首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
The synthesis and magnetic properties of the high-spin tetranuclear cluster [Mn(III)(2)Mn(II)(2)(O(2)CC(CH(3))(3))(2)(teaH(2))(2)(teaH)(2)](O(2)CC(CH(3))(3))(2) (1) (where teaH(3) = triethanolamine) is described. Complex 1 is the pivalate analogue of our previously reported family of tetranuclear mixed-valence carboxylate clusters. The teaH(2)(-) and teaH(2-) anions in complex 1 act as oxygen donors in the {Mn(III)(2)Mn(II)(2)O(2)} "butterfly" core. Detailed dc and ac magnetic susceptibility measurements and magnetisation isotherms have been made and show that intra-cluster ferromagnetic coupling is occurring between the S = 2 Mn(III) and S = 5/2 Mn(II) ions to yield a S = 9 ground state and the g, J(bb) and J(wb) parameters have been deduced (b = body, w = wingtip). Incorporation of the acetylacetonate (acac(-)) ligand has led to three new clusters: [Mn(III)(2)Mn(II)(2)(O(2)CPh)(4)(teaH)(2)(acac)(2)].MeCN (2), [Mn(III)(2)Mn(II)(2)(teaH)(2)(acac)(4)(MeOH)(2)](ClO(4))(2) (3) and [Mn(III)(2)Mn(II)(2)(bheapH)(2)(acac)(4)(MeOH)(2)](ClO(4))(2) (4) (where bheapH(3) = 1-[N,N-bis(2-hydroxyethyl)amino]-2-propanol). Unlike any previously reported tetranuclear clusters containing the Mn(II)(2)Mn(III)(2) core, 2, 3, and 4 exhibit a reversal in their Mn(II)(2)Mn(III)(2) oxidation state distribution. In these clusters, the "wing-tip" Mn atoms exhibit Mn(III) (S = 2) oxidation states while the Mn(II) ions occupy the central "body" positions. Furthermore, the cores in 2, 3, and 4 contain at least one mu(2)-oxygen based bridging ion as opposed to the standard two mu(3)-oxygen bridges previously reported. More precisely, cluster 2 exhibits one mu(3)-O bridge and two mu(2)-bridges in a {Mn(II)(2)Mn(III)(2)O(3)} core while clusters 3 and 4 exhibit two mu(2)-O linkers within the {Mn(II)(2)Mn(III)(2)O(2)} core. All display trigonal prismatic coordination around the Mn(II) centres. These structural and oxidation state differences lead to very different magnetic coupling interactions between the four Mn(II/III) centres compared to 1. Direct current magnetic susceptibility measurements and magnetisation isotherms show that clusters 3 and 4 have ground states of S = 1. The g, J(bb) and J(wb) parameters have been deduced.  相似文献   

2.
The synthesis, structures and magnetic properties of two new mixed-valence heptanuclear manganese clusters are described. Both complexes utilize triethanolamine (teaH(3)) as a bridging ligand, displaying near planar, disc-like metal topologies and are of formulae [Mn(II)(4)Mn(IV)(3)(tea)(teaH(2))(3)(peolH)(4)](BF(4))(2)·solv (1) and [Mn(II)(4)Mn(III)(3)F(3)(tea)(teaH)(teaH(2))(2)(piv)(4)(Hpiv)(chp)(3)]·0.5MeCN (2). Compound 1 is a rare mixed-valence compound containing Mn(II) and Mn(IV) ions only and is the first example of a heptanuclear disc with a {Mn(II)(4)Mn(IV)(3)} oxidation state distribution. Compound 2 is a {Mn(II)(4)Mn(III)(3)} complex and displays a unique arrangement of oxidation states within the disc, when compared to other known {Mn(II)(4)Mn(III)(3)} examples. Variable temperature DC and AC magnetic susceptibility studies were carried out for 1 and 2 in the 2-300 K temperature range. Compound 1 displayed an increase in the χ(M)T susceptibility values as the temperature is decreased indicating dominant ferromagnetic interactions are present within the cluster. Fits of the χ(M)T vs. T data reveals an S = 23/2 ground state, with several close lying excited states within 1 cm(-1). Compound 2 displays an overall decrease in the χ(M)T value as the temperature is decreased down to 2 K indicating dominant antiferromagnetic interactions present with a probable S = 4 ground state as determined from the DC and AC susceptibility data.  相似文献   

3.
Three polynuclear complexes, [NiNa(μ(1,1,1)-N(3))(μ-hmb)(2)(DMF)](2), (1), [Ni(4)(μ(3)-OMe)(4)(heb)(4)(MeOH)(1.05)(H(2)O)(2.95)], (2) and [Ni(III)(OH)(6)(hmb)(6)Ni(II)(6)]·(ClO(4))(3) (3) (Hhmb = 2-hydroxy-3-methoxy-benzaldehyde; Hheb = 2-hydroxy-3-ethoxy-benzaldehyde), were prepared by reaction of the appropriate ligand with nickel(II) perchloride hexahydrate under solvothermal conditions. All compounds were characterized by elemental analysis, IR spectroscopy and X-ray single-crystal diffraction. Compound 1 exhibits a centrosymmetric heterotetranuclear cluster which represents the first nickel complex to possess two connected face-sharing cubes structure {Ni(2)Na(2)N(2)O(4)}. Compound 2 has a tetranuclear Ni cluster with a cubane topology in which the Ni(II) and the oxygen atoms from the methanol ligands occupying alternate vertices of the cube. Compound 3 consisits of a mixed-valence [Ni(III)(OH)(6)(hmb)(6)Ni(II)(6)](3+) subunits and it represents the first nickel {Ni(II)(6)Ni(III)} complex to possess a planar hexagonal disc-like structure. The results show that the minor ligand modifications or solvent change have a key role in the structural control of the self-assembly process. Magnetic properties of 1-3 in the 300-2 K have been discussed. The {Ni(2)Na(2)} (1) and {Ni(4)} (2) core display dominant ferromagnetic interactions from the nature of the binding modes through μ(3)-N(3)(-) or μ(3)-OCH(3)(-), while {Ni(II)(6)Ni(III)} core (3) displays dominant anti-ferromagnetic interactions from the nature of the binding modes through μ(3)-OH(-).  相似文献   

