首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Protein transport behavior was compared for the traditional SP Sepharose Fast Flow and the dextran-modified SP Sepharose XL and Capto S resins. Examination of the dynamic binding capacities (DBCs) revealed a fundamental difference in the balance between transport and equilibrium capacity limitations when comparing the two resin classes, as reflected by differences in the locations of the maximum DBCs as a function of salt. In order to quantitatively compare transport behavior, confocal microscopy and batch uptake experiments were used to obtain estimates of intraparticle protein diffusivities. For the traditional particle, such diffusivity estimates could be used to predict column breakthrough behavior accurately. However, for the dextran-modified media, neither the pore- nor the homogeneous-diffusion model was adequate, as experimental dynamic binding capacities were consistently lower than predicted. In examining the shapes of breakthrough curves, it was apparent that the model predictions failed to capture two features observed for the dextran-modified media, but never seen for the traditional resin. Comparison of estimated effective pore diffusivities from confocal microscopy and batch uptake experiments revealed a discrepancy that led to the hypothesis that protein uptake in the dextran-modified resins could occur with a shrinking-core-like sharp uptake front, but with incomplete saturation. The reason for the incomplete saturation is speculated to be that protein initially fills the dextran layer with inefficient packing, but can rearrange over time to accommodate more protein. A conceptual model was developed to account for the partial shrinking-core uptake to test whether the physical intuition led to predictions consistent with experimental behavior. The model could correctly reproduce the two unique features of the breakthrough curves and, in sample applications, parameters found from the fit of one breakthrough curve could be used to adequately match breakthrough at a different flow rate or batch uptake behavior.  相似文献   

2.
The effective pore diffusivities, D(e), of five model proteins (ribonuclease A, lysozyme, alpha-lactalbumin, ovalbumin, and BSA) in eight commercial phenyl hydrophobic interaction chromatography (HIC) media were determined by analyzing the plate height data from isocratic elution using the first two moments of the general linear rate model. The adsorbents represent a diverse set of HIC media that are widely used for protein purification. The estimated pore diffusivities were used to calculate the elution profiles of proteins in these adsorbents and were compared with the elution profiles obtained experimentally. High protein loading and sample protein concentration led to the underestimation of the pore diffusivity by the linear rate model. Comparisons between the calculated and the experimental profiles suggest that the pore diffusivities obtained from the linear rate model are generally accurate for proteins with low structural flexibility but not for more flexible ones, presumably because conformational change effects contribute significantly to the overall HETP. The general linear rate model was modified to account for the protein folding/unfolding kinetics, and parameter values could be estimated by fitting the experimental elution profiles to the modified model. In addition to conformational change, adsorbent type also had a significant effect on the accuracies of the pore diffusivities estimated by the linear rate model. The results also show that pore diffusion was the rate-limiting step in all absorbents for rigid proteins such as ribonuclease A and lysozyme. For structurally flexible proteins, conformational change contributed significantly to the overall reduced plate heights of the isocratic elution peaks. The physical properties of adsorbents, such as protein accessible porosity, pore size distribution, pore radius and pore connectivity, play important roles in determining the effective protein pore diffusivities.  相似文献   

3.
1.INTRODUCTIONThepolymericadsorbentAmberliteXAD-4isconsideredoneofthemostsuitablepolymericadsorbentsforremovingphenoliccompoundsfromwaterstreams[1,2]becauseitischemicallystable,notsolubleinsolventsandmoreselectiveforaromaticringsduetoitshydrophobicproperties.However,methanol,acetoneoracetonitrile,hastobeusedtoenhancethesurfacecontactbetweenadsorbentandthesolute.DavankovandTsyurupadescribedanewseriesofadsorbents[3,4].Thistechniqueyieldedpolystyrenesorbentsofunusualhypercrosslinkedstructu…  相似文献   

