首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Theg-factors of the four lowest states of the ground state rotational band of158Dy have been determined asg(2 1 + )=+0.362(23),g(4 1 su+ )=+0.340(20),g(6 1 su+ )=+0.207(36) andg(8 1 su+ )=+0.21(11). Theg-factors of the 2+ and 4+ states were measured by the IPAC method with radioactive samples of 2.4 h158Er in external magnetic fields. To investigate the higher states, for the first time an on-line γ—γ IPAC experiment was performed with the reaction156Gd(α, 2n)158Dy by use of the static hyperfine field of DyGd.  相似文献   

2.
The nuclear Larmor precession has been observed for the 2+, 4+ and 6+ rotational states of184W in the hyperfine field of WFe by application of the TDPAC and the IPAC techniques. A carrier free radioactive source of184m Re alloyed with high purity iron was used for all three measurements. From the Larmor precession observed in the 2+ state by TDPACω L = 944(15) MHz and the knowng-factor the hyperfine fieldB 300 K hf (WFe)=?69.6(27)T was derived. The deviation from the result of a spin echo experiment with183WFe extrapolated to room temperature may be caused by the Bohr-Weisskopf effect (hyperfine anomaly). IPAC measurements with the same sample polarized in an external magnetic field of 1.6T gave for the 4+ and 6+ rotational states: ω L τ(4+)=0.0609(22) andω L τ(6+)=0.00735(102). By use of experimentalB(E2)-values theg R -factors were derived asg R (4+)=+0.276(26) andg R (6+)=+0.281(45). The directional correlation of the 537?384 keVγ-γ cascade has been analysed in terms of anE1/M2/E3 mixture for theK-forbidden 537keV transition. We obtained the mixing ratiosδ(M2/E1)=±0.086(16),δ(E3/E1)=?0.028(5) with the sign convention of Krane and Steffen.  相似文献   

3.
NMR/ON measurements on141CeFe show the sign of the hyperfine field of CeFe to be negative. For the141Ce nucleus a g-factor of ¦gN¦=0.311±0.011 is found. With this g-value a hyperfine field of Hhf=?41±2 T for CeFe is derived. Low temperature nuclear orientation experiments on141CeCo and140LaFe yield ¦Hhf¦=30±3 T and ¦Hhf¦=46±5 T respectively. The valence of cerium impurities in Fe, Co and Ni is discussed.  相似文献   

4.
The gyromagnetic ratios and the half-lifes of the 141 keV and 181 keV states of99Tc have been remeasured. The results,g(141 keV)=+1.280(44);g(181 keV)=+1.446(20) andT 1/2(141 keV)=0.205(4)ns;T 1/2(181 keV)=3.44(3) ns are in only fair agreement with prior published data but more precise. They confirm that both states are members of the ground state core vibration multiplet. The hyperfine field of TcFe has been determined asB hf 10K (TcFe)=30.42 (30)T;B hf 290K (TcFe)=29.47 (29)T  相似文献   

5.
The hyperfine fields Bhf (RbFe), Bhf (SrFe) and Bhf (YFe) have been determined by the low temperature nuclear orientation of dilute samples of83Rb,83,85Sr and85Ym in an iron lattice to be Bhf (RbFe)=+54 (10) kG, Bhf (SrFe)=(?)100 (30) kG and Bhf (YFe)=?226 (10) kG. These results are compared with recent calculations for these fields (1), (2).  相似文献   

6.
The hyperfine interaction of192Ir nuclei as dilute impurities in Fe and Ni has been investigated with NMR on oriented nuclei. With the use of highly dilute and pure alloys the line widths could be reduced so far that the quadrupole splitting of192IrFe and192IrNi could be resolved. Taking hyperfine anomalies into account the ground state nuclear moments of192Ir are deduced as |μ|=1.924(10)μ N andQ=2.36(ll) b. The hyperfine field of IrNi was investigated as a function of the Ir concentrationc between 0.01 at % and 5 at %. The dependence ofH HF onc was found to be significantly smaller than that reported from Mössbauer effect measurements. Forc=0.01 at %H HF=?454.7(2.3)kG is deduced. The resonance shift with an external magnetic field has been studied precisely, yieldingK=0.012(23) andK=0.026(12) for the Knight-shift of192Ir in Fe and Ni, respectively.  相似文献   

