首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 197 毫秒
1.
The present paper describes the preparation of KF/M-γ-Al2O3, efficient mesoporous solid bases. The procedure involves loading KF into a crystalline mesoporous γ-Al2O3 that was synthesized by the self-assembly of poly-4-vinylpyridine (P4VP) with Al3+ species. The synthesis is based on the strong acid-base interaction, hydrothermal treatment at 180°C and calcination at 550°C. Characterizations using XRD analysis and low temperature N2 adsorption indicated that different amounts of KF could be introduced into crystalline mesoporous γ-Al2O3 to obtain catalysts with high BET surface areas, large pore volumes and uniform pore size distribution. Based on SEM images, KF/M-γ-Al2O3 catalysts have rough surface character and a large nanopore volume. CO2-TPD curves registered for KF/M-γ-Al2O3 contain high temperature peaks, indicating strong basicity of the catalysts. Under the same reaction conditions KF/M-γ-Al2O3 catalysts exhibit much better activities for transesterification to biodiesel than KOH, NaOH, H2SO4, hydrotalcite and CaO. Enhanced activities appear to arise from strong basisity and large BET surface areas.  相似文献   

2.
A series of MoO3/γ-Al2O3 catalysts with different Mo surface densities (Mo atoms/nm2) has been prepared by incipient wetness impregnation method. Structural characteristics of the prepared catalysts were investigated by atomic absorption spectroscopy, X-ray diffraction, Fourier Transform Infrared spectroscopy, N2 adsorption at −196 °C, and temperature-programmed reduction (TPR). The catalytic activities of the prepared catalysts were tested by cyclohexene conversion between 200 and 400 °C. XRD results indicated that molybdenum oxide species were dispersed as a monolayer on the support up to 4.04 Mo atoms/nm2, and the formation of crystalline MoO3 was observed above this loading. FTIR and TPR results showed that molybdenum oxide species were present predominantly in tetrahedral form at lower loading, and polymeric octahedral forms were dominant at higher loading. Cyclohexene conversion reaction proceeded mainly through the simple dehydrogenation pathway in the studied temperature range 200–400 °C and was found to be highly dependent on MoO3 dispersion.  相似文献   

3.
用酸中和法制备了活性γ-Al2O3, 并在其表面负载SO3得到固体酸催化剂SO3/γ-Al2O3, 用XRD, TG-DTA, FT-IR,NMR, NH3-TPD等对其进行了结构和酸性研究. 结果表明: 在SO3/γ-Al2O3的制备过程中形成少量的Al2(SO4)3, 同时SO3与γ-Al2O3表面上的羟基反应, 形成强的Brönsted酸位, 根据1H/27Al 双共振(TRAPDOR)MAS NMR与FT-IR实验结果提出了Brönsted酸结构模型. SO3/γ-Al2O3表面存在两种不同强度的酸中心, 其酸强度大于分子筛HZSM-5, 但弱于传统的固体超强酸 /γ-Al2O3.  相似文献   

4.
Al(OPh)3 involving sterically hindered phenyl groups on ultrasonic assisted micro hydrolysis yielded a mixture of boehmite and bayerite as deduced from the FTIR and powder X-ray diffraction pattern. In the thermogravimetric trace, the complete removal of decomposable moieties of the hydrolyzed gel occurred around 530 °C. Calcining the gel at temperatures 600, 700, 800 and 900 °C showed crystalline tetragonal δ-Al2O3 to be the product at 900 °C as deduced from FTIR, 27Al NMR and PXRD techniques. δ-Al2O3 showed a surface area of 135 m2/g with rectangular bar like morphology with the sizes below 50 nm in the TEM images.  相似文献   

