首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 422 毫秒
1.
Polarized 3He has shown its unique characteristics in many areas of polarized neutron scattering, its ability to polarize neutrons at short wavelengths, accept wide-angle and divergent beams and low backgrounds enable new classes of experiments. While polarized 3He is not a steady state solution as commonly applied, the benefits have been shown to offset the drawbacks of polarizing and refreshing the polarization in the neutron spin filter cells. As an extension of this work, in-situ polarization using the spin-exchange optical pumping (SEOP) method was explored as a means to construct a system which could be used to polarize 3He in the state used for an effective neutron spin filter to constant polarization while on the neutron beam. An in-situ SEOP polarizer was constructed. This device utilized many devices and principles developed for neutron spin filters which are polarized off the beam line using either SEOP or metastability exchange optical pumping (MEOP) under the same research program. As a collimation of this work effects of extremely high neutron capture flux density incident on the in-situ polarizer were explored.  相似文献   

2.
Polarized neutron instruments will occupy about 80% of the Jülich Centre for Neutron Science (JCNS) instrument park. A successful polarized 3He program will be integral to many of these instruments. We have been focusing the developments on spin-exchange optical pumping (SEOP) to polarize the 3He gas in situ. Where possible, in situ polarization using the SEOP method will provide higher time averaged performance of the instruments. Further this allows a custom-built and independent source of polarized 3He to be developed optimized for each instruments demands. In this paper we will: present an argument for the advantages of in situ polarization; describe an in situ polarizer we have constructed, and initial tests of its performance; describe testing of polarization analysis for small angle neutron scattering on biological samples, and our plans for an in situ polarizer for this application.  相似文献   

3.
We have begun the development of an in-situ spin-exchange optical pumping (SEOP) system aiming to use it as a neutron spin filter for incident beam polarization at the Japan Proton Accelerator Research Complex (J-PARC). To use it, it is recommended that the optics be adjusted easily, have high stability, and have a small size. In this paper we improved our previous SEOP system aiming to use it in J-PARC and performed a neutron beam test at the JRR-3 NOP beamline to see the performance of the neutron spin filter (NSF). The polarization of the 3He gas reached 73%. This paper gives the present status of the development of in-situ SEOP system in J-PARC.  相似文献   

4.
Polarized 3He spin-filters are currently employed on a wide range of neutron instruments at the ILL, primarily for diffraction, reflectometry and fundamental physics. A wide range of recent and ongoing improvements are enabling the implementation of this technique for wide-angle polarization analysis for inelastic measurements. These include
• Progress in metastability-exchange optical pumping (MEOP), resulting in on-beam polarization levels of up to 80%.
• 1st generation “Pastis-1” coils for rotating the neutron polarization at the sample position, allowing for “XYZ” polarization analysis.
• 2nd generation “Pastis-2” coils with no blind angles in the equatorial plane.
• Spin-filter cells with glued silicon windows, allowing for wide-angle “banana” cells with very low background scattering.
• Polarization-preserving capillaries for transferring polarized 3He gas into the cell without manual access.
The development of capillary transfer also allows for a completely new way of working with 3He spin-filters: connecting the cells on the instruments directly to the MEOP filling station several tens of meters away and allowing for quasi-continuous operation.  相似文献   

5.
At the NIST Center for Neutron Research (NCNR), we have applied 3He neutron spin filters (NSFs) to the instruments where 3He NSFs are advantageous, such as thermal triple-axis spectrometry, small-angle neutron scattering, and diffuse reflectometry. We present the status of our development and application of this method, including polarized gas production by spin-exchange optical pumping, magnetostatic cavities for storage of the polarized gas on the beam line, and nuclear magnetic resonance (NMR)-based, on-line monitoring and reversal of the 3He polarization. We present the status of developing user-friendly interfaces incorporated into the instrument software to handle these 3He neutron spin filters while taking data and performing data analysis. Finally we discuss the status of development of a polarization capability on the multi-axis crystal spectrometer, which requires polarization analysis over a 220° angular range.  相似文献   

6.
Polarized 3He neutron spin filters can operate over a wide neutron energy range and provide a large angular acceptance. A compact 3He neutron spin filter system has been developed for the Multi-Axis Crystal Spectrometer at the National Institute of Standards and Technology (NIST) Center for Neutron Research. Sealed 3He cells, polarized by spin-exchange optical pumping, are used as polarizer and analyzer. The polarization of the neutrons incident on the sample is inverted by flipping the polarization of the 3He gas in the polarizer, with only a small effect on the analyzer cells. The cell fabrication process, 3He spin flipper, and the holding magnetic field are discussed and we present the results of a first on-linetest.  相似文献   

7.
We have designed and demonstrated a prototype on-beam spin-exchange optical pumping (SEOP) 3He neutron spin filter (NSF). It is designed as the incident neutron polarizer for spallation neutron sources, where the installation space is limited due to thick radiation shielding. The size of the NSF is roughly 50 cm×50 cm×25 cm including the diode-laser optics with a frequency narrowing external cavity, and a cylindrical 3He cell as large as a diameter of 5 cm and a length of 10 cm can fit. A neutron beam test was performed at the NOP beamline of JRR-3 to see the performance of the NSF.  相似文献   