7.
Radioactive109In(j π=9/2+;T 1/2=4.2h) and110In(j π=7+;T 1/2=4.9h) were produced via the109Ag (α, xn) reactions and recoil-implanted into Fe foils. With the technique of nuclear magnetic resonance on oriented nuclei the magnetic hyperfine splittings were investigated in external magnetic fieldsB 0=0.5...4.2 kG. The zero-field splitting were measured as 268.9(2)MHz and 147.3(3)MHz for109InFe and110InFe, respectively. With the known hyperfine fieldB HF(InFe)=?286.6(5) kG the nuclearg-factors are deduced asg(109In)=1.231(3) andg(110In)=0.674(2). Our result for109In shows that theπ g 9/2 g-factors vary by only ~0.1% betweenA=109 and 115. For the |π 9/2 vd 5/27+ of110In the additivity relation of magnetic moments is fulfilled to on accuracy of 0.3(3)%.  相似文献   

8.
The properties of ferromagnetic Gd as a host for IMPAC measurements have been investigated. The transient and internal magnetic fields at Cd, Nd, Sm, Dy, Er, Yb and Hf nuclei recoil implanted into polarized Gd at 80 K have been studied by the IMPAC technique. All available experimental transient field data for Gd have been analysed in the framework of the Lindhard-Winther theory. Empirical values of the parametersv p andC ion C atom have been deduced which give good agreement between experiments and theory. Internal magnetic fields at rare-earth nuclei in magnetized Gd at 80 K have been deduced. The results areH h.f. (NdGd)=?1370±440 kG,H h.f.(SmGd)=?1440±120 kG,H h.f.(DyGd)=1410±400 kG,H h.f.(ErGd)=2310±420 kG andH h.f.(YbGd)=?216±32 kG. The signs of these fields are, except for Yb which is in a 2+ ionic state, consistent with a ferromagnetic coupling between the 4f spins of the implanted ion and the Gd host. The deduced internal field at Hf in Gd is ?440±90 kG. The observed time-dependent interactions for rare-earth nuclei in ferromagnetic Gd are consistent with the Abragam-Pound theory. For the Cd isotopes,g-factors of the first 2+ states were deduced from the experiments. The results areg(110Cd)=0.49±0.11,g(114Cd)=0.34±0.09 andg(116Cd)=0.41±0.11. The use of transient magnetic fields forg-factor measurements on high-spin rotational states is discussed.  相似文献   

9.
Angular distributions have been measured forγ-rays emitted following the decays of97, 103, 105Ru oriented in an iron matrix at temperatures down to 2.8mK. From the temperature dependence of theγ-anisotropies the magnetic hyperfine splitting frequenciesν M =| N B HF/h| of97, 103, 105RuFe were found to be 110(7), 57(15) and 80 ?50 +17 MHz, respectively. With the known hyperfine fieldB HF=?489.6(4.0) kG the nuclearg-factors are derived as ∣g(97Ru;j π=5/2+)∣=0.29(2), ∣g(103Ru;j π=3/2+)∣=0.15(4) and ∣g(105Ru;j π=3/2+)∣=0.21 -0.13 +0.05 . The analysis for103RuFe has been performed with the assumption ofj π=3/2+ and 5/2+ for the ground state of103Ru. Taking into account experimentally knowng-factors of 3/2+ and 5/2+ states in this mass region, our data strongly favour the assignmentj π=3/2+ for the103Ru ground state.  相似文献   

