首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, we consider two-queue polling model with a Timer and a Randomly- Timed Gated (RTG) mechanism. At queue Q1, we employ a Timer T^(1): whenever the server polls queue Q1 and finds it empty, it activates a Timer. If a customer arrives before the Timer expires, a busy period starts in accordance with exhaustive service discipline. However, if the Timer is shorter than the interarrival time to queue Q1, the server does not wait any more and switches back to queue Q2. At queue Q2, we operate a RTG mechanism T^(2), that is, whenever the server reenters queue Q2, an exponential time T^(2) is activated. If the server empties the queue before T^(2), it immediately leaves for queue Q1. Otherwise, the server completes all the work accumulated up to time T^(2) and leaves. Under the assumption of Poisson arrivals, general service and switchover time distributions, we obtain probability generating function (PGF) of the queue lengths at polling instant and mean cycle length and Laplace Stieltjes transform (LST) of the workload.  相似文献   

2.
In this paper we consider a single-server polling system with switch-over times. We introduce a new service discipline, mixed gated/exhaustive service, that can be used for queues with two types of customers: high and low priority customers. At the beginning of a visit of the server to such a queue, a gate is set behind all customers. High priority customers receive priority in the sense that they are always served before any low priority customers. But high priority customers have a second advantage over low priority customers. Low priority customers are served according to the gated service discipline, i.e. only customers standing in front of the gate are served during this visit. In contrast, high priority customers arriving during the visit period of the queue are allowed to pass the gate and all low priority customers before the gate. We study the cycle time distribution, the waiting time distributions for each customer type, the joint queue length distribution of all priority classes at all queues at polling epochs, and the steady-state marginal queue length distributions for each customer type. Through numerical examples we illustrate that the mixed gated/exhaustive service discipline can significantly decrease waiting times of high priority jobs. In many cases there is a minimal negative impact on the waiting times of low priority customers but, remarkably, it turns out that in polling systems with larger switch-over times there can be even a positive impact on the waiting times of low priority customers.  相似文献   

3.
The stability of a cyclic polling system, with a single server and two infinite-buffer queues, is considered. Customers arrive at the two queues according to independent batch Markovian arrival processes. The first queue is served according to the gated service discipline, and the second queue is served according to a state-dependent time-limited service discipline with the preemptive repeat-different property. The state dependence is that, during each cycle, the predetermined limited time of the server’s visit to the second queue depends on the queue length of the first queue at the instant when the server last departed from the first queue. The mean of the predetermined limited time for the second queue either decreases or remains the same as the queue length of the first queue increases. Due to the two service disciplines, the customers in the first queue have higher service priority than the ones in the second queue, and the service fairness of the customers with different service priority levels is also considered. In addition, the switchover times for the server traveling between the two queues are considered, and their means are both positive as well as finite. First, based on two embedded Markov chains at the cycle beginning instants, the sufficient and necessary condition for the stability of the cyclic polling system is obtained. Then, the calculation methods for the variables related to the stability condition are given. Finally, the influence of some parameters on the stability condition of the cyclic polling system is analyzed. The results are useful for engineers not only checking whether the given cyclic polling system is stable, but also adjusting some parameters to make the system satisfy some requirements under the condition that the system is stable.  相似文献   

4.
In this paper we consider a single-server, cyclic polling system with switch-over times and Poisson arrivals. The service disciplines that are discussed, are exhaustive and gated service. The novel contribution of the present paper is that we consider the reneging of customers at polling instants. In more detail, whenever the server starts or ends a visit to a queue, some of the customers waiting in each queue leave the system before having received service. The probability that a certain customer leaves the queue, depends on the queue in which the customer is waiting, and on the location of the server. We show that this system can be analysed by introducing customer subtypes, depending on their arrival periods, and keeping track of the moment when they abandon the system. In order to determine waiting time distributions, we regard the system as a polling model with varying arrival rates, and apply a generalised version of the distributional form of Little??s law. The marginal queue length distribution can be found by conditioning on the state of the system (position of the server, and whether it is serving or switching).  相似文献   

5.
In this paper, a multiple server queue, in which each server takes a vacation after serving one customer is studied. The arrival process is Poisson, service times are exponentially distributed and the duration of a vacation follows a phase distribution of order 2. Servers returning from vacation immediately take another vacation if no customers are waiting. A matrix geometric method is used to find the steady state joint probability of number of customers in the system and busy servers, and the mean and the second moment of number of customers and mean waiting time for this model. This queuing model can be used for the analysis of different kinds of communication networks, such as multi-slotted networks, multiple token rings, multiple server polling systems and mobile communication systems.  相似文献   