4.
The ditopic ligand PyPzOAPz (N-[(Z)-amino(pyrazin-2-yl)methylidene]-5-methyl-1-(pyridin-2-yl)-1H-pyrazole-3-carbohydrazonic acid) was synthesized by in situ condensation of methyl imino pyrazine-2-carboxylate with 5-methyl-1-(2-pyridyl) pyrazole-3-carbohydrazide. In this work we have also used two of our earlier ligands PzCAP (5-methyl-N-[(1E)-1-(pyridin-2-yl)ethylidene]-1H-pyrazole-3-carbohydrazonic acid) (Dalton Trans., 2009, 8215) and PzOAP (N-[(Z)-amino(pyridin-2-yl)methylidene]-5-methyl-1H-pyrazole-3-carbohydrazonic acid) (Dalton Trans., 2007, 1229). These ligands PzCAP, PzOAP and PyPzOAPz were made to react with Mn(ClO(4))(2)·6H(2)O to produce three pentanuclear Mn(II) clusters [Mn(5)(PzCAP)(6)](ClO(4))(4) (1), [Mn(5)(PzOAP)(6)](ClO(4))(4) (2) and [Mn(5)(PyPzOAPz)(6)](ClO(4))(4) (3). These complexes have been characterized by X-ray structural analyses and variable temperature magnetic susceptibility measurements. All complexes have a pentanuclear core with trigonal bipyramidal arrangement of Mn(II) atoms, where, the axial metal centers have a N(3)O(3) chromophore and the equatorial centers have N(4)O(2) with an octahedral arrangement. These Mn(5)(II) clusters 1, 2 and 3 show the presence of antiferromagnetic coupling within the pentanuclear manganese(II) core (J = -2.95, -3.19 and -3.00 cm(-1) respectively). Density functional theory calculations and continuous shape measurement (CShM) studies have been performed on these complexes to provide a qualitative theoretical interpretation of the antiferromagnetic behaviour shown by them. The pentanuclear Mn(II) cluster (1) on reaction with Cu(NO(3))(2)·6H(2)O in 1:1 mole proportion in CH(3)OH:H(2)O (60?:?40) forms a homoleptic [2 × 2] tetranuclear Cu(4)(II) grid [Cu(4)(PzCAP)(4)(NO(3))(2)](NO(3))(2)·8H(2)O (4). The same Cu(4)(II) grid is also obtained from a direct reaction between the ditopic ligand PzCAP with Cu(NO(3))(2)·6H(2)O in 1:1 mole proportion. This conversion of a cluster to a grid is a novel observation.  相似文献   

5.
The exploration in two hydro(solvo)thermal reaction systems As/S/Mn(2+)/phen/methylamine aqueous solution and As/S/Mn(2+)/2,2'-bipy/H(2)O affords five new manganese thioarsenates with diverse structures, namely, (CH(3)NH(3)){[Mn(phen)(2)](As(V)S(4))}·phen (1 and 1'), (CH(3)NH(3))(2){[Mn(phen)](2)(As(V)S(4))(2)} (2), {[Mn(phen)(2)](As(III)(2)S(4))}(n) (3), {[Mn(phen)](3)(As(III)S(3))(2)}·H(2)O (4), and {[Mn(2,2'-bipy)(2)](2)(As(V)S(4))}[As(III)S(S(5))] (5). Compound 1 comprises a {[Mn(phen)(2)](As(V)S(4))}(-) complex anion, a monoprotonated methylamine cation and a phen molecule. Compound 2 contains a butterfly like {[Mn(phen)](2)(As(V)S(4))(2)}(2-) anion charge compensated by two monoprotonated methylamine cations. Compound 3 is a neutral chain formed by a helical (1)(∞)(As(III)S(2)(-)) vierer chain covalently bonds to [Mn(II)(phen)](2+) complexes via all its terminal S atoms. Compound 4 features a neutral chain showing the stabilization of noncondensed (As(III)S(3))(3-) anions in the coordination of [Mn(II)(phen)](2+) complex cations. Compound 5 features a mixed-valent As(III)/As(V) character and an interesting chalcogenidometalates structure, where a polycation formed by the connection of two [Mn(2,2'-bipy)(2)](2+) complex cation and a (As(V)S(4))(3-) anion acts as a countercation for a polythioarsenate anion, [As(III)S(S(5))](-). The title compounds exhibit optical gaps in the range 1.58-2.48 eV and blue photoluminescence. Interestingly, compound 1 displays a weak second harmonic generation (SHG) response being about 1/21 times of KTP (KTiOPO(4)). Magnetic measurements show paramagnetic behavior for 1 and dominant antiferromagnetic behavior for 2-5. Of particular interest is 4, which is the first manganese chalcogenide showing spin-canting characteristic.  相似文献   