5.
The effective utilization of various biomolecules for creating a series of mesoporous boehmite (γ-AlOOH) and gamma-alumina (γ-Al2O3) nanosheets with unique hierarchical multilayered structures is demonstrated. The nature and concentration of the biomolecules strongly influence the degree of the crystallinity, the morphology, and the textural properties of the resulting γ-AlOOH and γ-Al2O3 nanosheets, allowing for easy tuning. The hierarchical γ-AlOOH and γ-Al2O3 multilayered nanosheets synthesized by using biomolecules exhibit enhanced crystallinity, improved particle separation, and well-defined multilayered structures compared to those obtained without biomolecules. More impressively, these γ-AlOOH and γ-Al2O3 nanosheets possess high surface areas up to 425 and 371 m2 g−1, respectively, due to their mesoporous nature and hierarchical multilayered structure. When employed for molybdenum adsorption toward medical radioisotope production, the hierarchical γ-Al2O3 multilayered nanosheets exhibit Mo adsorption capacities of 33.1–40.8 mg g−1. The Mo adsorption performance of these materials is influenced by the synergistic combination of the crystallinity, the surface area, and the pore volume. It is expected that the proposed biomolecule-assisted strategy may be expanded for the creation of other 3D mesoporous oxides in the future.  相似文献   

6.
The local structures of supported CuO/γ-Al2O3 monolayer dispersive catalysts with different CuO loadings have been investigated by EXAFS and multiple scattering XANES simulations. The EXAFS results show that the first nearest neighbors around the Cu atoms in the CuO/γ-Al2O3 catalysts are similar to that of the polycrystalline CuO powder, which is independent of the CuO loadings. Moreover, the Cu K-XANES FEFF8 calculations for CuO reveal that the monolayer-dispersed CuO species are of small distorted (CuO4)mn+ clusters, which is mainly composed of a distorted CuO6 octahedron incorporated in the surface octahedral vacant sites of the γ-Al2O3 support. We consider that the CuO species for the CuO/γ-Al2O3 catalysts with loadings of 0.4 and 0.8 mmol/100 m2 are distorted (CuO4)mn+ clusters composed mainly of a distorted CuO6 octahedron incorporated in the surface octahedral vacant sites of the γ-Al2O3 support after calcinations at high temperature in air for a few hours. On the contrary, for the CuO/γ-Al2O3 with loading of 1.2 mmol/100 m2, the local structure of Cu atoms in CuO/γ-Al2O3 is similar to that of polycrystalline CuO powder.  相似文献   

7.
A method of preparation of a stable, high performance water adsorbent with the phase composition η-Al2O3 + γ-Al2O3 + χ-Al2O3 from thermally activated hydrargillite has been developed. The synthesis procedure does not involve a reprecipitation stage. The resulting adsorbent has a high specific surface area (400 m2/g) and a mean pore diameter of 3.5 nm or below. The static capacity of the adsorbent reaches 24.2 g H2O per 100 g of sorbent, and its dynamic capacity is 8.2 g H2O per 100 g of sorbent. Service life tests showed the stability of the adsorbent in multiple sorption-desorption cycles. The minimum dew point in drying is ?58.8°C.  相似文献   

8.
On the Structure of Ba2Wo3F4 and Ba2MoO3F4 Ba2[WO2/2O2F2]F2 has been prepared for the first time as colourless single crystals (from powder, Au-tube, 680°C, 90 d). It crystallizes in the monoclinic (C c) crystal system with a = 1151.1, b = 938.2, c = 718.8 pm, ß = 126.17°, Z = 4. dx = 6.17, dpyk = 6.13 g · cm?3. (Fourcirclediffractometer PW 1100, Fa. Philips, MoKα-, ω-2Θ-scan, 1832 I0(hkl) R = 8.3, Rw = 7.4%). Parameters see in the text. The isotypic Ba2MoO3F4 has been prepared as powder (a = 1147.5, b = 937.0, c = 725.1 pm, ß = 126.42°). The structure shows chains of (WO2/2O2F2) groups along [001]. To establish O2? and F? on the positions IR and Raman Spectra are employed. The Madelung Part of Lattice Energy, MAPLE, is calculated and discussed.  相似文献   