10.
Theg-factor of the 2+ rotational state of184W was redetermined by an IPAC measurement in an external magnetic field of 9.45 (5)T as: $$g_{2^ + } (^{184} W) = + 0.289(7).$$ In the evaluation the remeasured half-life of the 2+ state: $$T_{{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}} (2^ + ) = 1.251(12)ns$$ was used. TDPAC-measurements with a sample of carrierfree184Re in high purity iron gave the hyperfine fields: $$B_{300 K}^{hf} (^{184} W_2 + \underline {Fe} ) = 70.1(21)T$$ and $$B_{40 K}^{hf} (^{184} W_{2^ + } \underline {Fe} ) = 71.8(22)T.$$ A comparison with the hyperfine field known from a spin echo experiment with183W g Fe leads to the hyperfine anomaly: $$^{184} W_{2^ + } \Delta ^{183} W_g = + 0.145(36).$$ The hyperfine splitting observed in a Mössbauer source experiment with another sample of carrierfree184m Re in high purity iron indicates that the smaller splitting, measured previously by a Mössbauer absorber experiment is due to the high tungsten concentration in the absorber. The new value for theg-factor of the 2+ state together with the result of the Mössbauer experiment allow an improved calibration for our recent investigation of theg R -factors of the 4+ and 6+ rotational states. The recalculated values are: $$g_{4^ + } (^{184} W) = + 0.293(23)$$ and $$g_{6^ + } (^{184} W) = + 0.299(43).$$ The remeasured 792-111 keVγ-γ angular correlation $$W(\Theta ) = 1 - 0.034(4) \cdot P_2 + 0.325(6) \cdot P_4 $$ gives for the mixing ratio of theK-forbidden 792keV transition: $$\delta ({{E2} \mathord{\left/ {\vphantom {{E2} {M1}}} \right. \kern-\nulldelimiterspace} {M1}}) = - \left( {17.6\begin{array}{*{20}c} { + 1.8} \\ { - 1.5} \\ \end{array} } \right).$$ A detailed investigation of the attenuation ofγ-γ angular correlations in liquid sources of184Re and184m Re revealed the reason for erroneous results of early measurements of the 2+ g R -factor: The time dependence of the perturbation is not of a simple exponential type. It contains an unresolved strong fast component.  相似文献   

11.
At external magnetic fields between 1.3 and 22.5 kG the integral αγ-angular correlations of theO +(α)2+(γ)O + cascades from the ground states of228Th and224Ra respectively implanted into iron and aluminum lattices have been studied. The data were analyzed assuming different additional time dependent and static perturbations. The rotation of the angular correlation for Ra in Al proved independent of these assumptions. Therefore ag-factor of the 84.4 keV 2+ state in224Rag=0.46 (11) could be derived. Although static electric interactions seem the most probable cause for the attenuations observed for Ra and Rn implanted into Fe it was found that the two parameter Abragam and Pound theory better reproduces the data than the one parameter static perturbations. Therefore the hyperfine fields experienced by Ra and Rn in Fe were derived using Abragam and Pound theory to beH HF(RaFe)=?127(31) kG andH HF(RnFe)=1095 kG.  相似文献   

12.
g-factors of rotational states in 176Hf and 180Hf were measured with the twelve detector IPAC-apparatus of our laboratory [1]. The natural radioactivity 3.78 · 1010y 176Lu and the 5.5 h isomer 180mHf were used which populate the ground-state rotational bands of 176Hf and 180Hf. The integral rotations of γ-γ directional correlations in strong external magnetic fields and in static hyperfine fields of (Lu → Hf)Fe2 and HfFe2 were observed. The following results were obtained: The hyperfine field in (Lu → Hf)Fe2 was calibrated by observing the integral rotation of the 9/2? first excited state of 177Hf populated in the decay of 6.7d 177Lu. The g-factor of this state was redetermined in an external magnetic field as Finally the g-factor of the 2 1 + state of 176Hf was derived from the measured g(2 1 + ) of 180Hf by use of the precisely known ratio g(2 1 + , 176Hf)/g(21 +, 180Hf) [2] as   相似文献   

13.
The followingg-factors have been derived from time integral measurements of γ-γ angular correlations in the static magnetic hyperfine field of magnetized gadolinium metal probes:156Gd:g(4 1 + )=+0.310(19)g(6 1 + )=+0.25(21)g(4 3 + , 1511 keV)=+0.809(27)158Gd:g(4 1 + )=+0.409(15). The 5.35d 156Tb sources were produced by the reaction156Gd(d, 2n)156Tb in our cyclotron. A carrier-free 150y 158Tb source was obtained from ISOLDE/CERN. In comparison with the precisely knowng-factors of the 2 1 + states,g(2 1 su+ ,156Gd) =+0.386(4) andg(2 1 + ,158Gd)=0.381(4), we observe a large reduction for the156Gd 4 1 + state whereasg increases slightly for158Gd. The half-life of the 4 1 + state of158Gd was remeasured as158Gd:T 1/2(4 1 + )=148(2) ps. A measurement of the rotation in the 4 3 + state of156Gd in external magnetic fields of various strengths up toB ext=9.5 T did not confirm the anomalous dependence of the magnetic hyperfine field in gadolinium metal on the external field, which has been reported by Persson et al. [29].  相似文献   