6.
Three new polynuclear complexes, [Co(7)(bm)(12)]·(ClO(4))(2)·13H(2)O (1), [Co(4)(bm)(4)Cl(4)(C(3)H(7)OH)(4)] (2), and [Co(4)(bm)(4)(μ-HCO(2))(2)(μ(2)-HCO(2))(2)(C(3)H(7)OH)(2)] (3) (Hbm = (1H-Benzimidazol)-methanol), have been synthesized and characterized by elemental analysis, IR, powder X-ray diffraction and X-ray single-crystal diffraction. Compound 1 features a centrosymmetric wheel-like heptanuclear Co(II) cluster. Compound 2 having a I4(1)/a space group exhibits a tetranuclear Co(II) cluster with a cubane topology in which the central Co(II) ion and oxygen atoms from bm occupy the alternate vertices of the cube. However, compound 3 has a tetranuclear Co(II) cluster with a C2/c space group different from that of compound 2. These results show that the geometries and sizes of the corresponding anions as well as their coordinating and hydrogen-bonding properties are essential in determining the final structures of the assemblies. Magnetic properties of 1-3 in the 2-300 K have also been discussed. The {Co(7)} (1) and {Co(4)} (2) cores display dominant ferromagnetic interactions while the {Co(4)} (3) core displays dominant anti-ferromagnetic interactions.  相似文献   

7.
Four bis-tetradentate N(4)-substituted-3,5-{bis[bis-N-(2-pyridinemethyl)]aminomethyl}-4H-1,2,4-triazole ligands, L(Tz1)-L(Tz4), differing only in the triazole N(4) substituent R (where R is amino, pyrrolyl, phenyl, or 4-tertbutylphenyl, respectively) have been synthesized, characterized, and reacted with M(II)(BF(4))(2)·6H(2)O (M(II) = Cu, Ni or Co) and Co(SCN)(2). Experiments using all 16 possible combinations of metal salt and L(TzR) were carried out: 14 pure complexes were obtained, 11 of which are dinuclear, while the other three are tetranuclear. The dinuclear complexes include two copper(II) complexes, [Cu(II)(2)(L(Tz2))(H(2)O)(4)](BF(4))(4) (2), [Cu(II)(2)(L(Tz4))(BF(4))(2)](BF(4))(2) (4); two nickel(II) complexes, [Ni(II)(2)(L(Tz1))(H(2)O)(3)(CH(3)CN)](BF(4))(4)·0.5(CH(3)CN) (5) and [Ni(II)(2)(L(Tz4))(H(2)O)(4)](BF(4))(4)·H(2)O (8); and seven cobalt(II) complexes, [Co(II)(2)(L(Tz1))(μ-BF(4))](BF(4))(3)·H(2)O (9), [Co(II)(2)(L(Tz2))(μ-BF(4))](BF(4))(3)·2H(2)O (10), [Co(II)(2)(L(Tz3))(H(2)O)(2)](BF(4))(4) (11), [Co(II)(2)(L(Tz4))(μ-BF(4))](BF(4))(3)·3H(2)O (12), [Co(II)(2)(L(Tz1))(SCN)(4)]·3H(2)O (13), [Co(II)(2)(L(Tz2))(SCN)(4)]·2H(2)O (14), and [Co(II)(2)(L(Tz3))(SCN)(4)]·H(2)O (15). The tetranuclear complexes are [Cu(II)(4)(L(Tz1))(2)(H(2)O)(2)(BF(4))(2)](BF(4))(6) (1), [Cu(II)(4)(L(Tz3))(2)(H(2)O)(2)(μ-F)(2)](BF(4))(6)·0.5H(2)O (3), and [Ni(II)(4)(L(Tz3))(2)(H(2)O)(4)(μ-F(2))](BF(4))(6)·6.5H(2)O (7). Single crystal X-ray structure determinations revealed different solvent content from that found by microanalysis of the bulk sample after drying under a vacuum and confirmed that 5', 8', 9', 11', 12', and 15' are dinuclear while 1' and 7' are tetranuclear. As expected, magnetic measurements showed that weak antiferromagnetic intracomplex interactions are present in 1, 2, 4, 7, and 8, stabilizing a singlet spin ground state. All seven of the dinuclear cobalt(II) complexes, 9-15, have similar magnetic behavior and remain in the [HS-HS] state between 300 and 1.8 K.  相似文献   