9.
生物质衍生物乙酰丙酸是生物质转化过程中重要的平台分子,对其进行催化加氢可以得到高附加值的产物,是连接生物质转化和石油化工的重要途径。本实验研究了无溶剂微波辅助热解法绿色制备负载型钌基催化剂,以Ru3(CO)12为金属前体,碳纳米管、椰壳活性炭和活性氧化铝为催化剂载体,该制备方法简单易操作,环保高效低能耗,不使用溶剂,避免了杂质的引入和对催化剂的污染,是一种新型负载型贵金属催化剂的制备方法。同样采取传统浸渍法制备Ru/γ-Al2O3-IM。在乙酰丙酸水相催化加氢反应中的催化活性顺序为Ru/AC > Ru/CNT ≈ Ru/FCNT > Ru/γ-Al2O3-MW ≈ Ru/γ-Al2O3-IM。比较不同反应溶液水、甲醇、乙醇、苯甲醚、环己烷和丙酮等对于乙酰丙酸催化加氢反应的影响,并通过考察反应温度、反应压力和反应物初始浓度等因素对加氢反应的影响,确定最佳实验条件为:反应温度为90℃,反应压力2.0 MPa,适宜反应物浓度为0.10 g/mL,产品GVL收率大于99%。  相似文献   

10.
The metastable forms of aluminum oxide that exist in the range of 300–800°C are characterized; differences in the microstructures of homogeneous γ-, η-, and χ-Al2O3 are demonstrated; and the acid-base properties of the above modifications are compared. The catalytic properties of aluminum oxide in ethanol dehydration and propionitrile ammonolysis were studied. It was found that an increased surface concentration of Lewis acid sites, including strong acid sites (ν(CO) = 2237 cm?1), is required for preparing an effective catalyst for the dehydration of ethanol, whereas the rate of propionitrile conversion increased proportionally to the surface concentration of Brønsted acid sites. γ-Aluminum oxide was used to prepare catalysts for carbon monoxide oxidation. It was found that the supporting of Pd on γ-Al2O3 did not change the support structure. Palladium on the surface of γ-Al2O3-550 (T calcin = 550°C, S BET = 300 m2/g) occurred as single particles (2–3 nm) and aggregates (~100 nm). The single particles were almost completely covered with a layer of aluminum oxide to form core-shell structures. According to XPS data, they were in atypical states (BE(Pd 3d 5/2) = 336.0 and 338.0 eV), which were not reduced by hydrogen in the range of 15–450°C and were resistant to the action of the reaction mixture. Palladium on the surface of γ-Al2O3-800 (S BET = 160 m2/g) was in the states Pd0 and PdO, which are typical of Pd/Al2O3, and the proportions of these states can change under the action of the reaction mixture. An increase in the T calcin of the Pd/Al2O3(800)-450 catalyst from 450 to 800 → 1000 → 1200°C led to the agglomeration of palladium particles and to an increase in the temperature of 50% CO conversion from 145 to 152 → 169 → 189°C, respectively. α-Aluminum oxide was used in the preparation of an effective Mn-Bi-O/α-Al2O3 supported catalyst for the synthesis of nitrous oxide by the oxidation of ammonia with oxygen: the NH3 conversion was 95–97% at 84.4% N2O selectivity.  相似文献   

11.
It is of great significance to study the thermal oxidation process to understand the reaction mechanism of aluminum particle and further its applications in propellants. The physical and chemical properties of micron-aluminum particle were evaluated by scanning electron microscopy, laser particle size analyzer, X-ray diffractometer and inductively coupled plasma atomic emission spectrometer. The thermal oxidation characteristics of the sample were studied by thermal analyzer. The experimental results showed that the initial oxide thickness of the sample was about 3.96 nm, and the calculated values of the specific surface area and the active aluminum content obtained by the established mathematical model were in good agreement with the measured values. The thermal oxidation process of the sample was divided into three stages. When the temperature rose to 1100 °C, the thermal oxidation efficiency of the sample reached 98.55%. With the increase in treatment temperature, dramatic crystalline changes occurred on the surface of the sample: amorphous alumina—γ-Al2O3, α-Al2O3, and the oxide layer thickness increased from 3.96 to 5.72 nm and 31.56 nm up to 320.15 nm. When the temperature reached 700 °C, the outer surface of the oxide layer contained a small amount of α-Al2O3, while the interior consisted of a large amount of γ-Al2O3, indicating that the conversion of γ-Al2O3 to α-Al2O3 occurred from the inside out.  相似文献   

