首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
《光谱学快报》2013,46(4-5):487-496
Abstract

Inverse secondary kinetic isotope effects are determined for the dimerization of all‐cis‐cyclononatetraenyl radical, 1, to its corresponding dimer, all‐cis‐9,9′‐bicyclonona‐1,3,5,7‐tetraene, 2, (step 1, k H/k D=0.5), and cyclization of the latter to 9,9′‐bisbicyclo[4.3.0]cyclonona‐2,4,7‐triene, 3 (step 2, k H/k D=0.75). These results are obtained by comparison of 1H‐ and 2D‐NMR spectra of 3 and employment of a simple statistical method for acquiring kinetic data. This new strategy appears superior to conventional methods in being fast, simple, and less expensive.  相似文献   

2.
Rate constants and kinetic isotope effects have been determined for the formation of nitronate anions from the ethers 1‐(2‐methoxyphenyl)‐2‐nitropropane, 7 (X = H, L = H and D) and 1‐(2‐methoxy‐5‐nitrophenyl)‐2‐nitropropane, 7 (X = NO2, L = H and D), and from the corresponding phenols, 1‐(2‐hydroxyphenyl)‐2‐nitropropane, 3 (X = H, L = H and D), and 1‐(2‐hydroxy‐5‐nitrophenyl)‐2‐nitropropane, 3 (X = NO2, L = H and D), in aqueous basic medium. For the ethers 7 , rates of deprotonation by hydroxide are comparable with those found for deprotonations of 2‐nitropropane, with kH/kD (25 °C) = 7.7 and 7.8, respectively. In both the cases, the isotope effects are conventionally temperature dependent. For the corresponding phenols 3 , conditions have been established under which the deprotonations of the nitroalkane are dominated by intramolecular deprotonation by the kinetically first‐formed phenolate anion, with an estimated effective molarity EM ~ 250. For 3 (X = H, L = H or D), kH/kD (25 °C) = 7.8, with E ? E = 6.9 kJ mol?1 and AH/AD = 0.5. For 3 (X = NO2, L = H or D), rates of intramolecular deprotonation are reduced 30‐fold, and an elevated kinetic isotope effect is found (kH/kD (25 °C) = 10.7). Activation parameters (E ? E = 17.8 kJ mol?1 and AH/AD = 0.008) are compatible with an enhanced tunnelling contribution to reactivity in the H‐isotopomer. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

3.
The second‐order rate constants k (dm3mol?1s?1) for alkaline hydrolysis of meta‐, para‐ and ortho‐substituted phenyl esters of benzoic acid, C6H5CO2C6H4‐X, in aqueous 50.9% (v/v) acetonitrile have been measured spectrophotometrically at 25 °C. In substituted phenyl benzoates, C6H5CO2C6H4‐X, the substituent effects log kX ? log kH in aqueous 50.9% acetonitrile at 25 °C for para, meta and ortho derivatives showed good correlations with the Taft and Charton equations, respectively. Using the log k values for various media at 25 °C, the variation of the ortho substituent effect with solvent was found to be precisely described with the following equation: Δlog kortho = log kortho ? log kH = 1.57σI + 0.93σ°R + 1.08EsB ? 0.030ΔEσI ? 0.069ΔEσ°R, where ΔE is the solvent electrophilicity, ΔE = ES ? EH20, characterizing the hydrogen‐bond donating power of the solvent. We found that the experimental log k values for ortho‐, para‐ and meta‐substituted phenyl benzoates in aqueous 50.9% acetonitrile at 25 °C, determined in the present work, precisely coincided with the log k values predicted with the equation (log kX)calc = (log kHAN)exp + (Δlog kX)calc where the substituent effect (Δlog kX)calc was calculated from equation describing the variation of the substituent effect with the solvent electrophilicity parameter, using for aqueous 50.9% CH3CN the solvent electrophilicity parameter, ΔE = ?5.84. In going from water to aqueous 50.9% CH3CN, the ortho inductive term grows twice less as compared with the para polar effect. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