4.
The contributions of protein and adsorbent properties to retention and recovery were examined for hydrophobic interaction chromatography (HIC) using eight commercially available phenyl media and five model proteins (ribonuclease A, lysozyme, alpha-lactalbumin, ovalbumin and BSA). The physical properties of the adsorbents were determined by inverse size exclusion chromatography (ISEC). The adsorbents examined differ from each other in terms of base matrix, ligand density, porosity, mean pore radius, pore size distribution (PSD) and phase ratio, allowing systematic studies to understand how these properties affect protein retention and recovery in HIC media. The proteins differ in such properties as adiabatic compressibility and molecular mass. The retention factors of the proteins in the media were determined by isocratic elution. The results show a very clear trend in that proteins with high adiabatic compressibility (higher flexibility) were more strongly retained. For proteins with similar adiabatic compressibilities, those with higher molecular mass showed stronger retention in Sepharose media, but this trend was not observed in adsorbents with polymethacrylate and polystyrene divinylbenzene base matrices. This observation could be related to protein recovery, which was sensitive to protein flexibility, molecular size, and conformation as well as the ligand densities and base matrices of the adsorbents. Low protein recovery during isocratic elution could affect the interpretation of protein selectivity results in HIC media. The retention data were fitted to a previously published retention model based on the preferential interaction theory, in terms of which retention is driven by release of water molecules and ions upon protein-adsorbent interaction. The calculated number of water molecules released was found to be statistically independent of protein retention strength and adsorbent and protein properties.  相似文献   

5.
A comparison of the adsorption of benzoic acid and p-nitrobenzoic acid on the new hypercrosslinked polymeric adsorbent AM-I, with that by macroporous Amberlite XAD-4, including the equilibrium adsorption isotherms, the dynamic adsorption behaviors through column and the adsorption thermodynamics were studied. Results show that Freundlich equation gives a fitting adsorption isotherm. The specific surface of AM-l is only 67% of that of Amberlite XAD-4, but the adsorption capacities on AM-1 are much higher about 125%~166% than that on Amberlite XAD-4,which is contributed to the micropore mechanism and polarity. The negative values of the adsorption enthalpy are indicative of an exothermic process. Enthalpy and free energy changes of adsorption both manifest a physic-sorption process. The negative values of the adsorption entropy indicate that the adsorption is well consistent with the restricted mobilities and the configurations of the adsorbed benzoic acid molecules on the surface of studied adsorbents with superficial heterogeneity. Both adsorbents were used in mini-column experiments for adsorbing benzoic acid expecting to elucidate the higher breakthrough adsorption capacity of the new hypercrosslinked polymeric adsorbent AM-1 as compared with that of Amberlite XAD-4.  相似文献   

6.
The ion-exchange adsorption kinetics of bovine serum albumin (BSA) and gamma-globulin to an anion exchanger, DEAE Spherodex M, has been studied by batch adsorption experiments. Various diffusion models, that is, pore diffusion, surface diffusion, homogeneous diffusion and parallel diffusion models, are analyzed for their suitabilities to depict the adsorption kinetics. Protein diffusivities are estimated by matching the models with the experimental data. The dependence of the diffusivities on initial protein concentration is observed and discussed. The adsorption isotherm of BSA is nearly rectangular, so there is little surface diffusion. As a result, the surface and homogeneous diffusion models do not fit to the kinetic data of BSA adsorption. The adsorption isotherm of gamma-globulin is less favorable, and the surface diffusion contributes greatly to the mass transport. Consequently, both the surface and homogeneous diffusion models fit to the kinetic data of gamma-globulin well. The adsorption kinetics of BSA and gamma-globulin can be very well fitted by parallel diffusion model, because the model reflects correctly the intraparticle mass transfer mechanism. In addition, for both the favorably bound proteins, the pore diffusion model fits the adsorption kinetics reasonably well. The results here indicate that the pore diffusion model can be used as a good approximate to depict protein adsorption kinetics for protein adsorption systems from rectangular to linear isotherms.  相似文献   