12.
The nature and stability of surface species of CuCl2 supported on α-Al2O3, γ-Al2O3, and SiO2 were investigated by using X-ray diffraction techniques and reflectance spectroscopy. No specific chemical interaction of CuCl2 is observed on an inert α-Al2O3 support, as opposed to hydrated carriers as SiO2 and γ-Al2O3. On these supports the coordination sphere of Cu2+ consists of surface groups (OH? or O? at drying and activation, resp.), H2O and Cl?, with the H2O ligands decreasing in concentration in the process of impregnation, drying and calcination. γ-Al2O3 samples, calcined at 400°C, show γ-Cu2(OH)3Cl as opposed to CuAl2O4 at higher temperatures. The absence of Cu2(OH)3Cl on SiO2-supported samples is related to the acid-base characteristics of the carriers. The various supports can be arranged in the following order of stability of the complexes formed: γ-Al2O3 > SiO2 ? -Al2O3.  相似文献   

13.
The Cu/γ-Al2O3 catalysts with different Cu loadings were prepared by impregnation method. The physicochemical properties of these Cu/γ-Al2O3 catalysts were characterized by H2-TPR, XRD, and in-situ XPS. The catalytic hydrogenation performances of methyl laurate over Cu/γ-Al2O3 catalysts were studied. The results show that the hydrogenation performances of methyl laurate on Cu/γ-Al2O3 catalyst are related to the dispersion, crystallite size, and content of the active component Cu0. The 10CA catalyst has the best hydrogenation performances for methyl laurate to produce C12 alcohol. At 300 °C, the conversion of methyl laurate and the selectivity of C12 alcohol are 55.6% and 30.4%, respectively.  相似文献   

14.
The solid state transitions of the WO3γ-Al2O3 system have been investigated in the temperature range 873–1323 K. The formation of α-Al2O3 and Al2(WO4)3 phases and the thermal desorption of W(VI) attached to the γ-Al2O3 surface have been studied as function of the treatment time. The inhibition of the phase transition to α-Al2O3 and therefore the stabilization of the surface has been observed at 1323 K for samples with 7% WO3 content. This stabilization is critically affected by the tungsten content. An explanation for the stabilization of the alumina surface is proposed.  相似文献   

15.
《Solid State Sciences》2012,14(7):971-981
α, β and γ-Ga2O3 have been successfully obtained in an easily scalable synthesis using aqueous solution of gallium nitrate and sodium carbonate as starting materials without any surfactant and additive. α and β-Ga2O3 were obtained by calcination at 350 and 700 °С, respectively, of α-GaOOH, prepared by controlled precipitation at constant pH 6 and T = 55 °С, with 24 h of aging. Aging was necessary to fully convert the initially preciptated gel into a well-crystalline and phase-pure material. γ-Ga2O3 was obtained after calcination at 500 °С of gallia gel, synthesized at constant pH 4 and T = 25 °С, without aging. These three polymorphs have a for gallia relatively high surface area: 55 m2/g (α-Ga2O3), 23 m2/g (β-Ga2O3) and 116 m2/g (γ-Ga2O3). The combination of X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX), nitrogen physisorption and thermogravimetry (TG) was employed to characterize the samples and their formation.  相似文献   

16.
The influence of titanium oxide on the surface interactions of MO (M=Cu and Ni)/γ-Al2O3 catalysts has been studied by using XRD, LRS and XPS. For the catalysts with titania loadings lower than 0.56 mmol Ti4+/100 m2 Al2O3 (i.e., the dispersion capacity), the dispersion of MO oxides on the surface of γ-Al2O3 support is significantly suppressed by the dispersed Ti4+ ions. The inhibiting effect is dependent on the properties of MO oxides. When titania loadings are considerably higher than the dispersion capacity, MO oxides exhibit a rather stronger interaction with the formed TiO2 particles than the γ-Al2O3 support, and some of the dispersed M2+ ions might be accommodated by the vacant sites on TiO2. Therefore, the catalysts can be considered as the compositions of MO/TiO2 and MO/TiO2/γ-Al2O3 (dispersed titania). TPR results show that either dispersed titania or formed TiO2 particles can promote the reduction of copper oxide species, but the latter to a greater extent. Based on the consideration of the incorporation model, it is proposed that the surface structure of the support plays an important role in surface interactions.  相似文献   