4.
Transesterification of a phosphodiester bond of RNA models has been studied in various buffer solutions, under neutral and slightly alkaline conditions in H2O and D2O. The results show that imidazole is the only buffer system where a clear buffer catalysis on the cleavage of a phosphodiester bond is observed. The rate enhancement in sulphonic acid buffers is smaller, and a sulphonate base, particularly, is inactive as a catalyst. The rate‐enhancing effect of imidazole is, however, catalytic, and the catalytic inactivity of sulphonate buffers can be attributed to their structure and/or charge. The catalysis by imidazole is a complex system which, in addition to first‐order reactions, involves a process that shows a second‐order dependence in imidazole concentration. The latter reaction becomes significant in acidic imidazole buffers (pH < pKa), as the buffer concentration increases. The kinetic solvent deuterium isotope effect kH/kD, referring to first‐order catalysis by imidazole base, is 2.3 ± 0.3. That referring to second‐order catalysis is most probably much larger, but an accurate value could not be obtained. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

5.
Abstract

The kinetic hydrogen isotope effects in electrochemical reductions of CCl3COOD, CDCl2COOD, CCl4, CDCl3, benzyl chloride, 1-chloronaphthalene and 4-chlorobenzonitrile in deuterated reaction media were determined. The aliphatic chloro compounds are reduced with rather small isotope effects kH/kD = 1.2…1.7, as expected if anionic intermediates are formed and protonated. Benzyl chloride is reduced with an apparent kH/kD = 2.1, which is probably too high due to radical reactions. Aromatic chloro compounds are reduced with significant participation of a second mechanism via radical intermediates which abstract carbon-bound hydrogen atoms from the components of the reaction system. The resulting isotope effects are kH/kD = 1.2 for the part of the reduction which proceeds via anions and kH/kD ~ 2.5 for the competing radical reaction.  相似文献   

6.
The gas‐phase elimination kinetics of tetrahydropyranyl phenoxy ethers: 2‐phenoxytetrahydro‐2H‐pyran, 2‐(4‐methoxyphenoxy)tetrahydro‐2H‐pyran, and 2‐(4‐tert‐butylphenoxy)tetrahydro‐2H‐pyran were determined in a static system, with the vessels deactivated with allyl bromide, and in the presence of the free radical inhibitor toluene. The working temperature and pressure were 330 to 390°C and 25 to 89 Torr, respectively. The reactions yielded DHP and the corresponding 4‐substituted phenol. The eliminations are homogeneous, unimolecular, and satisfy a first‐order rate law. The Arrhenius equations for decompositions were found as follows:
  • 2‐phenoxytetrahydro‐2H‐pyran
  • log k1 (s?1) = (14.18 ± 0.21) ? (211.6 ± 0.4) kJ mol?1 (2.303 RT)?1
  • 2‐(4‐methoxyphenoxy)tetrahydro‐2H‐pyran
  • log k1 (s?1) = (14.11 ± 0.18) ? (203.6 ± 0.3) kJ mol?1 (2.303 RT)?1
  • 2‐(4‐tert‐butylphenoxy)tetrahydro‐2H‐pyran
  • log k1 (s?1) = (14.08 ± 0.08) ? (205.9 ± 1.0) kJ mol?1 (2.303 RT)?1
The analysis of kinetic and thermodynamic parameters for thermal elimination of 2‐(4‐substituted‐phenoxy)tetrahydro‐2H‐pyranes suggests that the reaction proceeds via 4‐member cyclic transition state. The results obtained confirm a slight increase of rate constant with increasing electron donating ability groups in the phenoxy ring. The pyran hydrogen abstraction by the oxygen of the phenoxy group appears to be the determinant factor in the reaction rate.  相似文献   