7.
工业二乙烯苯悬浮聚合制备的大孔树脂,在二氯乙烷溶剂中以无水三氯化铁为催化剂进行悬挂双键后交联反应,得到的后交联树脂的比表面积和孔容都有显著增加.低温氮气吸附/脱附等温线得到的孔径分布曲线证明初始共聚物PDT-55(polydivinylbenzene,toluene as porogen)和PDH-55(polydivinylbenzene,heptane andtoluene as porogen)经后交联反应,所形成的新孔以微孔为主.树脂对水溶液中苯酚和维生素B12(VB12)的静态吸附研究发现树脂经后交联后,对苯酚的吸附量有显著提高,但对VB12的吸附量增加不大,原因是分子尺寸较大的VB12无法进入由悬挂双键后交联反应所形成的微孔.树脂PDT-55pc对苯酚的吸附量大于商品树脂XAD-4;后交联前后树脂PDT-55、PDT-55pc(post-crosslinking of PDT-55)、PDH-55、PDH-55pc(post-crosslinking ofPDH-55)对VB12的吸附量均大于树脂XAD-4.在本研究的实验条件下,Langmiur和Freundlich吸附等温线方程能很好地拟合树脂对水溶液中苯酚和VB12的吸附,相关系数在0.99以上.静态吸附动力学实验结果表明后交联前后树脂对苯酚的吸附较VB12更容易达到吸附平衡.吸附动力学数据的拟合结果显示,McKay二级吸附动力学模型符合树脂对苯酚的吸附,而对VB12的吸附更符合Lagergren一级吸附动力学模型.  相似文献   

8.
Experimental determination and modeling of IgG binding on a new protein A adsorbent based on a macroporous resin were performed. The new adsorbent consists of polymeric beads based on hydrophilic acrylamido and vinyl monomers with a pore structure optimized to allow favorable interactions of IgG with recombinant protein A coupled to the resin. The particles have average diameter of 57 μm and a narrow particle size distribution. The IgG adsorption equilibrium capacity is 46 mg/cm3 and the effective pore diffusivity determined from pulse response experiments for non-binding conditions is 8.0 × 10−8 cm2/s. The IgG adsorption kinetics can be described with the same effective diffusivity by taking into account a heterogeneous binding mechanism with fast binding sites, for which adsorption is completely diffusion controlled, and slow binding sites for which adsorption is controlled by the binding kinetics. As a result of this mechanism, the breakthrough curve exhibits a tailing behavior, which appears to be associated with the slow binding sites. A detailed rate model taking into account intraparticle diffusion and binding kinetics is developed and is found capable of predicting both batch adsorption and breakthrough behavior over an ample range of experimental conditions. The corresponding effective diffusivity is independent of protein concentration in solution over the range 0.2–2 mg/cm3 and of protein binding as a result of the large pore size of the support matrix. Overall, the small particle size and low diffusional hindrance allow capture of IgG with short residence times while attaining substantial dynamic binding capacities.  相似文献   

9.
Uptake kinetics and breakthrough behavior were determined for bovine serum albumin (BSA) and alpha-chymotrypsinogen (alphaCHY) in new polymeric ion-exchange media based on acrylamido monomers. Two anion exchangers and a cation exchanger were investigated. As shown in Part I of this work, the two anion exchangers have different morphologies. The first one, BRX-Q, comprises a low-density gel with a matrix of denser polymeric aggregates. While this material has a very low size-exclusion limit for neutral probes, it exhibits an extremely high binding capacity for BSA. The second anion exchanger, BRX-QP, comprises large open pores but has a very low binding capacity. The cation exchanger, BRX-S, also comprises large open pores but exhibits an intermediate capacity; likely as a result of the presence of smaller pores. Dynamic protein uptake experiments showed that the highest mass transfer rates are obtained with BRX-Q. The apparent diffusivity is also highest for this material and increases substantially as the protein concentration is reduced. For these particles, the external film resistance is dominant at very low protein concentrations. Much lower rates and apparent diffusivities are obtained for BRX-QP. Finally intermediate rates and apparent diffusivities are found with BRX-S. The concentration dependence of the apparent pore diffusivity is much less pronounced in this case. The apparently paradoxical result that mass transfer rates are highest for the material with the smallest neutral-probe size-exclusion limit can be explained in terms of a general conceptual model where parallel pore and adsorbed-phase diffusion paths exist in these particles. In the first case, adsorbed phase diffusion in gel pores is dominant, while in the second transport is dominated by diffusion in a macroporous network. In the third case, both contributions are important. The conceptual model provides an accurate prediction of the breakthrough behavior of columns packed with these media using independently determined rate parameters. Dynamic binding capacities of 80-140 mg/ml were observed for BSA on BRX-Q in ca. 1.5 cm columns operated at 300-900 cm/h in agreement with theoretical predictions.  相似文献   