8.
Five Co(II) silicotungstate complexes are reported. The centrosymmetric heptanuclear compound K(20)[{(B-beta-SiW(9)O(33)(OH))(beta-SiW(8)O(29)(OH)(2))Co(3)(H(2)O)}(2)Co(H(2)O)(2)]47 H(2)O (1) consists of two {(B-beta-SiW(9)O(33)(OH))(beta-SiW(8)O(29)(OH)(2))Co(3)(H(2)O)} units connected by a {CoO(4)(H(2)O)(2)} group. In the chiral species K(7)[Co(1.5)(H(2)O)(7))][(gamma-SiW(10)O(36))(beta-SiW(8)O(30)(OH))Co(4)(OH)(H(2)O)(7)]36 H(2)O (2), a {gamma-SiW(10)O(36)} and a {beta-SiW(8)O(30)(OH)} unit enclose a mononuclear {CoO(4)(H(2)O)(2)} group and a {Co(3)O(7)(OH)(H(2)O)(5)} fragment. The two trinuclear Co(II) clusters present in 1 enclose a mu(4)-O atom, while in 2 a mu(3)-OH bridging group connects the three paramagnetic centers of the trinuclear unit, inducing significantly larger Co-L-Co (L=mu(4)-O (1), mu(3)-OH (2)) bridging angles in 2 (theta(av(Co-L-Co))=99.1 degrees ) than in 1 (theta(av(Co-L-Co))=92.8 degrees ). Weaker ferromagnetic interactions were found in 2 than in 1, in agreement with larger Co-L-Co angles in 2. The electrochemistry of 1 was studied in detail. The two chemically reversible redox couples observed in the positive potential domain were attributed to the redox processes of Co(II) centers, and indicated that two types of Co(II) centers in the structure were oxidized in separate waves. Redox activity of the seventh Co(II) center was not detected. Preliminary experiments indicated that 1 catalyzes the reduction of nitrite and NO. Remarkably, a reversible interaction exists with NO or related species. The hybrid tetranuclear complexes K(5)Na(3)[(A-alpha-SiW(9)O(34))Co(4)(OH)(3)(CH(3)COO)(3)]18 H(2)O (3) and K(5)Na(3)[(A-alpha-SiW(9)O(34))Co(4)(OH)(N(3))(2)(CH(3)COO)(3)]18 H(2)O (4) were characterized: in both, a tetrahedral {Co(4)(L(1))(L(2))(2)(CH(3)COO)(3)} (3: L(1)=L(2)=OH; 4: L(1)=OH, L(2)=N(3)) unit capped the [A-alpha-SiW(9)O(34)](10-) trivacant polyanion. The octanuclear complex K(8)Na(8)[(A-alpha-SiW(9)O(34))(2)Co(8)(OH)(6)(H(2)O)(2)(CO(3))(3)]52 H(2)O (5), containing two {Co(4)O(9)(OH)(3)(H(2)O)} units, was also obtained. Compounds 2, 3, 4, and 5 were less stable than 1, but their partial electrochemical characterization was possible; the electronic effect expected for 3 and 4 was observed.  相似文献   

9.
The reaction of N,N-bis(2-pyridylmethyl)-2-aminoethanol (bpaeOH), NaSCN/NaN(3), and metal (M) ions [M = Mn(II), Fe(II/III), Co(II)] in MeOH, leads to the isolation of a series of monomeric, trimeric, and tetrameric metal complexes, namely [Mn(bpaeOH)(NCS)(2)] (1), [Mn(bpaeO)(N(3))(2)] (2), [Fe(bpaeOH)(NCS)(2)] (3), [Fe(4)(bpaeO)(2)(CH(3)O)(2)(N(3))(8)] (4), [Co(bpaeOH)(NCS)(2)] (5), and [Co(3)(bpaeO)(2)(NO(3))(N(3))(4)](NO(3)) (6). These compounds have been investigated by single crystal X-ray diffractometry and magnetochemistry. In complex 1 the Mn(II) is bonded to one bpaeOH and two thiocyanate ions, while in complex 2 it is coordinated to a deprotonated bpaeO(-) and two azide ions. The oxidation states of manganese ions are 2+ for 1 and 3+ for 2, respectively, indicating that the different oxidation states depend on the type of binding anions. The structures of monomeric iron(II) and cobalt(II) complexes 3 and 5 with two thiocyanate ions are isomorphous to that of 1. Compounds 1, 2, 3, and 5 exhibit high-spin states in the temperature range 5 to 300 K. 4 contains two different iron(III) ions in an asymmetric unit, one is coordinated to a deprotonated bpaeO(-), an azide ion, and a methoxy group, and the other is bonded to three azide ions and two oxygens from bpaeO(-) and a methoxy group. Two independent iron(III) ions in 4 form a tetranuclear complex by symmetry. 4 displays both ferromagnetic and antiferromagnetic couplings (J = 9.8 and -14.3 cm(-1)) between the iron(III) ions. 6 is a mixed-valence trinuclear cobalt complex, which is formulated as Co(III)(S = 0)-Co(II)(S = 3/2)-Co(III)(S = 0). The effective magnetic moment at room temperature corresponds to the high-spin cobalt(II) ion (~4.27 μ(B)). Interestingly, 6 showed efficient catalytic activities toward various olefins and alcohols with modest to excellent yields, and it has been proposed that a high-valent Co(V)-oxo species might be responsible for oxygen atom transfer in the olefin epoxidation and alcohol oxidation reactions.  相似文献   

