-D or 2-D NO-LIF imaging strategies in high-pressure combustion systems.  相似文献   

2.
Laser-Induced Fluorescence (LIF) excitation spectra in the NOA–X (0-0) band were used for temperature measurements in the postflame region of high-pressure CH4/air flames. To improve the quality of the measured spectra and to perform reliable line-shape measurements, the initial mixture was doped with approximately 400 ppm NO. At pressures up to 18 bar, excellent agreement was obtained between NO LIF temperatures and NARS/rotational Raman temperatures. Effective broadening coefficients were also determined in these flames. Problems with quantitative concentration measurements of NO and single-pulse temperature measurements at high pressures are discussed.  相似文献   

3.
Two-photon laser-induced fluorescence (LIF) of ammonia (NH3) with excitation of the C′-X transition at 304.8 nm and fluorescence detection in the 565 nm C′-A band has been investigated, targeting combustion diagnostics. The impact of laser irradiance, temperature, and pressure has been studied, and simulation of NH3-spectra, fitted to experimental data, facilitated interpretation of the results. The LIF-signal showed quadratic dependence on laser irradiance up to 2 GW/cm2. Stimulated emission, resulting in loss of excited molecules, is induced above 10 GW/cm2, i.e., above irradiances attainable for LIF imaging. Maximum LIF-signal was obtained for excitation at the 304.8 nm bandhead; however, lower temperature sensitivity over the range 400–700 K can be obtained probing lines around 304.9 nm. A decrease in fluorescence signal was observed with pressure up to 5 bar absolute and attributed to collisional quenching. A detection limit of 800 ppm, at signal-to-noise ratio 1.5, was identified for single-shot LIF imaging over an area of centimeter scale, whereas for single-point measurements, the technique shows potential for sub-ppm detection. Moreover, high-quality NH3-imaging has been achieved in laminar and turbulent premixed flames. Altogether, two-photon fluorescence provides a useful tool for imaging NH3-detection in combustion diagnostics.  相似文献   

4.
A stable and convenient optical system to realize the forward phase-matching geometry for degenerate four-wave mixing (DFWM) is demonstrated in the mid-infrared spectral region by measuring DFWM signals generated in acetylene (C2H2) and hydrogen chloride (HCl) molecules by probing the fundamental ro-vibrational transitions. IR laser pulses tunable from 2900 cm?1 to 3350 cm?1 with a 0.025 cm?1 linewidth were obtained using a laser system composed of an injection seeded Nd:YAG laser, a dye laser, and a frequency mixing unit. At room temperature and atmospheric pressure, a detection limit of 35 ppm (~ 9.5×1014 molecules/cm3) for C2H2 was achieved in a gas flow of a C2H2/N2 mixture by scanning the P(11) line of the (010(11)0)–(0000000) band. The detection limit of the HCl molecule was measured to be 25 ppm (~6.8×1014 molecules/cm3) in the same environment by probing the R(4) line. The dependences of signal intensities on molecular concentrations and laser pulse energies were demonstrated using C2H2 as the target species. The variations of the signal line shapes with changes in the buffer gas pressures and laser intensities were recorded and analyzed. The experimental setup demonstrated in this work facilitates the practical implementation of in situ, sensitive molecular species sensing with species-specific, spatial and temporal resolution in the spectral region of 2.7–3.3 μm (3000–3700 in cm?1), where various molecular species important in combustion have absorption bands.  相似文献   

5.
The fluorescence quantum yield for ultraviolet laser-induced fluorescence of CO2 is determined for selected excitation wavelengths in the range 215–250 nm. Wavelength-resolved laser-induced fluorescence (LIF) spectra of CO2, NO, and O2 are measured in the burned gases of a laminar CH4/air flame (φ=0.9 and 1.1) at 20 bar with additional NO seeded into the flow. The fluorescence spectra are fit to determine the relative contribution of the three species to infer an estimate of fluorescence quantum yield for CO2 that ranges from 2–8×10?6 depending on temperature and excitation wavelength with an estimated uncertainty of ±0.5×10?6. The CO2 fluorescence signal increases linearly with gas pressure for flames with constant CO2 mole fraction for the 10 to 60 bar range, indicating that collisional quenching is not an important contributor to the CO2 fluorescence quantum yield. Spectral simulation calculations are used to choose two wavelengths for excitation of CO2, 239.34 and 242.14 nm, which minimize interference from LIF of NO and O2. Quantitative LIF images of CO2 are demonstrated using these two excitation wavelengths and the measured fluorescence quantum yield.  相似文献   