7.
Concentration dependent experimental measurements of the ethanol hydroxyl proton chemical shift σH for binary solutions were carried out. The solvents used were carbon tetrachloride (CCl4), benzene, chloroform, acetonitrile, acetone and dimethylsulphoxide (DMSO). The chemical shift values range from 0.69 ppm (relative to TMS) for dilute ethanol (extrapolated to infinite dilution) in CCl4 to 5.34 ppm for neat liquid ethanol. Ab initio calculations of the ethanol-solvent hydrogen bond energies show a correlation with the values for the chemical shift. The hydrogen bond energies for ethanol-solvent dimers range from 0.63 kcal mol?1 for ethanol-CCl4 to 9.34 kcal mol?1 for ethanol-DMSO. Theoretical calculations show a linear correlation between the deuterium quadrupole coupling parameter XD ar d the isotropic proton chemical shift σH: XD(kHz) = 291.48 ? 14.96 σH, where σH is the proton chemical shift in ppm relative to TMS (R 2 = 0.99). Using the concentration dependent chemical shift data and this equation, XD ia observed to range from 280 kHz for very dilute concentrations in CCl4, where the primary species is ethanol monomer, to 210 kHz for the neat liquid that is comprised primarily of cyclic pentamers.  相似文献   

8.
Alkaline hydrolysis of a series of X‐substituted‐phenyl diphenylphosphinothioates ( 2a‐i ) in 80 mol%/20 mol% DMSO at 25.0 ± 0.1°C has been studied kinetically and assessed through a multiparameter approach. Substrates 2a to 2i are approximately 12 to 22 times less reactive than their P=O analogues 1a to 1i (ie, the thio effect). The Brønsted‐type plot for the reactions of 2a to 2i is linear with βlg = ?0.43, consistent with a concerted mechanism. Hammett plots correlated with σo and σ? constants also support a concerted mechanism; the Yukawa‐Tsuno plot results in an excellent linear correlation with ρX = 1.26 and r = 0.30, indicating that expulsion of the leaving group occurs in the rate‐determining step (RDS). The ΔH? value increases from 10.5 to 11.7 and 13.9 kcal/mol as substituent X in the leaving group changes from 3,4‐(NO2)2 to 4‐NO2 and H, in turn, while TΔS? remains constant at ?6.0 kcal/mol. The strong dependence of ΔH? on the electronic nature of substituent X also indicates that the leaving group departs in the RDS. The reaction mechanism and origin of the thio effect are discussed by comparison of the current kinetic results with those reported for the reactions of 1a to 1i . The results suggest that for useful OP neurotoxins the mechanism of abiotic hydrolysis is concerted (with varying degrees of asynchronicity) when the substrate bears good leaving groups.  相似文献   

9.
The behaviour of Schiff bases of 3‐hydroxy‐4‐pyridincarboxaldehyde and 4‐R‐anilines (R?H, CH3, OCH3, Br, Cl, NO2) in acid media has been described. 1H, 13C, 15N‐NMR chemical shifts allow to establish the protonation site and its influence on the hydroxyimino/oxoenamino tautomerism. DFT calculations, electronic spectra and X‐ray diffraction are in agreement with the NMR conclusions. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

10.
The reactions of O‐(4‐methylphenyl) S‐(4‐nitrophenyl) dithiocarbonate and O‐(4‐chlorophenyl) S‐(4‐nitrophenyl) dithiocarbonate with a series of anilines are subjected to a kinetic investigation in 44 wt% ethanol–water, at 25.0 °C and an ionic strength of 0.2 M. The reactions are followed spectrophotometrically at 420 nm (appearance of 4‐nitrobenzenethiolate anion). Under excess amine, pseudo‐first‐order rate coefficients (kobs) are found. For the reactions of both substrates with anilines, plots of kobs versus free amine concentration at constant pH are nonlinear upwards, according to a second‐order polynomial equation. This kinetic behavior is in agreement with a stepwise mechanism consisting of two tetrahedral intermediates, one zwitterionic (T±) and the other anionic (T?), with a kinetically significant proton transfer from T± to an aniline to yield T?. The rate equation was derived from the proposed mechanism. By nonlinear least‐squares fitting of the rate equation to the experimental data, values of the rate micro‐coefficients involved in both steps were determined. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