10.
Lin ZG  Wang B  Cao J  Chen BK  Gao YZ  Chi YN  Xu C  Huang XQ  Han RD  Su SY  Hu CW 《Inorganic chemistry》2012,51(8):4435-4437
Seven polyoxopalladate compounds, [Pd(15)(SeO(3))(10)(μ(3)-O)(10)](10-), with Na(+) (1) and K(+) (2) as counterions, and Na(6)[M(II){Pd(12)(SeO(3))(8)(μ(4)-O)(8)}]·nH(2)O (M = Co (3), Zn (4), Ni (5), Cu (6), Mn (7); n = 7-9), have been prepared and characterized by SXRD, FT-IR, UV-vis, EA, TGA, and ESI-MS. These compounds comprise two distinct cluster configurations, {Pd(15)} and {M(II)Pd(12)}, which reveals the possibility of obtaining desired noble metal clusters with a certain nuclearity by using different cations as potential structural directing or template agents in synthesis. All compounds showed apparent absorptions in the visible light region, while 3 and 7 were found to show paramagnetic behavior typical of mononuclear Co(II) and Mn(II) complexes with zero-field splitting.  相似文献   

11.
The reaction of manganese(II) salts with organophosphonic acid [t-BuPO(3)H(2) or cyclopentyl phosphonic acid (C(5)H(9)PO(3)H(2))] in the presence of ancillary nitrogen ligands [1,10-phenanthroline (phen) or 2,6-bis(pyrazol-3-yl)pyridine (dpzpy)], afforded, depending on the stoichiometry of the reactants and the reaction conditions, dinuclear, trinuclear, and tetranuclear compounds, [Mn(2)(t-BuPO(3)H)(4)(phen)(2)]·2DMF (1), [Mn(3)(C(5)H(9)PO(3))(2)(phen)(6)](ClO(4))(2)·7CH(3)OH (2), [Mn(3)(t-BuPO(3))(2)(dpzpy)(3)](ClO(4))(2)·H(2)O (3), [Mn(4)(t-BuPO(3))(2)(t-BuPO(3)H)(2)(phen)(6)(H(2)O)(2)](ClO(4))(2) (4), and [Mn(4)(C(5)H(9)PO(3))(2)(phen)(8)(H(2)O)(2)](ClO(4))(4) (5). Magnetic studies on 1, 2, and 4 reveal that the phosphonate bridges mediate weak antiferromagnetic interactions between the Mn(II) ions have also been carried out.  相似文献   

12.
New heterobimetallic tetranuclear complexes of formula [Fe(III){B(pz)(4)}(CN)(2)(μ-CN)Mn(II)(bpy)(2)](2)(ClO(4))(2)·CH(3)CN (1), [Fe(III){HB(pz)(3)}(CN)(2)(μ-CN)Ni(II)(dmphen)(2)](2)(ClO(4))(2)·2CH(3)OH (2a), [Fe(III){B(pz)(4)}(CN)(2)(μ-CN)Ni(II)(dmphen)(2)](2)(ClO(4))(2)·2CH(3)OH (2b), [Fe(III){HB(pz)(3)}(CN)(2)(μ-CN)Co(II)(dmphen)(2)](2)(ClO(4))(2)·2CH(3)OH (3a), and [Fe(III){B(pz)(4)}(CN)(2)(μ-CN)Co(II)(dmphen)(2)](2)(ClO(4))(2)·2CH(3)OH (3b), [HB(pz)(3)(-) = hydrotris(1-pyrazolyl)borate, B(Pz)(4)(-) = tetrakis(1-pyrazolyl)borate, dmphen = 2,9-dimethyl-1,10-phenanthroline, bpy = 2,2'-bipyridine] have been synthesized and structurally and magnetically characterized. Complexes 1-3b have been prepared by following a rational route based on the self-assembly of the tricyanometalate precursor fac-[Fe(III)(L)(CN)(3)](-) (L = tridentate anionic ligand) and cationic preformed complexes [M(II)(L')(2)(H(2)O)(2)](2+) (L' = bidentate α-diimine type ligand), this last species having four blocked coordination sites and two labile ones located in cis positions. The structures of 1-3b consist of cationic tetranuclear Fe(III)(2)M(II)(2) square complexes [M = Mn (1), Ni (2a and 2b), Co (3a and 3b)] where corners are defined by the metal ions and the edges by the Fe-CN-M units. The charge is balanced by free perchlorate anions. The [Fe(L)(CN)(3)](-) complex in 1-3b acts as a ligand through two cyanide groups toward two divalent metal complexes. The magnetic properties of 1-3b have been investigated in the temperature range 2-300 K. A moderately strong antiferromagnetic interaction between the low-spin Fe(III) (S = 1/2) and high-spin Mn(II) (S = 5/2) ions has been found for 1 leading to an S = 4 ground state (J(1) = -6.2 and J(2) = -2.7 cm(-1)), whereas a moderately strong ferromagnetic interaction between the low-spin Fe(III) (S = 1/2) and high-spin Ni(II) (S = 1) and Co(II) (S = 3/2) ions has been found for complexes 2a-3b with S = 3 (2a and 2b) and S = 4 (3a and 3b) ground spin states [J(1) = +21.4 cm(-1) and J(2) = +19.4 cm(-1) (2a); J(1) = +17.0 cm(-1) and J(2) = +12.5 cm(-1) (2b); J(1) = +5.4 cm(-1) and J(2) = +11.1 cm(-1) (3a); J(1) = +8.1 cm(-1) and J(2) = +11.0 cm(-1) (3b)] [the exchange Hamiltonian being of the type H? = -J(S?(i)·S?(j))]. Density functional theory (DFT) calculations have been used to substantiate the nature and magnitude of the exchange magnetic coupling observed in 1-3b and also to analyze the dependence of the exchange magnetic coupling on the structural parameters of the Fe-C-N-M skeleton.  相似文献   