6.
Two different strategies are compared for linear laser-induced fluorescence (LIF) measurements of nitric oxide concentration ([NO]) in counter-flow diffusion flames at high pressures via the A-X(0,0) system. Excitation of NO via a rovibronic transition at 226.03 nm is found to be slightly better compared to a previously utilized excitation wavelength of 225.58 nm. An indirect approach based on the computed spectral overlap fraction is verified and applied to calibrate [NO] measurements in counter-flow diffusion flames at high pressures. A five-level model for NO molecular dynamics is presented and utilized to investigate the effects of rotational energy transfer (RET) on linear LIF measurements of [NO] at pressures up to 15 atm. The results indicate that rotational relaxation effects are essentially negligible under high-pressure conditions at low laser fluences, and thus they need not be accounted for when measuring [NO] using linear LIF. The calibration technique is validated by direct comparisons to [NO] measurements made at pressures up to 5 atm via another calibration method, based on doping NO in counter-flow premixed flames at the same pressure. Using this calibration technique, LIF measurements of [NO] are obtained in a series of counter-flow diffusion flames at pressures up to 15 atm. These measurements are found to be in excellent agreement with previously reported measurements of [NO] in similar flames. PACS 07.35.+k; 33.20.Sn; 42.62.Fi  相似文献   

7.
We report on an experimental demonstration of spatially-resolved detection of atomic hydrogen in flames using a single-ended configuration yielding 656-nm lasing in the backward direction upon 2-photon pumping with 205-nm femtosecond laser pulses. Spatial resolution is achieved by temporally-resolved detection of the backward lasing using a streak camera. The method is demonstrated in CH4/O2 flames; both in a setup consisting of two flames, with variable spacing between the flames, and in a single flame. Results from the two-flame experiment show that the backward lasing technique is able to determine changes in the separation between the flames as this distance was altered. By maximizing the temporal resolution of the streak camera, obtaining a highest spatial resolution of 1.65 mm, it is possible to resolve the hydrogen signal present in the two reaction zones in the single flame, where the separation between the reaction zones is ∼2 mm. The lasing signal is strong enough to allow single-shot measurements. Results obtained by backward lasing are compared with 2-photon planar laser-induced fluorescence (LIF) images recorded with detection perpendicular to the laser beam path and the results from the two methods qualitatively agree. Although further studies are needed in order to extract quantitative hydrogen concentrations, the present results indicate great potential for spatially resolved single-ended measurements, which would constitute a very valuable asset for combustion diagnostics in intractable geometries with limited optical access. It appears feasible to extend the technique to detection of any species for which resonant two-photon-excited lasing effect has been observed, such as O, N, C, CO and NH3.  相似文献   

8.
This paper presents the study we carried out on the formation of soot particles in low-pressure premixed CH4/O2/N2 flames by using Laser-Induced Incandescence (LII). Flames were stabilised at 26.6 kPa (200 torr). Four different equivalence ratios were tested (Φ = 1.95, 205, 2.15 and 2.32), Φ = 1.95 corresponding to the equivalence ratio for which LII signals begin to be measurable along the flame. The evolution of the LII signals with laser fluence (fluence curve), time (temporal decay) and emission wavelength is reported at different heights above the burner. We specifically took advantage of the low-pressure conditions to probe with a good spatial resolution the soot inception zone of the flames. Significant different behaviours of the fluence curves are observed according to the probed region of the flames and Φ. In addition, while the surface growth process is accompanied by an increase in the LII decay-times (indicator of the primary particle diameter) at higher Φ, decay-times become increasingly short at lower Φ reaching a constant value along the flame at Φ = 1.95. These behaviours are consistent with the detection of the smallest incandescent particles in the investigated flames, these particles having experienced very weak surface growth. Flame modelling including soot formation has been implemented in flames Φ = 2.05 and 2.32. Experimental quantitative soot volume fraction profiles were satisfactorily reproduced by adjusting the fraction of reactive soot surface available for reactions. The qualitative variation of the computed soot particle diameter and the relative weight of surface growth versus nucleation were consistent with the experimental observations.  相似文献   