14.
By use of Ge-detectors of the OSIRIS-collaboration [1] in connection with the 12 detector IPAC apparatus of our laboratory [2] a precise measurement of theg-factor of the 4 1 + rotational state of160Dy was performed. The directional correlations of the threeγ-γ cascades, 1003-197 keV, 1103-197 keV and 1115-197 keV, which are weakly populated in the decay of 72.3 d160Tb were observed simultaneously. The integral rotations in the static hyperfine field of DyTb at 4.2 K were measured. Theg-factorg(4 1 + )=+0.350(20) was derived. By comparison with the magnetic splitting of the 2 1 + rotational state observed in the same environment by a Mössbauer experiment [3] the ratio of the twog-factors was derived as g(4 1 + )/g(2 1 + )=+ 0.91(5). For the high energy lines we derived from the measured directional correlations the E1/M2 mixing parameters: δ(1003 keV)=+0.005(4); δ(1103 keV)=?0.020(22), and δ(1115 keV)=+0.010(4)  相似文献   

15.
Low temperature nuclear orientation and nuclear magnetic resonance (NMRON) have been used to measure the magnetic hyperfine interaction in96TcFe and the decay scheme properties of96Tc. The spin of the96Tc ground state is confirmed as 7. Its magnetic moment μ(96Tc)=5.37±0.17 n.m. The magnetic hyperfine field for96TcFe is ?298±10 kOe. The anisotropies of the 778, 813, 850 and 1126 keV transitions in96Mo agree with pure E2 multipolarity assignments. The spin-parity of the 2876 keV level is 7+.  相似文献   

16.
17.
The hyperfine interaction of183OsFe has been studied with nuclear magnetic resonance on oriented nuclei after recoil implantation. Taking into account the resonance displacement due to quadrupole interaction |gμ N H HF/h|=149.9(2) MHz has been found. WithH HF=?1,115(20) kG theg-factor of the 9/2+ [624] ground state of183Os is deduced asg=(?)0.176(3).  相似文献   

18.
The frequency dependence of the freezing temperatureT f(ν) is determined for the dilute spin glass systems (La, Gd)B6 and (Y, Gd)Al2 in the frequency range 10–1,000 Hz. While for (La, Gd)B6,T f(ν) is found to be weak, for (Y, Gd)Al2 T f(ν) is even stronger than for the previously studied system (La, Gd)Al2. Both, measurements of the temperature dependence of the susceptibility nearT f and calculations of the RKKY pair interaction, suggest that this difference is correlated with a different sign of the nearest-neighbor interaction, which appears to be antiferromagnetic for (La, Gd)B6 and ferromagnetic for (Y, Gd)Al2 as well as (La, Gd)Al2.  相似文献   

19.
Nuclear magnetic resonance measurements have been performed for189Pt and191Pt oriented at 7 and 15 mk in iron host. The magnetic hyperfine splitting frequencies, ν=¦μBHF/Ih¦, of the189Pt and191Pt ground states were determined to be 277.61(5) and 319.88(3) MHz. With the hyperfine field of BHF=-1280(26) kG the nuclear magnetic moments were deduced to be: ¦μ(189Pt;3/2?)¦=0.427(9) μN; ¦μ(191Pt,3/2?) ¦=0.492(10) μN. The effective spinlattice relaxation time for191PtFe at 7 mK in a polarizing magnetic field of 2 kG has been found to be 30(2) s using a single-exponential fit.  相似文献   

20.
The gyromagnetic ratios of the 4 1 + , 6 1 + , and 2 2 + states in186W were measured relative to that of the 2 1 + level by means of the transient field implantation perturbedγ-ray angular distribution technique. The nuclei in the states of interest were Coulomb excited using a beam of 220-MeV63Cu projectiles and recoiled swiftly through a thin, polarized Fe foil. The present measurements yielded ratiosg(4 1 + )/g(2 1 + )=1.04±0.07,g(6 1 + )/g(2 1 + )=1.03 ±0.20 andg(2 2 + )/g(2 1 + )=0.63±0.13. The sizable disparity between the measuredg-factors of the ground- and excited-band is examined within the context of the interacting boson approximation model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号