11.
When N‐benzyl‐N′‐methylacetamidinium hydrochloride (pKa=11.8) is dissolved in D2O/DCl(1 M), an equilibrium of 2 54:46 stereoisomers in an ~2:1 =(R)Nδ+H(D) D/H ratio is formed. Therefore, 2 R =N‐benzyl (E and Z) and 2 R =N‐methyl (E and Z) groups attached to the corresponding H(D) (Z and E) for a total of 8 1H‐NMR signals are observed. Consequently, their rates of H and D transfer to D2O can be measured by means of the 1H‐NMR broadness (line shape) of the =(R )Nδ+H doublets and =(R )Nδ+D broad singlets. Acidity selectivity is observed for both processes. In fact, the relative proton and deuterium transfer rates follow the acidity order: =(PhCH2)Nδ+‐H(E) > =(PhCH2)Nδ+‐H(Z) > =(Me)Nδ+‐H(E) > =(Me)Nδ+‐H(Z). Proton transfer rates are in the range of 8 to 0.5 s‐1 with α = .92. This tendency is independently supported by the observed experimental chemical shift deuterium isotopic perturbation. The rate‐limiting step for proton exchange is the breaking of the hydrogen bond due to the fast amidine reprotonation (~1011 s). =(R)Nδ+D/=(R)Nδ+H equilibration is reached at ~80 s, and it can be measured by the relative =(R) Nδ+H versus =(R) Nδ+D signal integrations. The equilibrium of the 4 =(R)Nδ+H(D) centers is shifted toward deuterium, but they are further shifted in the more basic centers. Equilibrium is completely shifted toward D in the 4 centers when OD? contributes with the exchange process at pD > 3.  相似文献   

12.
The 13C nuclear magnetic resonance (NMR) chemical shifts δc of bridge group carbons (C‐β, C‐α, and C═N) were measured in this work for a wide set of substituted cinnamyl anilines p‐XC6H4CH═CHCH═NC6H4Y‐p (X = NO2, Cl, H, Me, MeO, or NMe2; Y = NO2, CN, CO2Et, Cl, F, H, Me, MeO, or NMe2) and were used to study the substituent effect. In the study on 13C NMR chemical shifts of the titled compounds with single substituent changed, for every bridge carbon δc, the effect of cinnamyl substituent X is opposite to that of aniline substituent Y. That is, the action of the same substituent on different aromatic rings is different from the 13C NMR chemical shifts, and for C‐β, C‐α, and C═N, the choice of correlation equation depends on the ratio ρF(Y)/ρR(Y). When the ratio ρF(Y)/ρR(Y) is close to 1, the chemical shifts of bridge carbons can be well correlated with the single‐parameter equation; otherwise, it is better to adopt the dual‐parameter equation for correlation, and the further the values of ρF(Y)/ρR(Y) stray from 1, the more suitable the corresponding δc values are to be correlated with the dual‐parameter equation. In the study on δc of model compounds with simultaneous variations of substituents X and Y, for δc(C═N), a multi‐parameter correlation equation is obtained, and the substituent cross‐interaction item Δσ2 is suitable to scale the interaction between substituents; however, for δc(C‐α and C‐β), the substituent cross‐interaction item Δσ2 is perhaps too small to be observed. The multi‐parameter correlation equations can be recommended to predict well the corresponding δc values of disubstituted cinnamyl anilines. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

13.
The kinetics and mechanism of the nucleophilic vinylic substitution of dialkyl (alkoxymethylidene)malonates (alkyl: methyl, ethyl) and (ethoxymethylidene)malononitrile with substituted hydrazines and anilines R1–NH2 (R1: (CH3)2N, CH3NH, NH2, C6H5NH, CH3CONH, 4‐CH3C6H4SO2NH, 3‐ and 4‐X‐C6H4; X: H, 4‐Br, 4‐CH3, 4‐CH3O, 3‐Cl) were studied at 25 °C in methanol. It was found that the reactions with all hydrazines (the only exception was the reaction of (ethoxymethylidene)malononitrile with N,N‐dimethylhydrazine) showed overall second‐order kinetics and kobs were linearly dependent on the hydrazine concentration which is consistent with the rate‐limiting attack of the hydrazine on the double bond of the substrate. Corresponding Brønsted plots are linear (without deviating N‐methyl and N,N‐dimethylhydrazine), and their slopes (βNuc) gradually increase from 0.59 to 0.71 which reflects gradually increasing order of the C–N bond formed in the transition state. The deviation of both methylated hydrazines is probably caused by the different site of nucleophilicity/basicity in these compounds (tertiary/secondary vs. primary nitrogen). A somewhat different situation was observed with the anilines (and once with N,N‐dimethylhydrazine) where parabolic dependences of the kinetics gradually changing to linear dependences as the concentration of nucleophile/base increases. The second‐order term in the nucleophile indicates the presence of a steady‐state intermediate ‐ most probably T±. Brønsted and Hammett plots gave βNuc = 1.08 and ρ = ?3.7 which is consistent with a late transition state whose structure resembles T±. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