9.
Time-resolved fluorescence spectra of gas-phase toluene and naphthalene were investigated upon picosecond laser excitation at 266 nm as a function of temperature (toluene 296–1,025 K, naphthalene 374–1,123 K), pressure (1–10 bar), and bath gas composition (varying concentrations of N2, O2, and CO2) with a temporal resolution of 50 ps. In the investigated temperature range, the fluorescence spectra of both toluene and naphthalene show a significant red-shift, whereas the fluorescence lifetime decreases with increasing temperature, more pronounced for toluene than for naphthalene. Increasing the total pressure of either N2 or CO2 from atmospheric to 10 bar leads to an increase by about 20 % (naphthalene at 373 K) and a decrease by 60 % (toluene at 575 K) in fluorescence lifetimes, respectively. As expected, at atmospheric pressure collisions with O2 shorten the fluorescence lifetime of both toluene and naphthalene significantly, e.g., by a factor of 30 and 90 when changing O2 partial pressure at 373 K from 0 to 0.21 bar, respectively. The fluorescence model of Koban et al. (Appl Phys B 80: 777, 2005) for the dependence of the toluene quantum yield on temperature and O2 partial pressure at atmospheric pressure describes toluene fluorescence lifetimes well within its range of validity. The model is modified to satisfactorily predict effective toluene fluorescence lifetimes in N2 at pressures up to 10 bar. However, it still fails to predict the dependence at simultaneously elevated temperatures and pressures in air as bath gas. Similarly, an empirical model is presented for predicting (relative) fluorescence quantum yields and lifetimes of naphthalene. Although the fitting models have their shortcomings this publication presents a data set of great importance for practical LIF applications, e.g., in-cylinder mixture formation diagnostics in internal combustion engines.  相似文献   

10.
We report spatially resolved linear laser-induced fluorescence (LIF) and planar laser-induced fluorescence (PLIF) measurements of nitric oxide (NO) in a pre-heated, high-pressure (4.27 atm), lean direct-injection (LDI) spray flame. The feasibility of using PLIF in lieu of LIF is assessed with respect to measuring NO concentrations in high-pressure LDI spray flames. NO is excited via the resonant Q2(26.5) transition of the γ(0,0) band while a non-resonant wavelength is employed to subtract background interferences. LIF detection is performed in a 2-nm region centered on the γ(0,1) band. PLIF detection is performed in a 68-nm window that captures fluorescence from several vibrational bands. An in situ NO doping scheme for fluorescence calibration is successfully employed to quantify the LIF signals. However, a similar calibration scheme for the reduction of PLIF images to quantitative field measurements is plagued by the laser-excited background. Excitation scans and calibration comparisons have been performed to assess the background contribution for PLIF detection. Quantitative radial NO profiles measured by LIF are presented and analyzed so as to correct the PLIF measurements to within the accuracy bars of the LIF measurements via a single-point scaling of the PLIF image. Received: 23 November 1999 / Revised version: 17 January 2000 / Published online: 27 April 2000  相似文献   

11.
Knowledge of in-situ fuel distributions in practical combustion devices, such as internal combustion engines, is crucial for research and devlopment purposes. Numerous imaging techniques, mostly based on laser-induced fluorescence (LIF), have been developed and yield high levels of 2-D spatial information, but generally lack the temporal resolution (frame rates) necessary to resolve important timescales at sub-millisecond levels for sustained times. A planar LIF technique for quantitatively visualizing fuel distribution is presented which gives not only high spatial resolution, but also high temporal resolution. Using a high-speed CMOS camera, a lens-coupled image intensifier, and frequency-tripled diode-pumped Nd:YAG laser allows for capturing LIF images of biacetyl that is used as a fluorescence tracer at 12 kHz (one crank-angle resolution at 2000 RPM) for hundreds of consecutive engine cycles. The LIF signal strength of biacetyl doped in iso-octane is shown to vary substantially over a wide range of temperatures and pressures. The low absorption coefficient at 355 nm and a longpass filter in the detection path exclude bias errors due to laser beam attenuation and fluorescence trapping. An intensifier gate time of 350 ns is shown to suppress the detection of phosphorescence signals under practical conditions. An example for a quantitative high-speed measurement of fuel concentration at varying pressure and temperature conditions is presented. Quantitative equivalence ratio maps are shown for the fuel injection event within a single cycle in a spark-ignition direct-injected engine, showing the ability of the technique to not only reveal static fuel concentration maps, but also the motion of the fuel cloud along with very steep gradients. Spray velocities determined from the moving fuel cloud are in agreement with previous particle image velocimetry measurements.  相似文献   