6.
本对批到达离散时间轮询系统进行研究,在门限服务原则下,推出了原客等待时间和轮询周期的概率母函数,利用Markov链理论,得出了队列队长均值。  相似文献   

7.
8.
Consider a polling system withK1 queues and a single server that visits the queues in a cyclic order. The polling discipline in each queue is of general gated-type or exhaustive-type. We assume that in each queue the arrival times form a Poisson process, and that the service times, the walking times, as well as the set-up times form sequences of independent and identically distributed random variables. For such a system, we provide a sufficient condition under which the vector of queue lengths is stable. We treat several criteria for stability: the ergodicity of the process, the geometric ergodicity, and the geometric rate of convergence of the first moment. The ergodicity implies the weak convergence of station times, intervisit times and cycle times. Next, we show that the queue lengths, station times, intervisit times and cycle times are stochastically increasing in arrival rates, in service times, in walking times and in setup times. The stability conditions and the stochastic monotonicity results are extended to the polling systems with additional customer routing between the queues, as well as bulk and correlated arrivals. Finally, we prove that the mean cycle time, the mean intervisit time and the mean station times are invariant under general service disciplines and general stationary arrival and service processes.  相似文献   

9.
We consider a polling model in which a number of queues are served, in cyclic order, by a single server. Each queue has its own distinct Poisson arrival stream, service time, and switchover time (the server's travel time from that queue to the next) distribution. A setup time is incurred if the polled queue has one or more customers present. This is the polling model with State-Dependent service (the SD model). The SD model is inherently complex; hence, it has often been approximated by the much simpler model with State-Independent service (the SI model) in which the server always sets up for a service at the polled queue, regardless of whether it has customers or not. We provide an exact analysis of the SD model and obtain the probability generating function of the joint queue length distribution at a polling epoch, from which the moments of the waiting times at the various queues are obtained. A number of numerical examples are presented, to reveal conditions under which the SD model could perform worse than the corresponding SI model or, alternately, conditions under which the SD model performs better than a corresponding model in which all setup times are zero. We also present expressions for a variant of the SD model, namely, the SD model with a patient server.  相似文献   

10.
We consider a polling model of two M/G/1 queues, served by a single server. The service policy for this polling model is of threshold type. Service at queue 1 is exhaustive. Service at queue 2 is exhaustive unless the size of queue 1 reaches some level T during a service at queue 2; in the latter case the server switches to queue 1 at the end of that service. Both zero- and nonzero switchover times are considered. We derive exact expressions for the joint queue length distribution at customer departure epochs, and for the steady-state queue-length and sojourn time distributions. In addition, we supply a simple and very accurate approximation for the mean queue lengths, which is suitable for optimization purposes.  相似文献   

11.
We consider two-queue polling models with the special feature that a timer mechanism is employed at Q 1: whenever the server polls Q 1 and finds it empty, it activates a timer and remains dormant, waiting for the first arrival. If such an arrival occurs before the timer expires, a busy period starts in accordance with Q 1's service discipline. However, if the timer is shorter than the interarrival time to Q 1, the server does not wait any more and switches back to Q 2. We consider three configurations: (i) Q 1 is controlled by the 1-limited protocol while Q 2 is served exhaustively, (ii) Q 1 employs the exhaustive regime while Q 2 follows the 1-limited procedure, and (iii) both queues are served exhaustively. In all cases, we assume Poisson arrivals and allow general service and switchover time distributions. Our main results include the queue length distributions at polling instants, the waiting time distributions and the distribution of the total workload in the system.  相似文献   

12.
Feng  W.  Kowada  M.  Adachi  K. 《Queueing Systems》1998,30(3-4):405-434
In this paper, we present a detailed analysis of a cyclic-service queueing system consisting of two parallel queues, and a single server. The server serves the two queues with a Bernoulli service schedule described as follows. At the beginning of each visit to a queue, the server always serves a customer. At each epoch of service completion in the ith queue at which the queue is not empty, the server makes a random decision: with probability pi, it serves the next customer; with probability 1-pi, it switches to the other queue. The server takes switching times in its transition from one queue to the other. We derive the generating functions of the joint stationary queue-length distribution at service completion instants, by using the approach of the boundary value problem for complex variables. We also determine the Laplace-Stieltjes transforms of waiting time distributions for both queues, and obtain their mean waiting times. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

13.
The dual queue consists of two queues, called the primary queue and the secondary queue. There is a single server in the primary queue but the secondary queue has no service facility and only serves as a holding queue for the overloaded primary queue. The dual queue has the additional feature of a priority scheme to help reduce congestion. Two classes of customers, class 1 and 2, arrive to the dual queue as two independent Poisson processes and the single server in the primary queue dispenses an exponentially distributed service time at the rate which is dependent on the customer’s class. The service discipline is preemptive priority with priority given to class 1 over class 2 customers. In this paper, we use matrix-analytic method to construct the infinitesimal generator of the system and also to provide a detailed analysis of the expected waiting time of each class of customers in both queues.  相似文献   

14.
Consider a symmetrical system of n queues served in cyclic order by a single server. It is shown that the stationary number of customers in the system is distributed as the sum of three independent random variables, one being the stationary number of customers in a standard M/G/1 queue. This fact is used to establish an upper bound for the mean waiting time for the case where at most k customers are served at each queue per visit by the server. This approach is also used to rederive the mean waiting times for the cases of exhaustive service, gated service, and serve at most one customer at each queue per visit by the server.  相似文献   