8.
The Magnetic Resonance Imaging (MRI) of human lungs for diagnostic purposes became possible by using nuclear spin hyperpolarized noble gases, such as 3He. One of the methods to polarize 3He is the Metastability Exchange Optical Pumping (MEOP), which up to now has been performed at low pressure of about 1 mbar and in low magnetic field below 0.1 T (standard conditions). The equilibrium nuclear polarization can reach up to 80%, but it is dramatically reduced during the subsequent gas compression to the atmospheric pressure that is necessary for the lungs examination. Further polarization losses occur during the transportation of the gas to the hospital scanner. It was shown recently that up to 50% polarization can be obtained at elevated pressure exceeding 20 mbar, by using magnetic field higher than 0.1 T (nonstandard conditions). Therefore, following the construction of the low-field MEOP polarizer located in the lab, a dedicated portable unit was developed, which uses the magnetic field of the 1.5 T MR medical scanner and works in the continuous-flow regime. The first in Poland MRI images of human lungs in vivo were obtained on the upgraded to 3He resonance frequency Siemens Sonata medical scanner. An evident improvement in the image quality was achieved when using the new technique. The paper shows how spectroscopic measurements of 3He carried out in various experimental conditions led both to useful practical results and to significant progress in understanding fundamental processes taking place during MEOP.  相似文献   

9.
Systematic studies of the metastability exchange optical pumping (MEOP) process in 3He gas at high magnetic fields (0.45, 0.9, 1.5, and 2 T) and pressures (32 and 64 mbar) are performed. The impact of experimental parameters such as laser power, beam profile, and shape of the pumping cell is evaluated. By varying the discharge intensity in the cell, the density of metastable state atoms and the plasma-induced nuclear relaxation rate are also controlled, and their effect on the MEOP efficiency can be investigated. Very accurate experimental results are obtained, opening the way to quantitative tests of a recently proposed model of the MEOP process at high magnetic field. We report selected MEOP results with nuclear polarizations exceeding 50 % at 64 mbar and 2 T, which represents a dramatic improvement in performances over MEOP at low magnetic field. The present findings suggest that still higher polarizations can be achieved in higher magnetic fields, and motivate investigations at higher gas pressures. New ways of producing hyperpolarized 3He for magnetic resonance imaging and medical applications can be envisaged, as most clinical whole-body scanners operate at 1.5 T.  相似文献   

10.
Polarized ~3He neutron spin filters(NSFs) can be used as a vital tool for neutron polarization production and analysis.The China Spallation Neutron Source(CSNS),as one of the major neutron facilities in China,has committed resources to the development of a polarized ~3He NSF program to support its growing polarized neutron research.A spin-exchange optical pumping(SEOP)-based polarized ~3He system and other necessary hardware for NSF transport has been recently developed.The performance of the system is benchmarked using an in-house developed cell named "Trident".Neutron beam measurements yield a ~3 He polarization of 77% with over 200 h of on-beam relaxation time.Combining this newly developed SEOP system with the recently reported cell fabrication station,CSNS is now capable of the fully self-sustained production of ~3He NSFs that shall support its future neutron polarization research.  相似文献   

11.
We describe here a method of performing adiabatic fast passage (AFP) spin flipping of polarized 3He used as a neutron spin filter (NSF) to polarize neutron beams. By reversing the spin states of the 3He nuclei the polarization of a neutron beam can be efficiently reversed allowing for the transmission of a neutron beam polarized in either spin state. Using an amplitude modulated frequency sweep lasting 500 ms we can spin flip a polarized 3He neutron spin filter with only 1.8×10−5 loss in 3He polarization. The small magnetic fields (10-15 G) used to house neutron spin filters mean the 3He resonant frequencies are low enough to be generated using a computer with a digital I/O card. The versatility of this systems allows AFP to be performed on any beamline or in any laboratory using 3He neutron spin filters and polarization losses can be minimised by adjusting sweep parameters.  相似文献   

12.
We have constructed an apparatus to polarize the3He nuclear spin, which will be used as a neutron spin analyzer in T- and P-violation neutron experiments. We report on principles and the present status of the method for the polarization of3He and the determination of its value.On leave from Tohoku University, Aoba-ku, Sendai 980, Japan.  相似文献   

13.
An accurate optical method to measure the nuclear polarization of 3He atoms in the 11S ground state is described. The absorption of a weak, probe laser beam is used to measure the relative populations of two hyperfine sublevels of the 23S metastable state that are not addressed by the pumping laser beam. Since a common spin temperature between the ground and metastable states is established by metastable exchange collisions, the nuclear polarization can be derived from these absorption measurements. The method is highly sensitive, robust, and can be used to monitor the dynamics of optical pumping and relaxation processes without interfering with them. It was successfully implemented and tested in the 0.45–2.0 T magnetic field range at the 3He gas pressure up to 67 mbar.  相似文献   