12.
The formation of laser-induced periodic surface structures (LIPSS) upon irradiation of fused silica and silicon with multiple (N DPS) irradiation sequences consisting of linearly polarized femtosecond laser pulse pairs (pulse duration ~150 fs, central wavelength ~800 nm) is studied experimentally. Nearly equal-energy double-pulse sequences are generated allowing the temporal pulse delay Δt between the cross-polarized individual fs-laser pulses to be varied from ?40 ps to +40 ps with a resolution of ~0.2 ps. The surface morphologies of the irradiated surface areas are characterized by means of scanning electron and scanning force microscopy. Particularly for dielectrics in the sub-ps delay range striking differences in the orientation and spatial characteristics of the LIPSS can be observed. For fused silica, a significant decrease of the LIPSS spatial periods from ~790 nm towards ~550 nm is demonstrated for delay changes of less than ~2 ps. In contrast, for silicon under similar irradiation conditions, the LIPSS periods remain constant (~760 nm) for delays up to 40 ps. The results prove the impact of laser-induced electrons in the conduction band of the solid and associated transient changes of the optical properties on fs-LIPSS formation.  相似文献   

13.
Simultaneously calibrated, non-linear two-line atomic fluorescence (SC-nTLAF) thermometry for application in turbulent sooting flames has been developed to increase the precision of single-shot, planar measurements of gas temperature. The technique has been demonstrated in both steady and turbulent sooting flames, showing good agreements with previous optical measurements. The SC-nTLAF involves imaging simultaneously laser-induced fluorescence (LIF) of atomic indium in both the target flame and a non-sooting calibration flame for which the temperature distribution is known. The LIF intensities from the reference flame enable correction for fluctuations, not only in the laser power, but also in the laser mode. The resulting precision was found to be ±67 K and ±75 K (based on one standard deviation) in the rich and oxidizing regions of a steady sooting flame for which the measured temperature was 1610 K and 1854 K, respectively, with a spatial resolution of 550 × 550 µm2. This corresponds to a relative precision of ∼ 4.1%. The resulting precision in the single-shot temperature images for a well-characterized, lifted ethylene jet diffusion flame (fuel jet Reynolds number = 10,000) compares favorably with previously reported data obtained with shifted-vibrational coherent anti-Stokes Raman spectroscopy (CARS), together with increased spatial resolution. The planar imaging also provides more details of the temperature distribution, particularly in the flame brush region, which offers potential for measurement of more parameters, such as gradients and spatial corrections. The new calibration method has also achieved a significant time-saving in both data collection and processing, which is an estimated total of ∼ 60%–70% compared with conventional nTLAF.  相似文献   

14.
Planar laser-induced fluorescence (PLIF) images of NO concentration are reported in premixed laminar flames from 1–60 bar exciting the A-X(0,0) band. The influence of O2 interference and gas composition, the variation with local temperature, and the effect of laser and signal attenuation by UV light absorption are investigated. Despite choosing a NO excitation and detection scheme with minimum O2-LIF contribution, this interference produces errors of up to 25% in a slightly lean 60 bar flame. The overall dependence of the inferred NO number density with temperature in the relevant (1200–2500 K) range is low (<±15%) because different effects cancel. The attenuation of laser and signal light by combustion products CO2 and H2O is frequently neglected, yet such absorption yields errors of up to 40% in our experiment despite the small scale (8 mm flame diameter). Understanding the dynamic range for each of these corrections provides guidance to minimize errors in single shot imaging experiments at high pressure. Received: 13 May 2002 / Published online: 8 August 2002  相似文献   