14.
By using the mixed solvent of 50% H2O/50% D2O and employing deuterium decoupling, TROSY experiments exclusively detect NMR signals from semideuterated isotopomers of carboxamide groups with high sensitivities for proteins with molecular weights up to 80 kDa. This isotopomer-selective strategy extends TROSY experiments from exclusively detecting backbone to both backbone and side-chain amides, particularly in large proteins. Because of differences in both TROSY effect and dynamics between 15N–HE{DZ} and 15N–HZ{DE} isotopomers of the same carboxamide, the 15N transverse magnetization of the latter relaxes significantly faster than that of the former, which provides a direct and reliable stereospecific distinction between the two configurations. The TROSY effects on the 15N–HE{DZ} isotopomers of side-chain amides are as significant as on backbone amides.  相似文献   

15.
Long‐range electronic substituent effects were targeted using the substituent dependence of δC(C═N), and specific cross‐interactions were explored extendedly. A wide set of N‐(4‐X–benzylidene)‐4‐(4‐Y–styryl) anilines, p‐X–C6H4CH═NC6H4CH═CHC6H4p‐Y (X = NMe2, OMe, Me, H, Cl, F, CN, or NO2; Y = NMe2, OMe, Me, H, Cl, or CN) were prepared for this study, and their 13C NMR chemical shifts δC(C═N) of C═N bonds were measured. The results show that both the inductive and resonance effects of the substituents Y on the δC(C═N) of p‐X–C6H4CH═NC6H4CH═CHC6H4p‐Y are less than those of the substituents Y in p‐X–C6H4CH═NC6H4p‐Y. Moreover, the sensitivity of the electronic character of the C═N function to electron donation/electron withdrawal by the substituent X or Y attenuates as the length of the conjugated chain is elongated. It was confirmed that the substituent cross‐interaction is an important factor influencing δC(C═N), not only when both X and Y are varied but also when either X or Y is fixed. The long‐range transmission of the specific cross‐interaction effects on δC(C═N) decreases with increasing conjugated distance between X and Y. The results of this study suggest that there is a long‐range transmission of the substituent effects in p‐X–C6H4CH═NC6H4CH═CHC6H4p‐Y. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

16.
Anomalous H/D isotope effects were detected in the 1H MAS NMR spectra of piperidinium p-chlorobenzoate (C5H10NH $_{2}{^{+}}\cdot $ ClC6H4COO???) upon deuterium substitution of hydrogen atoms which form two kinds of N-H?O H-bonds in the crystal; in contrast to these spectra, only slight chemical shifts were recorded in 13C CP/MAS NMR spectra. 2H NMR spectrum of the deuterated sample show quadrupole coupling constants of 148 and 108 kHz, and reveal that there are a few motions contributing to the electric-field modulation of the 2H nucleus. The 1H MAS NMR spectra of piperidinium p-chlrobenzoate-d 16 (C5D10ND $_{2}{^{+}}\cdot $ ClC6D4COO???) and -d 14 (C5D10NH $_{2}{^{+}}\cdot $ ClC6D4COO???) revealed that the change in the envelope is caused by chemical shifts of each signal upon deuteration. Calculations based on the density-functional-theory showed that the N-H distance along the crystallographic a-axis mainly contributes to the anomalous isotope effects on 1H MAS NMR envelopes.  相似文献   

17.
The rate constant for the title reaction is represented by log (k M/M–1s–1)=6.9(4)–700(350)K/T between 279 and 343K, whereas the H analogous radical, C6H7, reacts at room temperature withk H 12 M–1s–1 with dimethylbutadiene. The title reaction is proposed to be transfer of the light hydrogen isotope, Mu, and the large kinetic isotope effect is discussed.Support by the Swiss National Foundation for Scientific Research and by the Swiss Institute for Nuclear Research (SIN) are gratefully acknowledged.  相似文献   