14.
We discuss the development and characterisation of a new in situ spin exchange optical pumping (SEOP) based 3He neutron spin filter polarisation device. We present results from a recent test of the prototype system developed with the Institut Laue-Langevin. The polariser was installed on the polarised reflectometer CRISP at ISIS in the analyser position. The 3He was pumped continuously in situ on the beamline. The system also integrated a 3He adiabatic fast passage spin flipper that allowed reversal of the 3He and therefore neutron polarisation state, allowing for measurement of all four polarisation cross-sections. The system was run for a number of days reaching a 3He polarisation of 63%.  相似文献   

15.
We measured the neutron beam polarization of the BL05/NOP (Neutron Optics and Physics) beamline at J-PARC with an accuracy of less than 10−3 using polarized 3He gas as a neutron spin analyzer. Precise polarimetry of the neutron beam is necessary to understand the beamline optics as well as for the asymmetry measurements of the neutron beta decay, which are planned in this beamline.  相似文献   

16.
在自旋交换光泵过程中,多种参数可能会影响到最终可获得的超极化气体氙-129核自旋极化度.通过低场(0.002 T)核磁共振(NMR)系统研究了连续流动工作模式的自旋交换光泵过程,当混合工作气体流量为0.3 SLPM和0.5 SLPM时,实验测量得到最佳光泵泡工作温度;对于同位素富集和自然丰度的氙-129气体,核自旋极化度的建立时间分别为15 min和22 min.由于混合工作气体的压力以及组分会导致铷原子吸收线的频移和展宽,并且影响到其线型,实验通过低场NMR系统测量确定了用于自旋交换光泵的最佳激光工作波长.低场NMR测量为获得具有高核自旋极化度的超极化气体氙-129,并且能够用于人体肺部MRI研究提供了实验依据.  相似文献   

17.
Large amounts of hyperpolarized 3He gas with high nuclear polarization rates are required for use in neutron spin filters or nuclear magnetic resonance imaging of human lung. Very high efficiency can be obtained by metastability exchange optical pumping using multimode lasers to excite the [ 2 ]3S-[ 2 ]3P transition at 1083 nm. Broadband ytterbium-doped tunable fiber lasers have been designed for that particular application. Different options for the architecture of the fiber oscillator are presented and compared. Emphasis is given to a linear cavity configuration that includes a high reflectivity fiber mirror and a low reflectivity tunable fiber Bragg grating. Optical measurements are performed to finely characterize the spectral behavior of the lasers. Atomic response is also quantitatively probed to assess the optimal design of the oscillator for optical pumping. Multimode operation matching the 2 GHz Doppler-broadened helium resonance line and tunability over more than 200 GHz are demonstrated. Boosting the output of this fiber laser with a Yb-doped fiber power amplifier, all-fiber devices are built to provide robust, high-power turnkey sources at 1083 nm for improved production of laser polarized 3He. PACS 42.60.-v; 42.55.Wd; 32.80.Bx  相似文献   

18.
A single-shot pulsed gradient stimulated echo sequence is introduced to address the challenges of diffusion measurements of laser polarized 3He and 129Xe gas. Laser polarization enhances the NMR sensitivity of these noble gases by >10(3), but creates an unstable, nonthermal polarization that is not readily renewable. A new method is presented which permits parallel acquisition of the several measurements required to determine a diffusive attenuation curve. The NMR characterization of a sample's diffusion behavior can be accomplished in a single measurement, using only a single polarization step. As a demonstration, the diffusion coefficient of a sample of laser-polarized 129Xe gas is measured via this method.  相似文献   

19.
New diode lasers delivering 50 mW output power at 1083 nm are shown to be efficient sources for optical pumping of helium. They can polarize nuclei in a3He gas up toM = 50% over the pressure range 0.4–1.6 torr. Larger nuclear polarizationsM of3He nuclei, of order 80%, can be obtained in3He-4He mixtures when the laser frequency is tuned to a4He line. A standard optical measurement of nuclear polarizationM has been extended to the case of3He-4He mixtures. The effect of various parameters on the steady-state polarizationM and on the pumping timeT p is discussed.Laboratoire associé au Centre National de la Recherche Scientifique et à l'Université P. M. Curie  相似文献   

20.
At the China Spallation Neutron Source(CSNS), we have developed a custom gas-filling station, a glassblowing workshop, and a spin-exchange optical pumping(SEOP) system for producing high-quality ~3He-based neutron spin filter(NSF) cells. The gas-filling station is capable of routinely filling ~3He cells made from GE180 glass of various dimensions, to be used as neutron polarizers and analyzers on beamlines at the CSNS. Performance tests on cells fabricated at our gas-filling station are conducted via neutron transmission and nuclear-magneticresonance measurements, revealing nominal filling pressures, and a saturated ~3He polarization in the region of 80%, with a lifetime of approximately 240 hours. These results demonstrate our ability to produce competitive NSF cells to meet the ever-increasing research needs of the polarized neutron research community.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号