15.
Single-pulse two-dimensional picosecond Laser-Induced Fluorescence (LIF) imaging of the OH density in a single quantum state was performed for the first time, using a premixed methane-oxygen flame at atmospheric pressure. A picosecond, excimer-Raman-laser system (268 nm, 470 ps FWHM) was used for excitation of OH. The fluorescence from the laser sheet was imaged onto a fast gated intensified camera with a 400 ps gate width. The short laser pulse minimizes the collisional redistribution of population in the ground state during excitation, while the short camera gate avoids significant quenching of the excited-state fluorescence. The fluorescence signal obtained in this way is a direct measure of the population in a selected quantum state. In contrast to common nanosecond LIF signals no corrections on variations of the collisional environment are necessary. This collision-insensitive approach to two-dimensional LIF yields an OH detection limit of 10 ppm in a cube of 330 µm per side with a single 1 mJ laser pulse. A rate-equation model is used to estimate the effects on the observed signal of fluctuations in pulse energy and duration, laser-camera timing jitter, and spatial variations in the collisional environment.  相似文献   

16.
17.
Temperature profiles in several premixed low pressure H2/O2/N2 flames and in an atmospheric pressure CH4/air flame were determined by laser-induced fluorescence (LIF) and by CARS experiments. In the LIF study, temperatures were derived from OH excitation spectra, CARS temperatures were deduced from N2 Q-branch spectra. The present study is the first quantitative comparison of these two methods for temperature determination in flames burning at pressures up to 1 bar. The resulting temperatures showed good agreement.  相似文献   

18.
Acetylene (C2H2), as an important precursor for chemiluminescence species, is a key to understand, simulate and model the chemiluminescence and the related reaction paths. Hence we developed a high resolution spectrometer based on direct Tunable Diode Laser Absorption Spectroscopy (TDLAS) allowing the first quantitative, calibration-free and spatially resolved in situ C2H2 measurement in an atmospheric non-premixed counter-flow flame supported on a Tsuji burner. A fiber-coupled distributed feedback diode laser near 1535 nm was used to measure several absolute C2H2 concentration profiles (peak concentrations up to 9700 ppm) in a laminar non-premixed CH4/air flame (T up to 1950 K) supported on a modified Tsuji counter-flow burner with N2 purge slots to minimize end flames. We achieve a fractional optical resolution of up to 5×10?5 OD (1σ) in the flame, resulting in temperature-dependent acetylene detection limits for the P17e line at 6513 cm?1 of up to 2.1 ppm?m. Absolute C2H2 concentration profiles were obtained by translating the burner through the laser beam using a DC motor with 100 μm step widths. Intercomparisons of the experimental C2H2 profiles with simulations using our new hydrocarbon oxidation mechanisms show excellent agreement in position, shape and in the absolute C2H2 values.  相似文献   

19.
It has been described earlier that imaging measurements of laser-induced fluorescence (LIF) in flames can be calibrated to number densities with an integrated absorption measurement provided the integrated absorption is small. In this paper a method is presented that extends the technique to flames with substantial absorption, improves the number density determination and allows the experimental parameters to be chosen more freely. The method is based on an iterative computer procedure that reconstructs the 1-D spatially resolved absorption profile from laser measurements of the 1-D spatially resolved LIF and the integrated absorption of the laser beam. The technique is experimentally demonstrated by measurements of OH number densities in atmospheric flames. It is potentially a single-pulse method. Other applications of the iterative procedure are mentioned.  相似文献   

20.
We present a ring-down absorption spectrometer based on a continuous-wave CO laser in the mid-infrared spectral region near λ?=?5 μm. Using a linear ring-down cavity (length: 0.5 m) with high reflective mirrors (R?=?99.988 %), we observed a noise-equivalent absorption coefficient of 3?×?10?10 cm?1Hz?1/2. This corresponds to a noise-equivalent concentration of 800 parts per trillion (ppt) for 14NO and 40 ppt for 15NO in 1 s averaging time. We achieve a time resolution of 1 s which allows time resolved simultaneous detection of the two N isotopes. The δ15N value was obtained with a precision of ±1.2‰ in a sample with a NO fraction of 11 ppm. The simultaneous detection enables the use of 15NO as a tracer molecule for endogenous biomedical processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号