10.
There are currently a large number of commercially available strong and weak cation-exchange adsorbents for preparative protein purification, typically prepared by coupling charged ligands to a mechanically rigid porous bead. Because of the diverse chemical nature of the base matrix (carbohydrate, synthetic polymer, inorganic) and the coupling and ligand chemistry, cation-exchange adsorbents from different suppliers can differ substantially in chemical surface properties and physical structure. The differences in chemical properties can be in ionic capacity, hydrophobicity, the presence of hydrogen bond donors/acceptors, and the nature of the charged functional groups. In order to probe the effects of these factors on protein affinity, the isocratic retention of a set of model proteins was examined on a set of cation-exchange adsorbents to obtain a quantitative assessment of retention differences between adsorbents. Two adsorbent factors were found to be the dominant determinants of overall protein retention: the anion type and the adsorbent pore size distribution. Protein retention on strong cation-exchangers was found to be greater than that on corresponding weak cation-exchangers. Protein retention was increased on adsorbents with pore size distributions that include significant amounts of pore space with dimensions similar to those of the protein solute.  相似文献   

11.
研究了带有不同功能基团的超高交联吸附树脂NG-10和NJ-99对水溶液中芳香两性化合物氨基苯甲酸的静态吸附性能,并与不带功能基团的吸附树脂CHA-111和XAD-4进行了比较.研究结果表明,树脂NJ-99对水溶液中氨基苯甲酸的吸附能力高于其他树脂.邻氨基苯甲酸在4种树脂上的吸附量均大于对氨基苯甲酸,主要原因是其溶解度小.吸附等温线采用经验的Freundlich方程和理论的Langmuir吸附方程来拟合,在实验所研究的浓度范围内,方程的拟合相关性均很好.  相似文献   

12.
The performance of weak and strong anion- and cation-exchange membrane adsorbents with a grafted gel layer (Sartobind Q, D, S, and C) was investigated using six proteins: bovine serum albumin, human serum albumin, α-lactalbumin, β-lactoglobulin, lysozyme, and myoglobin. Static binding experiments were used to assess the effect of pH and buffer concentration and to determine the adsorption isotherms for selected membrane/protein combinations. The equilibrium data were duly described either by the Langmuir or Freundlich isotherms. Dynamic binding experiments were carried out for the same membrane/protein combinations in a broad range of linear flow velocity. Both the dynamic binding capacity at 10 % breakthrough and the final binding capacity at complete breakthrough were independent of the flow velocity despite strong dispersion of the adsorption zone. A good match between the equilibrium data from static and dynamic experiments was obtained for the anion exchangers. The correlation between the dynamic binding capacity and protein molecule size was observed for the strong cation exchanger. This was due to the different accessibility of the gel layer for the protein molecules.  相似文献   