13.
Four discrete Mn(III)/Mn(II) tetranuclear complexes with a double-cuboidal core, [Mn(4)(hmp)(6)(CH(3)CN)(2)(H(2)O)(4)](ClO(4))(4).2CH(3)CN (1), [Mn(4)(hmp)(6)(H(2)O)(4)](ClO(4))(4).2H(2)O (2), [Mn(4)(hmp)(6)(H(2)O)(2)(NO(3))(2)](ClO(4))(2).4H(2)O (3), and [Mn(4)(hmp)(6)(Hhmp)(2)](ClO(4))(4).2CH(3)CN (4), were synthesized by reaction of Hhmp (2-hydroxymethylpyridine) with Mn(ClO(4))(2).6H(2)O in the presence of tetraethylammonium hydroxide and subsequent addition of NaNO(3) (3) or an excess of Hhmp (4). Direct current (dc) magnetic measurements show that both Mn(2+)-Mn(3+) and Mn(3+)-Mn(3+) magnetic interactions are ferromagnetic in 1-3 leading to an S(T) = 9 ground state for the Mn(4) unit. Furthermore, these complexes are single-molecule magnets (SMMs) clearly showing both thermally activated and ground-state tunneling regimes. Slight changes in the [Mn(4)] core geometry result in an S(T) = 1 ground state in 4. A one-dimensional assembly of [Mn(4)] units, catena-{[Mn(4)(hmp)(6)(N(3))(2)](ClO(4))(2)} (5), was obtained in the same synthetic conditions with the subsequent addition of NaN(3). Double chairlike N(3)(-) bridges connect identical [Mn(4)] units into a chain arrangement. This material behaves as an Ising assembly of S(T) = 9 tetramers weakly antiferromagnetically coupled. Slow relaxation of the magnetization is observed at low temperature for the first time in an antiferromagnetic chain, following an activated behavior with Delta(tau)/k(B) = 47 K and tau(0) = 7 x 10(-)(11) s. The observation of this original thermally activated relaxation process is induced by finite-size effects and in particular by the noncompensation of spins in segments of odd-number units. Generalizing the known theories on the dynamic properties of polydisperse finite segments of antiferromagnetically coupled Ising spins, the theoretical expressions of the characteristic energy gaps Delta(xi) and Delta(tau) were estimated and successfully compared to the experimental values.  相似文献   

14.
In this work we report the synthesis of two novel manganese complexes, [L1(3)Mn(II)(6)](ClO(4))(6) (1·(ClO(4))(6)) and [L2Mn(II)(2)(μ-OAc)(μ-Cl)](ClO(4))(2) (2·(ClO(4))(2)), where L1(2-) is the 2,2'-(1,3-phenylenebis(methylene))bis((2-(bis(pyridin-2-ylmethyl)amino)ethyl)azanediyl)diacetic acid anion and L2 is N1,N1'-(1,3-phenylenebis(methylene))bis(N2,N2'-bis(pyridin-2-ylmethyl)ethane-1,2-diamine). The ligands Na(2)L1 and L2 are built on the same backbone, L2 only contains nitrogen donors, while two carboxylate arms have been introduced in Na(2)L1. The two complexes have been characterized by single-crystal X-ray diffraction, magnetic susceptibility, EPR spectroscopy, and electrochemistry. X-Ray crystallography revealed that 1 is a manganese(II) hexamer and 2 is a manganese(II) dimer featuring an unprecedented mono-μ-acetato, mono-μ-chlorido bridging motif. The ability of the complexes to catalyse H(2)O(2) disproportionation, thereby acting as models for manganese catalases, has been investigated and compared to the activity of two other related manganese complexes. The introduction of carboxylate donors in the ligands, leading to increased denticity, resulted in a drop in H(2)O(2) disproportionation activity.  相似文献   

15.
The synthesis, structural, and spectroscopic characterization of four new coordinatively unsaturated mononuclear thiolate-ligated manganese(II) complexes ([Mn(II)(S(Me2)N(4)(6-Me-DPEN))](BF(4)) (1), [Mn(II)(S(Me2)N(4)(6-Me-DPPN))](BPh(4))·MeCN (3), [Mn(II)(S(Me2)N(4)(2-QuinoPN))](PF(6))·MeCN·Et(2)O (4), and [Mn(II)(S(Me2)N(4)(6-H-DPEN)(MeOH)](BPh(4)) (5)) is described, along with their magnetic, redox, and reactivity properties. These complexes are structurally related to recently reported [Mn(II)(S(Me2)N(4)(2-QuinoEN))](PF(6)) (2) (Coggins, M. K.; Kovacs, J. A. J. Am. Chem. Soc.2011, 133, 12470). Dioxygen addition to complexes 1-5 is shown to result in the formation of five new rare examples of Mn(III) dimers containing a single, unsupported oxo bridge: [Mn(III)(S(Me2)N(4)(6-Me-DPEN)](2)-(μ-O)(BF(4))(2)·2MeOH (6), [Mn(III)(S(Me2)N(4)(QuinoEN)](2)-(μ-O)(PF(6))(2)·Et(2)O (7), [Mn(III)(S(Me2)N(4)(6-Me-DPPN)](2)-(μ-O)(BPh(4))(2) (8), [Mn(III)(S(Me2)N(4)(QuinoPN)](2)-(μ-O)(BPh(4))(2) (9), and [Mn(III)(S(Me2)N(4)(6-H-DPEN)](2)-(μ-O)(PF(6))(2)·2MeCN (10). Labeling studies show that the oxo atom is derived from (18)O(2). Ligand modifications, involving either the insertion of a methylene into the backbone or the placement of an ortho substituent on the N-heterocyclic amine, are shown to noticeably modulate the magnetic and reactivity properties. Fits to solid-state magnetic susceptibility data show that the Mn(III) ions of μ-oxo dimers 6-10 are moderately antiferromagnetically coupled, with coupling constants (2J) that fall within the expected range. Metastable intermediates, which ultimately convert to μ-oxo bridged 6 and 7, are observed in low-temperature reactions between 1 and 2 and dioxygen. Complexes 3-5, on the other hand, do not form observable intermediates, thus illustrating the effect that relatively minor ligand modifications have upon the stability of metastable dioxygen-derived species.  相似文献   