18.
The NMR spectra of solutions of 30%17O-enriched H2O and D2O in nitromethane display the resonances of the three isotopomers H2O, HDO, and D2O. All17O,1H and17O,2H coupling constants and the primary and secondary isotope effects onJ(17O,1H) have been determined. The primary effect is −1.0 ± 0.2 Hz and the secondary effect is −0.07 ± 0.04 Hz. Using integrated intensities in the17O NMR spectra, the equilibrium constant for the reaction H2O + D2O 2HDO is found to be 3.68 ± 0.2 at 343 K. From the relative integrated intensities of proton-coupled and -decoupled spectra the17O–{1H} NOE is estimated for the first time, resulting in values of 0.908 and 0.945 for H2O and HDO, respectively. This means that dipole–dipole interactions contribute about 2.5% to the overall17O relaxation rate in H2O dissolved in nitromethane.  相似文献   

19.
Alkali metal dodecahydro-closo-dodecaborates M2[B12H12] (M = K, Rb, Cs, NH4, N(CH3)4) and the perhalogenated cesium salts Cs2[B12X12] (X = Cl, Br, I) are studied by solid-state 11B nuclear magnetic resonance (NMR) spectroscopy as well as X-ray diffraction (XRD) and differential scanning calorimetry. The present work addresses the molecular dynamics of the anionic [B12X12]2− icosahedra which is examined by variable-temperature 11B NMR line shape studies between 120 and 370 K. Characteristic line shape effects are observed which strongly depend on the actual substituent X and the counterion M+. All alkali metal dodecahydro-closo-dodecaborates M2 [B12H12] exhibit at elevated temperatures 11B NMR spectra with a single isotropic line which proves the presence of an efficient molecular process, resulting in dynamic (rotational) disorder along with vanishing dipolar and quadrupolar interactions. The positional order of the boron clusters, however, remains unaffected, as shown by the XRD data. At lower temperatures, the underlying motions are frozen on the NMR timescale resulting in characteristic 11B NMR spectra with a dominant homonuclear 11B–11B dipolar splitting. The per-halogenated cesium salts Cs2[B12X12] behave differently. Hence, from the experimental 11B NMR spectra at room temperature a substantial mobility is only seen for the [B12Cl12]2− anion. Obviously, the degree of anion mobility depends on the size of the substituent X in the [B12X12]2− clusters (X = H, Cl, Br, I). A quantitative analysis of the experimental 11B NMR spectra of the alkali metal dodecahydro-closo-dodecaborates M2 [B12H12] is achieved by line shape simulations, considering [B12H12]2− ions undergoing reorientational jumps between icosahedral sites. From the motional correlation times the activation energies are derived. It is found that a correlation exists between the activation energies, the motional correlation times and the lattice constant. Hence, the activation energies and correlation times strongly increase with decreasing size of the cation M+, which reflects an increasing sterical hindrance due to a decreasing crystallo-graphic lattice constant in the same direction. Authors' address: Klaus Müller, Institut für Physikalische Chemie, Universit?t Stuttgart, Pfaffen-waldring 55, Stuttgart 70569, Germany  相似文献   

20.
High‐resolution stimulated Raman spectra of13C2H4 in the regions of the ν2 and ν3 Raman active modes have been recorded at two temperatures (145 and 296 K) based on the quasi continuous‐wave (cw) stimulated Raman spectrometer at Instituto de Estructura de la Materia IEM‐CSIC in Madrid. A tensorial formalism adapted to X2Y4 planar asymmetric tops with D2h symmetry (developed in Dijon) and a program suite called D2hTDS (now part of the XTDS/SPVIEW spectroscopic software) were proposed to analyze and calculate the high‐resolution spectra. A total of 103 and 51 lines corresponding to ν2 and ν3 Raman active modes have been assigned and fitted in wavenumber with a global root mean square deviation of 0.54 × 10−3 and 0.36 × 10−3 cm−1, respectively. Due to the fact that the Raman scattering effect is weak, we did not perform in this contribution the line intensities analysis. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号