13.
Macroporous chitosan membranes with controlled pore sizes and good mechanical properties were prepared and cross-linked with ethylene glycol diglycidyl ether to increase their chemical stability. Because of their amine groups, they can serve as anion-exchangers (with an ion-exchange capacity as high as 0.83 meq/g dry cross-linked membrane) and can be employed for protein separations in the ion-exchange mode. At pH<7, their surface is positively charged, and they can adsorb proteins with a pI<6 at appropriate pHs. Five proteins, namely ovalbumin (pI=4.6), human serum albumin (pI=4.8), soybean trypsin inhibitor (pI=4.5), lysozyme (pI=11) and cytochrome C (pI=10.6) were selected as model proteins to investigate their adsorption on the chitosan membranes. Relatively high dynamic capacities were achieved at a flow rate of 2 ml/min, namely 11.6, 19 and 20.8 mg/ml membrane for human serum albumin, ovalbumin and soybean trypsin inhibitor, respectively. These proteins could be efficiently recovered (91–98%) from the membranes using a 1 N NaCl in 0.02 N sodium phosphate solution (pH 6) as eluant. Protein separations were performed from binary mixtures (ovalbumin–lysozyme, human serum albumin–cytochrome C, and soybean trypsin inhibitor–cytochrome C), and high purity products (∼99%) obtained in a single pass. These membranes showed high stability and reproducibility.  相似文献   

14.
为了获得性能较佳的胆红素吸附剂,本研究考察了功能基种类、链长、偶联密度等因素对吸附剂吸附性能的影响。结果表明,当功能基具有足够的链长,与胆红素相似的疏水性及较高的偶联密度时,能够提高吸附剂的胆红素吸附能力。实验表明,链长21个原子、偶联73 mol/mL正丁胺的吸附剂对胆红素的吸附能力最强,在30℃、300mg/L的白蛋白结合胆红素溶液中,吸附1h即达到平衡,胆红素吸附量达到3.01mg/mL(90.3mg/g干重);较高的温度有利于其对胆红素的吸附。50mL材料对500mL实际病人血浆动态吸附2.5h,总胆红素(277.4mg/L)去除率达到55.2%,同时对血浆蛋白的吸附较低。所有结果显示该吸附剂具有很强的实际应用的潜力。  相似文献   

15.
In this article, highly efficient magnetic chitosan nanoparticles were prepared by the glutaraldehyde cross-linking method and then chemically-modified with amino groups through reaction between triethylenetramine and glycidyl methacrylate. The adsorption kinetics and isotherms of these novel adsorbents fit the pseudo-second-order model and the Langmuir model. The maximum adsorption capacities were 293?mg/g at pH?=?4.3 and t?=?1.4 hours. The rate-limiting step was the chemical adsorption. Further recycling experiments showed that the adsorbent provided the potential regeneration and reuse after adsorbing Cu2+. All the experimental results demonstrated that the adsorbent had a potential application in Cu2+ removal from wastewater.  相似文献   

16.
A new technique in downstream processing, suspended bed chromatography has been developed. This hybrid technique exploiting the benefits of batch adsorption and the process advantages of an enclosed column system can be carried out using established contactors and adsorbents. A 44 cm I.D. IsoPak column and the anion-exchange cellulose Express-Ion Exchanger Q were used in the purification of ovalbumin from hen-egg white. After suspension of 16.25 kg Express-Ion Q in 500 l of feedstock containing 5 g protein/l, adsorption was effected by recirculation of the suspension using the IsoPak slurry preparation station. Protein-loaded adsorbent was collected in the IsoPak column unit, where it was washed and protein desorbed using gradient elution at a flow-rate of 300 cm/h. The entire process was complete in under 3 h. With the introduction of pump-packed column systems and the availability of mechanically strong adsorbents suitable for column separations, suspended bed chromatography offers a new approach to downstream processing and provides a less challenging alternative to batch separations.  相似文献   

17.
The aim of this work was to investigate the aqueous mercury adsorption in a fixed bed of mesostructured silica SBA-15 functionalized with propylthiol by co-condensation (SBA-15-SH). Powdered synthesized adsorbents were used to prepare pellets with sizes ranging from 0.5 to 1 mm. The physicochemical properties determined from N2 adsorption and chemical analysis were compared for powder and pellets. Batch static experiments were carried out to obtain the equilibrium mercury adsorption isotherms, resulting that although the maximum adsorption capacity was reduced from powder to pellets, the materials maintained high efficiency for mercury removal even at very low aqueous metal concentration. Dynamic experiments were carried out in a fixed bed column by modifying the volumetric flow rate, bed length, inlet concentration, and amount of propylthiol groups incorporated to the adsorbent, and analyzing the temporal scale and the mercury adsorption capacities. The elution of the fixed bed was carried out chemically by circulating an aqueous 2 M hydrobromic acid stream for 2 h so achieving a complete recovery of the mercury previously adsorbed. Simplified dynamic equations of Bohart–Adams and Wolborska were used for modeling the breakthrough curves.  相似文献   