16.
The synthesis, structures and magnetic properties of two hexanuclear Mn(6) clusters are reported: Mn(6)(mu(4)-O)(2)(dapdo)(2)(dapdoH)(4)(mu(2)-OH)(2)](ClO(4))(2).6MeCN (.6MeCN) and [Mn(6)(mu(4)-O)(2)(dapdo)(2)(dapdoH)(4)(mu(2)-OCH(3))(2)](ClO(4))(2).2Et(2)O (.2Et(2)O) [dapdo(2-) is the dianion of 2,6-diacetylpyridine dioxime and dapdoH(-) is the monoanion of the aforesaid dioxime ligand]. Both complexes are mixed-valent with two Mn(II) and four Mn(III) atoms disposed in an edge-sharing bitetrahedral core. Both complexes and display the same [Mn(III)(4)Mn(II)(2)(mu(4)-O)(2)(mu(2)-OR)(2)](10+) core in which R = H for and R = Me for . The [Mn(III)(4)Mn(II)(2)] core is rather uncommon compared to the reported [Mn(III)(2)Mn(II)(4)] core in the literature. DC magnetic susceptibility measurements on and reveal the presence of competing exchange interactions resulting in an S(t) = 5 ground spin state. The magnetic behavior of the compounds indicates antiferromagnetic coupling between the manganese(iii) centers, whereas the coupling between the manganese(iii) and manganese(ii) is weakly antiferromagnetic or ferromagnetic depending on the bridging environments. Finally the interaction between the manganese(ii) centers from the two fused tetrahedra is weakly ferromagnetic in nature stabilizing S(t) = 5 ground spin state in compounds and .  相似文献   

17.
Yao MX  Wei ZY  Gu ZG  Zheng Q  Xu Y  Zuo JL 《Inorganic chemistry》2011,50(17):8636-8644
Using the tricyano precursor (Bu(4)N)[(Tp)Cr(CN)(3)] (Bu(4)N(+) = tetrabutylammonium cation; Tp = tris(pyrazolyl)hydroborate), a pentanuclear heterometallic cluster [(Tp)(2)Cr(2)(CN)(6)Cu(3)(Me(3)tacn)(3)][(Tp)Cr(CN)(3)](ClO(4))(3)·5H(2)O (1, Me(3)tacn = N,N',N'-trimethyl-1,4,7-triazacyclononane), three tetranuclear heterometallic clusters [(Tp)(2)Cr(2)(CN)(6)Cu(2)(L(OEt))(2)]·2.5CH(3)CN (2, L(OEt) = [(Cp)Co(P(O)(OEt)(2))(3)], Cp = cyclopentadiene), [(Tp)(2)Cr(2)(CN)(6)Mn(2)(L(OEt))(2)]·4H(2)O (3), and [(Tp)(2)Cr(2)(CN)(6)Mn(2)(phen)(4)](ClO(4))(2) (4, phen = phenanthroline), and a one-dimensional (1D) chain polymer [(Tp)(2)Cr(2)(CN)(6)Mn(bpy)](n) (5, bpy = 2,2'-bipyridine) have been synthesized and structurally characterized. Complex 1 shows a trigonal bipyramidal geometry in which [(Tp)Cr(CN)(3)](-) units occupy the apical positions and are linked through cyanide to [Cu(Me(3)tacn)](2+) units situated in the equatorial plane. Complexes 2-4 show similar square structures, where Cr(III) and M(II) (M = Cu(II) or Mn(II)) ions are alternatively located on the rectangle corners. Complex 5 consists of a 4,2-ribbon-like bimetallic chain. Ferromagnetic interactions between Cr(III) and Cu(II) ions bridged by cyanides are observed in complexes 1 and 2. Antiferromagnetic interactions are presented between Cr(III) and Mn(II) ions bridged by cyanides in complexes 3-5. Complex 5 shows metamagnetic behavior with a critical field of about 22.5 kOe at 1.8 K.  相似文献   