17.
Knudsen’s effusion method with mass spectral analysis of the composition of the gas phase was used to measure the temperature dependence of the saturated vapor of several (CH3)2AuL chelate complexes and to determine the thermodynamic parameters of their sublimation. Based on the results of this study, conditions for chemical vapor deposition of gold using dimethylgold(III) chelates were chosen. Gold nanoparticles were synthesized by chemical vapor deposition (infiltration) of (CH3)2Au(acac) on porous granules of γ-Al2O3 with subsequent calcination in air at 325°C. Particle size and the chemical state of gold in Au/γ-Al2O3 systems were evaluated by transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). A vapor infiltration procedure is suggested to prepare metallic gold particles ≤5 nm in diameter from Au/γ-Al2O3. It is shown that Au/γ-Al2O3 systems obtained by chemical vapor infiltration and containing small gold crystallites possess high catalytic activity in CO oxidation reactions at 40°C.  相似文献   

18.
The formation of Pd–Ag nanoparticles deposited from the heterobimetallic acetate complex PdAg2(OAc)4(HOAc)4 on α-Al2O3, γ-Al2O3, and MgAl2O4 has been investigated by high-resolution trans-mission electron microscopy, temperature-programmed reduction, and IR spectroscopy of adsorbed CO. The reduction of PdAg2(OAc)4(HOAc)4 supported on γ-Al2O3 and MgAl2O4 takes place in two steps (at 15–245 and 290–550°C) and yields Pd–Ag particles whose average size is 6–7 nm. The reduction of the Pd–Ag catalyst supported on α-Al2O3 occurs in a much narrower temperature range (15–200°C) and yields larger nanoparticles (~10–20 nm). The formation of Pd–Ag alloy nanoparticles in all of the samples is demonstrated by IR spectroscopy of adsorbed CO, which indicates a marked weakening of the absorption band of the bridged form of adsorbed carbon monoxide and a >30-cm–1 bathochromic shift of the linear adsorbed CO band. IR spectroscopic data for PdAg2/α-Al2O3 suggest that Pd in this sample occurs as isolated atoms on the surface of bimetallic nanoparticles, as is indicated by the almost complete absence of bridged adsorbed CO bands and by a significant weakening of the Pd–CO bond relative to the same bond in the bimetallic samples based on γ-Al2O3 and MgAl2O4 and in the monometallic reference sample Pd/γ-Al2O3.  相似文献   

19.
The esterification of poly(γ-glutamic acid) (γ-PGA) produced by Bacillus subtilis F2-01 with alkyl halides was carried out at 60°C in N-methyl-2-pyrrolidinone (NMP) in the presence of sodium bicarbonate to obtain the corresponding esterified γ-PGA. The thermal properties of these γ-PGA esters were examined by differential scanning calorimetry and thermogravimetry. γ-PGA esters were more stable than free acid type γ-PGA, which decomposed at 210°C. Melting temperature (Tm) of γ-PGA esters could be observed at 230-250°C. Tm of γ-PGA n-alkyl esters reached a maximum at an alkyl chain length of n = 3. © 1995 John Wiley & Sons, Inc.  相似文献   

20.
The adsorption properties of sulfated aluminum oxide (9% SO 4 2- /γ-Al2O3) and a cobalt-containing composite (0.5%Сo/SO 4 2- /γ-Al2O3) based on it are studied via dynamic sorption. The adsorption isotherms of such test adsorbates as n-hydrocarbons (C6–C8), benzene, ethylbenzene, chloroform, and diethyl ether are measured, and their isosteric heats of adsorption are calculated. It is shown that the surface sulfation of aluminum oxide substantially improves its electron-accepting properties, and so the catalytic activity of SO 4 2- /γ-Al2O3 in the liquid-phase alkylation of benzene with octene-1 at temperatures of 25–120°C is one order of magnitude higher than for the initial aluminum oxide. It is established that additional modification of sulfated aluminum oxide with cobalt ions increases the activity of this catalyst by 2–4 times. It is shown that adsorption sites capable of strong specific adsorption with both donating (aromatics, diethyl ether chemosorption) and accepting molecules (chloroform) form on the surface of sulfated γ-Al2O3 promoted by cobalt salt.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号