18.
Measurements have been made of uptake of acetic acid and water from low-pH aqueous solution onto polymeric adsorbents and activated carbons. In additon to composite isotherms, isotherms were obtained for acetic acid and water individually by use of gas-chromatographic and Karl Fisher techniques for analyses of both bulk solution and the material taken up by the adsorbent. While capacities for acetic acid are determined by the surface area and the chemical nature of the adsorbent, selectivity is governed by the pore volume and the wetting and swelling tendencies of the sorbent, with the latter being particularly important for polymers. Activated carbons and pyrolyzed polymers give better selectivity than do common polymeric adsorbents.

Measurements of pore volume by immersion in various liquids were compared with pore volumes computed from nitrogen adsorption-desorption measurements and from mercury-intrusion porosimetry. The nitrogen adsorption-desorption results were interpreted to obtain micropore and mesopore volumes. The results from the different methods agree well, if allowance is made for lack of full wetting and for swelling tendencies. Higher selectivity for acetic acid over water is obtained for adsorbents having a large percentage of the pore volume as micropores.

Measurements of competitive adsorption of acetic acid and methyl ethyl ketone from aqueous solution onto different carbons and pyrolyzed polymers showed that a higher surface density of active hydrogen sites, as measured by reaction with LiAlH4, leads to an improved selectivity for the carboxylic acid.  相似文献   

19.
The adsorption of ovalbumin, -globulin, and lysozyme on uniform spherical hematite and chromium hydroxide particles in aqueous media has been studied as a function of the pH at a constant ionic strength. The uptake of ovalbumin and -globulin was greatest at their isoelectric points and differed little at 10–2 and 10–3 mol dm–3 NaNO3. The adsorption of lysozyme was strongly influenced by the ionic strength.The deposition of ovalbumin on hematite in the presence of Mg (NO3)2 was significantly greater than that with NaNO3 under otherwise comparable conditions. Dialysis experiments with ovalbumin against magnesium nitrate solutions showed Mg2+ to be specifically bound to the protein.The shapes of isotherms indicated monolayer coverage for ovalbumin and multilayer coating for lysozyme for both adsorbents. The shapes of isotherms of -globulin on hematite point to a rearrangement of the protein on the particle surface, while a monolayer was found on chromium hydroxide particles.Supported by the NSF Grant CHE-9108420Part of a Ph.D. thesis  相似文献   

20.
Custom-synthesized variants of the commercial Capto S resin were used to examine the effects of resin charge density and dextran content on protein adsorption and intraparticle uptake. For the small protein lysozyme, resin charge density had the greatest effect on equilibrium capacity, consistent with calculations suggesting that lysozyme capacity should be limited by the available charge on the resin. Isocratic retention data and confocal microscopy imaging for this protein revealed a consistent ordering of the resins linking stronger protein-resin interactions with higher static capacities but slower intraparticle uptake rates over the range of properties studied. For the larger protein lactoferrin, it was found that increasing dextran content led to increased protein exclusion from the dextran layer, but that increasing resin charge density helped overcome the exclusion, presumably due to the increased electrostatic attraction between the resin and protein. Collectively examining the lysozyme and lactoferrin data along with information from previous studies suggests that a trade-off in maximizing dynamic capacities should exist between static capacities that increase to a finite extent with increased resin charge density and uptake rates that decrease with increased charge density. Column breakthrough data for lysozyme and lactoferrin appear to support the hypothesis, though it appears that whether a resin charge density is low or high must be considered in relation to the protein charge density. Using these trends, this work could be useful in guiding resin selection or design.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号