18.
The heterometallic hexanuclear cyanide-bridged complex {[Mn(bpym)(H(2)O)](2)[Fe(HB(pz)(3))(CN)(3)](4)} (1), its C(15)N and D(2)O enriched forms {[Mn(bpym)(H(2)O)](2)[Fe(HB(pz)(3))(C(15)N)(3)](4)} (2) and {[Mn(bpym)(D(2)O)](2)[Fe(HB(pz)(3))(CN)(3)](4)} (3), and the hexanuclear derivative complex {[Mn(bpym)(H(2)O)](2)[Fe(B(pz)(4))(CN)(3)](4)}·4H(2)O (4) [bpym = 2,2'-bipyrimidine, HB(pz)(3)(-) = hydrotris(1-pyrazolyl)borate, B(pz)(4)(-) = tetra(1-pyrazolyl)borate] have been synthesized. Their structures have been determined through single-crystal X-ray crystallography at different temperatures. Whereas 3 and 4 maintain a discrete hexanuclear motif during the entire temperature range investigated (down to 95 K), 1 and 2 exhibit a thermally induced reversible single-crystal to single-crystal phase transition driven by a remarkable concerted rearrangement of hydrogen and cyanide coordination bonds. While hexanuclear complexes are observed in the high temperature phases (noted 1a and 2a) above 200 K, the low temperature phases are composed of one-dimensional coordination polymers noted 1b and 2b. The magnetic properties of the four compounds have been investigated in the 2-300 K range, and they reveal the occurrence of an overall antiferromagnetic behavior. The thermal dependence of the optical reflectivity and the FT-IR absorbance have been studied for 1 in the range 10-300 K and 130-300 K, respectively. A comparative analysis of the structural and electronic properties for 1-4 clearly underlines the major role of the intermolecular interactions in the topological and dimensional rearrangement observed during the structural phase transition. This result opens new perspectives in the design of cyanide-based switchable magnetic materials using coordination bonds rearrangements.  相似文献   

19.
Ozutsumi K  Taguchi Y  Kawashima T 《Talanta》1995,42(4):535-541
The complexation of urea (ur) with manganese(II), nickel(II) and zinc(II) ions has been studied by titration calorimetry in N,N-dimethylformamide (DMF) containing 0.4M (C(2)H(5))(4) NBF(4) as a constant ionic medium at 25 degrees C. The calorimetric data were well explained in terms of the formation of [Mn(ur)](2+), [Mn(ur)(2)](2+) and [Mn(ur)(4)](2+) for manganese(II), [Ni(ur)](2+) for nickel(II) and [Zn(ur)](2+) and [Zn(ur)(2)](2+) for zinc(II), and their formation constants, reaction enthalpies and entropies were determined. The complexation of the nickel(II)-urea system in DMF has also been studied by means of spectrophotometric titration and electronic spectra of individual nickel(II) complexes were determined. On the basis of the stepwise thermodynamic quantities and the individual electronic spectra of the complexes, it is revealed that the [Mn(ur)](2+), [Mn(ur)(2)](2+), [Ni(ur)](2+), [Zn(ur)](2+) and [Zn(ur)(2)](2+) complexes have a six-coordinate octahedral structure, while the [Mn(ur)(4)](2+) complex has a four-coordinate tetrahedral structure.  相似文献   

20.
The Cu(SO(3))(4)(7-) anion, which consists of a tetrahedrally coordinated Cu(I) centre coordinated to four sulfur atoms, is able to act as a multidentate ligand in discrete and infinite supramolecular species. The slow oxidation of an aqueous solution of Na(7)Cu(SO(3))(4) yields a mixed oxidation state, 2D network of composition Na(5){[Cu(II)(H(2)O)][Cu(I)(SO(3))(4)]}·6H(2)O. The addition of Cu(II) and 2,2'-bipyridine to an aqueous Na(7)Cu(SO(3))(4) solution leads to the formation of a pentanuclear complex of composition {[Cu(II)(H(2)O)(bipy)](4)[Cu(I)(SO(3))(4)]}(+); a combination of hydrogen bonding and π-π stacking interactions leads to the generation of infinite parallel channels that are occupied by disordered nitrate anions and water molecules. A pair of Cu(SO(3))(4)(7-) anions each act as a tridentate ligand towards a single Mn(II) centre when Mn(II) ions are combined with an excess of Cu(SO(3))(4)(7-). An anionic pentanuclear complex of composition {[Cu(I)(SO(3))(4)](2)[Fe(III)(H(2)O)](3)(O)} is formed when Fe(II) is added to a Cu(+)/SO(3)(2-) solution. Hydrated ferrous [Fe(H(2)O)(6)(2+)] and sodium ions act as counterions for the complexes and are responsible for the formation of an extensive hydrogen bond network within the crystal. Magnetic susceptibility studies over the temperature range 2-300 K show that weak ferromagnetic coupling occurs within the Cu(II) containing chains of Na(5){[Cu(II)(H(2)O)][Cu(I)(SO(3))(4)]}·6H(2)O, while zero coupling exists in the pentanuclear cluster {[Cu(II)(H(2)O)(bipy)](4)[Cu(I)(SO(3))(4)]}(NO(3))·H(2)O. Weak Mn(II)-O-S-O-Mn(II) antiferromagnetic coupling occurs in Na(H(2)O)(6){[Cu(I)(SO(3))(4)][Mn(II)(H(2)O)(2)](3)}, the latter formed when Mn was in excess during synthesis. The compound, Na(3)(H(2)O)(6)[Fe(II)(H(2)O)(6)](2){[Cu(I)(SO(3))(4)](2)[Fe(III)(H(2)O)](3)(O)}·H(2)O, contained trace magnetic impurities that affected the expected magnetic behaviour.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号