15.
A polling model with smart customers   总被引:1,自引:0,他引:1  
In this paper we consider a single-server, cyclic polling system with switch-over times. A distinguishing feature of the model is that the rates of the Poisson arrival processes at the various queues depend on the server location. For this model we study the joint queue length distribution at polling epochs and at the server’s departure epochs. We also study the marginal queue length distribution at arrival epochs, as well as at arbitrary epochs (which is not the same in general, since we cannot use the PASTA property). A generalised version of the distributional form of Little’s law is applied to the joint queue length distribution at customer’s departure epochs in order to find the waiting time distribution for each customer type. We also provide an alternative, more efficient way to determine the mean queue lengths and mean waiting times, using Mean Value Analysis. Furthermore, we show that under certain conditions a Pseudo-Conservation Law for the total amount of work in the system holds. Finally, typical features of the model under consideration are demonstrated in several numerical examples.  相似文献   

16.
Takine  Tetsuya 《Queueing Systems》2001,37(1-3):31-63
This paper considers stationary queues with multiple arrival streams governed by an irreducible Markov chain. In a very general setting, we first show an invariance relationship between the time-average joint queue length distribution and the customer-average joint queue length distribution at departures. Based on this invariance relationship, we provide a distributional form of Little's law for FIFO queues with simple arrivals (i.e., the superposed arrival process has the orderliness property). Note that this law relates the time-average joint queue length distribution with the stationary sojourn time distributions of customers from respective arrival streams. As an application of the law, we consider two variants of FIFO queues with vacations, where the service time distribution of customers from each arrival stream is assumed to be general and service time distributions of customers may be different for different arrival streams. For each queue, the stationary waiting time distribution of customers from each arrival stream is first examined, and then applying the Little's law, we obtain an equation which the probability generating function of the joint queue length distribution satisfies. Further, based on this equation, we provide a way to construct a numerically feasible recursion to compute the joint queue length distribution.  相似文献   

17.
This paper considers the queue length distribution in a class of FIFO single-server queues with (possibly correlated) multiple arrival streams, where the service time distribution of customers may be different for different streams. It is widely recognized that the queue length distribution in a FIFO queue with multiple non-Poissonian arrival streams having different service time distributions is very hard to analyze, since we have to keep track of the complete order of customers in the queue to describe the queue length dynamics. In this paper, we provide an alternative way to solve the problem for a class of such queues, where arrival streams are governed by a finite-state Markov chain. We characterize the joint probability generating function of the stationary queue length distribution, by considering the joint distribution of the number of customers arriving from each stream during the stationary attained waiting time. Further we provide recursion formulas to compute the stationary joint queue length distribution and the stationary distribution representing from which stream each customer in the queue arrived.  相似文献   

18.
We study an M/G/1 processor sharing queue with multiple vacations. The server only takes a vacation when the system has become empty. If he finds the system still empty upon return, he takes another vacation, and so on. Successive vacations are identically distributed, with a general distribution. When the service requirements are exponentially distributed we determine the sojourn time distribution of an arbitrary customer. We also show how the same approach can be used to determine the sojourn time distribution in an M/M/1-PS queue of a polling model, under the following constraints: the service discipline at that queue is exhaustive service, the service discipline at each of the other queues satisfies a so-called branching property, and the arrival processes at the various queues are independent Poisson processes. For a general service requirement distribution we investigate both the vacation queue and the polling model, restricting ourselves to the mean sojourn time.  相似文献   

19.
We study N-queues single-server fluid polling systems, where a fluid is continuously flowing into the queues at queue-dependent rates. When visiting and serving a queue, the server reduces the amount of fluid in the queue at a queue-dependent rate. Switching from queue i to queue j requires two random-duration steps: (i) departing queue i, and (ii) reaching queue j. The length of time the server resides in a queue depends on the service regime. We consider three main regimes: Exhaustive, Gated, and Globally-Gated. Two polling procedures are analyzed: (i) cyclic and (ii) probabilistic. Under steady-state, we derive the Laplace–Stieltjes transform (LST), mean, and second moment of the amount of flow at each queue at polling instants, as well as at an arbitrary moment. We further calculate the LST and mean of the “waiting time” of a drop at each queue and derive expressions for the mean total load in the system for the various service regimes. Finally, we explore optimal switching procedures.  相似文献   

20.
Consider a polling system of two queues served by a single server that visits the queues in cyclic order. The polling discipline in each queue is of exhaustive-type, and zero-switchover times are considered. We assume that the arrival times in each queue form a Poisson process and that the service times form sequences of independent and identically distributed random variables, except for the service distribution of the first customer who is served at each polling instant (the time in which the server moves from one queue to the other one). The sufficient and necessary conditions for the ergodicity of such polling system are established as well as the stationary distribution for the continuous-time process describing the state of the system. The proofs rely on the combination of three embedded processes that were previously used in the literature. An important result is that ρ=1 can imply ergodicity in one specific case, where ρ is the typical traffic intensity for polling systems, and ρ<1 is the classical non-saturation condition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号